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Abstract

Background and Purpose—Stroke is a complex disease with multiple genetic and 

environmental risk factors. African Americans endure a nearly two-fold greater risk of stroke and 

are 2–3 times more likely to die from stroke than European Americans.

Methods—The Consortium of Minority Population genome-wide Association Studies of Stroke 

(COMPASS) has conducted a genome-wide association meta-analysis of stroke in more than 

22,000 individuals of African ancestry (3,734 cases, 18,317 controls) from 13 cohorts.

Results—In meta-analyses, we identified one SNP (rs55931441) near the HNF1A gene that 

reached genome-wide significance (P = 4.62×10−8) and an additional 29 variants with suggestive 

evidence of association (P < 1×10−6), representing 24 unique loci. For validation, a look-up 

analysis for a 100Kb region flanking the COMPASS SNP was performed in SiGN Europeans, 

SiGN Hispanics, and METASTROKE (Europeans). Using a stringent Bonferroni correction P-

value of 2.08 × 10−3 (0.05/24 unique loci), we were able to validate associations at the HNF1A 
locus in both SiGN (P = 8.18 × 10−4) and METASTROKE (P = 1.72 × 10−3) European 

populations. Overall, 16 of 24 loci showed evidence for validation across multiple populations. 

Previous studies have reported associations between variants in the HNF1A gene and lipids, C-

reactive protein, and risk of coronary artery disease and stroke. Suggestive associations with 

variants in the SFXN4 and TMEM108 genes represent potential novel ischemic stroke loci.

Conclusion—These findings represent the most thorough investigation of genetic determinants 

of stroke in individuals of African descent, to date.

SUMMARY

Despite its limitations, genetic studies such as COMPASS, that include minority populations have 

the huge potential to provide insight into the mechanisms underlying stroke disparities, such as the 

more than doubled incidence and mortality rates and younger age of onset for stroke observed in 
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African Americans.5, 47 Our study identified novel associations for stroke that might not otherwise 

be detected in primarily European cohort studies. Collectively this highlights the critical nature 

and importance of genetic studies in a more diverse population with a high stroke burden, such as 

was the case in this study.
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stroke; meta-analysis; genome-wide association study; African American

INTRODUCTION

Stroke is the second leading cause of death worldwide and a leading cause of long-term 

disability in the United States.1 Stroke is a heterogeneous disease encompassing multiple 

subtypes with unique etiologies and risk factors.2 Nearly 87% of the ~795,000 strokes that 

occur each year in the US are ischemic.1 Epidemiological studies suggest a substantial 

genetic component for stroke with overall heritability estimates of 38% for all ischemic 

strokes, and subtype-specific estimates of 20–25% for small-vessel disease3 and up to 40% 

for large-vessel disease.4 Compared to European Americans, African Americans have a 

nearly two-fold greater risk of incident stroke, more than two-fold increased risk of fatal 

stroke, strokes at younger ages, and higher frequency of post-stroke disability.5, 6 Despite 

this disproportionate burden, few attempts to map stroke susceptibility loci have focused on 

individuals of African ancestry.7 Recent genome-wide association studies (GWAS) have 

identified several stroke susceptibility loci8–14 primarily in individuals of European ancestry 

with little success replicating in non-European ancestry populations7, 13, 15–16 possibly due 

to differences in the genetic architecture of stroke among individuals of diverse ancestry.

This study represents a collective effort to investigate the genetic basis of stroke by mapping 

stroke susceptibility loci potentially unique to individuals of African ancestry. Using data 

obtained from the Consortium of Minority Population genome-wide Association Studies of 

Stroke (COMPASS), we expand upon our discovery GWAS meta-analysis of stroke in 

African-Americans7 using 1000 genomes (1000G) imputed data in 22,000 individuals.

METHODS

In order to minimize the possibility of unintentionally sharing information that can be used 

to re-identify private information, a subset of the data generated for this study are available 

at dbGaP and can be accessed at https://www.ncbi.nlm.nih.gov/gap/.

