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Abstract

The Navajo Nation (NN), a sovereign indigenous tribal nation in the Southwestern United States, 

is home to 523 abandoned uranium mines (AUMs). Previous health studies have articulated 

numerous human health hazards associated with AUMs and multiple environmental mechanisms/

pathways (e.g. air, water, and soil) for contaminant transport. Despite this evidence, the limited 

modeling of AUM contamination that exists relies solely on proximity to mines and only considers 

single rather than combined pathways from which the contamination is a product. In order to 

better understand the spatial dynamics of contaminant exposure across the NN, we adopted the 

following established geospatial and computational methods to develop a more sophisticated 

environmental risk map illustrating the potential for AUM contamination: GIS-based multi-criteria 

decision analysis (GIS-MCDA), fuzzy logic, and analytic hierarchy process (AHP). Eight criteria 

layers were selected for the GIS-MCDA model: proximity to AUMs, roadway proximity, drainage 

proximity, topographic landforms, wind index, topographic wind exposure, vegetation index, and 

groundwater contamination. Model sensitivity was evaluated using the one-at-a-time method and 

statistical validation analysis was conducted using two separate environmental datasets. The 

sensitivity analysis indicated consistency and reliability of the model. Model results were strongly 

associated with environmental uranium concentrations. The model classifies 20.2% of the NN as 

high potential for AUM contamination while 65.7% and 14.1% of the region are at medium and 

low risk, respectively. This study is entirely a novel application and a crucial first step toward 
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informing future epidemiologic studies and ongoing remediation efforts to reduce human exposure 

to AUM waste.
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Introduction

Abandoned hard rock mines are prevalent throughout the western United States 

(Government Accountability Office 2011). These abandoned mines are cause for public 

health concern because they are known sources of deleterious environmental metals such as 

uranium, lead, cadmium, and arsenic (Lewis et al. 2017). There are more than 4,000 

abandoned uranium mines (AUMs) in the western United States, many of which are co-

located with indigenous communities (Lewis et al. 2017) – including 523 AUMs on the 

Navajo Nation (NN). Despite evidence of links between exposure to metals found in AUM 

waste and human health impacts (Gonzales et al. 2018), there remains limited scholarship 

specifically addressing environmental exposure to metals among rural and underserved 

communities in the southwest United States.

Existing biomedical and environmental epidemiology investigations with indigenous 

communities have identified associations between environmental metals found in AUM 

waste and negative health outcomes (Erdei et al. 2019; Hund et al. 2015). Residential 

proximity to AUMs was associated with biological markers of cardiovascular disease 

(Harmon et al. 2018). Oral intake of uranium via drinking water has also been associated 

with immune system changes among NN residents (Erdei et al. 2019). While there are 

numerous investigations of human health and metal exposure in the southwest US, most 

include only limited exposure assessments (Gonzales et al. 2018) and few consider multiple 

routes of exposure.

On the NN there are multiple routes of potential metals exposure including inhalation via 

windblown dust (Beamer et al. 2014) and ingestion via drinking water or food items 

(deLemos et al. 2009; Hoover et al. 2019). Recent literature has suggested that air/dust 

might be a primary contributor to exposure. Indoor residential dust in Shiprock, New 

Mexico, a community in the Northern Agency of NN, indicated an abundance of uranium, 

cadmium, and lead. The metal mixtures present in dust collected from these homes were 

chemically similar to nearby AUM waste (Gonzalez–Maddux et al. 2014). Analysis of AUM 

waste in Blue Gap, Arizona, a community in the Central Agency of NN, contained uranium-

bearing nanostructures small enough to be inhaled deeply into the lung (Zychowski et al. 

2018). Aeolian (windblown) transport of metals from AUM sites may be particularly 

important for the NN because approximately one-third of the NN on the Colorado Plateau is 

covered with Aeolian sand (Bogle et al. 2015). Both environmental and anthropogenic soil 

disturbance may increase transport of dust containing metals from mining sites. The NN’s 

complex terrain also plays a critical role in shaping how contaminants are transported from 

mine sites via air (Lindsey et al. 1999). While these studies demonstrate the potential for 
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environmental accumulation and movement of metals in air or water, there remains limited 

investigation of aggregated exposure potential from multiple pathways. This research 

directly addresses this literature gap.