Study population

COMPASS included a total of 22,051 individuals of African descent with either a physician-

adjudicated stroke (n= 3,734) or no history of stroke (n= 18,317) (Supplemental Table I) and 

genome-wide single nucleotide polymorphism (SNP) data. Participating studies include 

prospective cohorts[Atherosclerosis Risk in Communities (ARIC) study,17 Cardiovascular 

Health Study (CHS)18, Jackson Heart Study (JHS)19–20, the Women’s Health Initiative 

(WHI),21]; case-control studies [INTERSTROKE22, REasons for Geographic And Racial 
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Differences in Stroke (REGARDS)23, Ischemic Stroke Genetics Study (ISGS),24 Vitamin 

Intervention for Stroke Prevention (VISP)25–26, South London Ethnicity and Stroke Study 

(SLESS)27, the Genetics of Early Onset Stroke (GEOS) Study28, the National Institute of 

Neurological Disorders and Stroke- Stroke Genetics Network (NINDS-SiGN)29, Healthy 

Aging in Neighborhoods of Diversity across the Life Span (HANDLS)30]; and an affected 

sibpair study--Siblings with Ischemic Stroke Study (SWISS).31 Race/ethnicity- and sex-

matched controls were randomly selected from HANDLS and used as controls in the 

analyses of SWISS, ISGS and VISP, which lacked genotyped controls. All participants 

provided written, informed consent and institutional review boards approved each of the 

respective studies/institutions.

Outcomes

We defined stroke as a focal neurological deficit of presumed vascular cause with a sudden 

onset and lasting 24 hours or until death with clinical and/or radiological (CT/MRI) 

evidence with stroke diagnosis made when there is overwhelming clinical evidence in the 

absence of radiological evidence of a cerebral infarction. A lack of imaging data for all 

stroke cases does not increase the likelihood of false positives in our study. The cohort 

studies only considered first (incident) clinically validated ischemic strokes. Individuals with 

a baseline history of ischemic or hemorrhagic stroke were excluded.

Genotype data

All studies imputed SNPs using 1000G Phase I Version 3 Haplotypes (1KGp1v3), except 

SLESS and WHI, which used 1000G Phase III data (1KGp3) reference populations. We 

excluded SNPs if they had invalid or missing alleles, P-Values, or Beta values; had minor 

allele frequencies (MAF) < 1%; imputation quality (r2) <0.3; or were located on sex 

chromosomes. We analyzed SNPs available in two or more studies, for a total of ~16.9 

million SNPs. The Supplement contains study-specific details about design, stroke 

definition, adjudication procedures, and genotyping.

Analysis

We used logistic regression (additive genetic model) analyses with a count of variant alleles 

(0, 1, or 2) for each genotyped SNP or allelic dose for imputed SNPs. To control for 

potential population stratification, we included estimated study specific principal 

components of global ancestry as covariates. As appropriate, we adjusted models for age, 

sex, and study site. We combined study-specific results in a fixed effects meta-analyses with 

inverse variance weighting (IVW) using METAL.32 We also performed sample size 

weighted (SSW) meta-analysis as an alternative approach to IVW (Supplemental Table II). 

We set a genome-wide significance (discovery) threshold of P<5×10−8 but investigated all 

SNPs with P<10−6.

Validation of COMPASS Findings

Due to the absence of a comparable and adequately powered cohort of African Americans 

with GWAS and adjudicated stroke data, we performed a ‘look-up’ of COMPASS SNPs 

with P<10−6 in the SiGN European and Hispanic ischemic stroke populations and 
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METASTROKE total ischemic stroke populations (Supplemental Table III). Additional 

METASTROKE subtype (cardio-embolic, large-vessel, and small vessel) specific look-up 

analyses were performed to further validate these findings. Given the known differences in 

linkage disequilibrium (LD) patterns between populations of European and African ancestry, 

we expanded the region of interest for each locus to include available SNPs ±100kb of the 

index COMPASS SNPs as previously described7 applying a Bonferroni correction to 

account for the number of loci tested.

RESULTS

Discovery of stroke-associated loci

Using IVW meta-analyses (Table 1) we identified one genome-wide significant association 

(P<5×10−8) and an additional 29 variants with suggestive evidence of association 

(P<1×10−6), representing 24 unique loci in total. The genome-wide significant association 

was detected upstream of the HNF1 homeobox A (HNF1A) gene on chromosome 12 

(rs55931441; P=4.62×10−8, odds ratio (OR)=1.68) (Figure 1A).

Validation of COMPASS SNPs in SiGN and METASTROKE

Expanding to the flanking regions and using a stringent Bonferroni correction of 

⍺=2.08×10−3 for replication (0.05/24 unique loci), our most significant locus, HNF1A, was 

validated in both SiGN and METASTROKE European ancestry cohorts and approached 

significance in SiGN Hispanics (Supplemental Figure I). Overall, 16 of 24 loci showed 

evidence for validation across multiple populations (Table 2).

Likely due to the inclusion of ischemic stroke cases only, we were not able to replicate the 

novel association for rs4471613, which was associated with total (ischemic and 

hemorrhagic) stroke in our prior COMPASS HapMap imputation report (IVW P=0.85)7. 

Additionally, we found no evidence of replication for loci previously associated with stroke 

in European-Ancestry populations (P ranging from 0.02 to 0.95; Supplemental Tables IV–

V).

DISCUSSION

This new COMPASS meta-analysis of ischemic stroke only identified 24 unique loci with 

suggestive (n=23) or genome-wide (n=1) evidence for association with ischemic stroke. The 

most significantly associated HNF1A variant, rs55931441 (G/A), is monomorphic in 

European populations (G allele present only), with a 2% minor allele frequency (allele A) 

reported in sub-Saharan and 1000G African populations, and 3.8% frequency in COMPASS. 

This SNP was present in the only two studies imputed to 1KGp3 (WHI and SLESS). 

Collectively, WHI and SLESS account for 9,637 subjects (1,147 stroke cases and 8,490 

controls). We were unable to assess the association for rs55931441 directly in our cross-

ethnic look-up, however SNPs in a 100kb flanking region were significant (Supplemental 

Figure I) in SiGN Europeans (top SNP rs182546302; P=8.18×10−4), METASTROKE 

ischemic stroke phenotype (top SNP rs117548270; P=1.72×10−3), and METASTROKE 

cardioembolic stroke phenotype (top SNP rs184865012; P=9.98×10−4); while SNP 

rs80019595 approached significance (P=8.74×10−3) in the SiGN Hispanic cohort. Previous 
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studies have reported associations between variants in HNF1A and lipids,33 C-reactive 

protein,34–35 and risk of coronary artery disease and stroke.33, 35 Taken together, these 

findings may provide greater insight regarding subtype specific influences and potential 

mechanism of HNF1A variants in stroke risk.

Three additional variants reached suggestive associations at the P≤10−8 level (rs113509723 

in TMEM108 (Figure 1B); rs142655108 near NPM1P48 (Figure 1C); rs150807690 in 

SFXN4). The NPM1P48 locus showed no evidence for replication in the cross-ethnic look-

up while TMEM108 was replicated in SiGN Hispanics only (top SiGN Hispanic SNP 

rs139695007; P= 0.002). The SFXN4 SNP, rs150807690, is a G insertion (-/G) with a 22% 

minor allele frequency (G insertion) in the 1000G African population and 24% frequency in 

COMPASS. Variant rs150807690 did not replicate in SiGN Hispanic (P=0.796) or SiGN 

Europeans (P=0.696) analyses and was not present in the METASTROKE look-up, however 

nearby SNPs with evidence of replication in a 100kb flanking region were detected in SiGN 

Europeans (top SNP rs143931152; P=2.68×10−4) and SiGN Hispanics (top SNP 

rs56095167; P=1.31×10−3), located 35,540 bp and 97,388 bp from the indexed COMPASS 

variant, respectively. The SFXN4 gene has not been previously implicated in stroke. The 

protein encoded by SFXN4 is critical for mitochondrial respiration and erythropoiesis.36–37 

Recent clinical trials suggest that erythropoiesis-stimulating agents effectively treat anemia 

associated with chronic kidney disease but increase the risk of stroke possibly due to hyper-

viscosity.38

Of the 23 loci with suggestive association in COMPASS, 15 showed evidence for replication 

in one or more look-up analysis. One locus was replicated in SiGN Europeans only, four loci 

were replicated in SiGN Hispanics only, two loci were replicated in METASTROKE 

ischemic stroke only, while eight loci had evidence for replication in two or more look-ups. 

Two loci, SFXN4 and UQCRFS1, were replicated in both the SiGN Europeans and 

Hispanics, two loci were replicated in SiGN Hispanics and METASTROKE ischemic stroke 

(KALRN and FAR2), and three loci were replicated in SiGN Europeans and 

METASTROKE ischemic stroke (CTTNBP2L, GTSCR1, and RUNX1). Most notably, one 

locus (SRRM4) was replicated in all three look-ups. Evidence for association across 

multiple ethnicities might indicate stroke susceptibility loci with a global impact. For 

example, the KALRN locus which was replicated in SiGN Hispanics and METASTROKE 

has been implicated in coronary artery disease risk across multiple populations39–41 and was 

recently associated with ischemic stroke and lacunar stroke in a Han Chinese population.42 

Although the SRRM4 locus, which was replicated in all three look-ups, has not previously 

been implicated in stroke, the gene is important for neurogenesis43 and has shown 

associations with neurological conditions including Alzheimer’s disease44 and epilepsy.45

Although this effort represents the largest stroke GWAS meta-analysis in individuals of 

African descent, the modest sample size of 3,734 stroke cases limits our power to detect 

associations for variants with a MAF of ≤3%. Only two cohorts used the most recent 

imputation panel limiting our ability, and thus power, to detect novel variants only present in 

1KGp3 and not 1KGp1v3. Furthermore, individuals of African descent suffer ischemic 

strokes of small vessel etiology more frequently. Therefore, due to the increased genetic 

diversity of this COMPASS population combined with the greater prevalence of small vessel 

Keene et al. Page 6

Stroke. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stroke, we are not surprised at a lack of validation of previous European-ancestry 

associations. Failure to replicate associations across ethnicities is a common occurrence in 

genetic studies of various diseases and therefore does not threaten the validity of our current 

study. Moreover, the lack of availability of an adequate replication cohort consisting of 

individuals of African descent suffering a stroke that have genome-wide SNP genotype data 

remains a substantial global challenge. Likewise, due to smaller LD blocks and increased 

genetic diversity in populations of African descent, larger sample sizes would help alleviate 

limitations of statistical power, challenges associated with imputing genotypes, and allow for 

more detailed stroke subtype analyses. A recent analysis showed that although the number of 

GWAS conducted as of 2016 has increased more than 6-fold since 2009, African descent 

participants increased by only 2.5%.46 Therefore, our study will help advance precision 

medicine applications by identifying genetic loci (and subsequent polygenic risk scores) for 

stroke prediction and risk stratification in diverse populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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GEOS Genetics of Early Onset Stroke

GWAS Genome-wide association study

HANDLS Healthy Aging in Neighborhoods of Diversity across the Life Span

HNF1A HNF1 homeobox A

ISGS Ischemic Stroke Genetics Study

IVW inverse variance weighted

JHS Jackson Heart Study

LD Linkage disequilibrium

MAF Minor allele frequency

NINDS National Institute of Neurological Disorders and Stroke

OR Odds ratio

REGARDS REasons for Geographic And Racial Differences in Stroke

SiGN Stroke Genetics Network

SIGNET Sea Islands Genetics Network

SLESS South London Ethnicity and Stroke Study

SNP Single nucleotide polymorphism

SSW Sample size weighted

SWISS Siblings with Ischemic Stroke Study

VISP Vitamin Intervention for Stroke Prevention

WHI Women’s Health Initiative
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Figure 1. 
LocusZoom plots, with linkage disequilibrium based on hg19/1000 Genomes Nov 2014 

AFR, depicting the top (P= 10−8) three associations with ischemic stroke in COMPASS 

individuals of African descent. A.) HNF1A (rs55931441) chromosome 12 locus; B.) 
TMEM108 (rs113509723) chromosome 3 locus; C.) Chromosome 2 (rs142655108) locus 

nearest NPM1P48.
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