Integration of inhalation and ingestion pathways (e.g., water, air, and soil) are therefore 

necessary to better estimate exposure potential. However, existing methods on contaminant 

fate and transport or physical process models are usually based on single pathways and 

require sophisticated environmental data that are rarely available in rural and Tribal areas 

(Lewis et al. 2017). For example, the American Mine Services/US Environmental Protection 

Agency (AMS/EPA) Regulatory Model (AERMOD) is the preferred method for modeling 

movement of particulate matter over large areas (within 50 kilometers of pollution sources); 

however, this method requires detailed emission source parameters such as pollutant 

emission rates and release height, detailed meteorological data, as well as background 

concentration levels. On the NN there are few monitoring stations to cover a land area of 

70,000 km2. Available emission source, environmental, and meteorological data are 

therefore insufficient for many sophisticated dispersion models. The use of more complex 

physical process models is therefore untenable, but the need for more detailed exposure 

potential spatial products remains. Consequently, there is very limited environmental 

modeling of contamination for AUM sites and surrounding areas.

To address this issue, this study employed existing and widely accepted geospatial and 

computational methods that to date have not been employed in the domain of AUM 

contamination potential on the NN. To wit: we leverage a GIS-based multi-criteria decision 

analysis (GIS-MCDA) approach based on available environmental information from 

multiple sources to address the public health need to map potential AUM waste exposure 

from multiple pathways across the NN as a large geographic area. The GIS-MCDA approach 

can relate known and observable effects of multiple exposure routes from pollution sources 

to the neighboring landscape and therefore is a common approach for risk mapping or 

vulnerability assessments. GIS-MCDA is a process that transforms and combines geospatial 

data and decision-maker’s value judgments to obtain information for decision making 

(Malczewski 2006a). The method aggregates coincident criteria into one map representing a 

composite variable (Jiang & Eastman 2000; Malczewski 2006a) and has been used 

extensively for remedial site evaluations (Chen et al. 2019; Li et al. 2018), land use 

suitability (Chang et al. 2008; Charabi & Gastli 2011; Chen et al. 2010), risk mapping or 

vulnerability assessments (González Del Campo 2015; Hou et al. 2017; Rangel-Buitrago & 

Anfuso 2015), and public health studies (Young et al. 2010). Many studies have been 

conducted to integrate the GIS-MCDA models and fuzzy set theory to address potential 

uncertainties in the MCDA approach (Kuo et al. 2002), GIS-MCDA creates a product that 

can help evaluate risk or vulnerability level of contamination quantitatively and ranks/

prioritizes geographic areas for further investigation. Spatial products generated using this 

approach may identify areas with greater potential for contamination, such as those within 

the NN where contamination risk from AUMs is the product of multiple environmental 

processes. This study is entirely a novel application and a crucial first step toward informing 

future epidemiologic studies and ongoing remediation efforts to reduce human exposure to 

AUM waste. For the purposes of this paper we adopt a description of risk mapping provided 
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by Lahr and Kooistra (2010) as the mapping and identification of areas that are vulnerable to 

contamination.

The objectives of this study were: 1) to develop a site-specific model for potential 

environmental risk mapping in the NN; 2) to conduct a sensitivity analysis of the model; and 

3) to validate the model using a separate environmental dataset. This work provides the first 

detailed environmental risk map emphasizing combined pathways for AUM contamination 

on the NN using geospatial modeling and computational methods. Development of 

environmental risk maps for this region may inform future epidemiologic analysis, 

remediation decision making, and intervention research aimed to reduce exposure and 

improve human health. The framework illustrated in this paper could be extended to other 

research on geographic regions facing environmental issues to refine knowledge of complex 

contamination potential.

Material and methods

Study area

The study area is limited to the conterminous boundary of the Navajo Nation (NN), a 

sovereign indigenous nation located in the southwest United States. The NN is 

approximately 70,000 km2 located in Arizona, New Mexico, and Utah and is divided into 

five administrative units (agencies): Eastern, Central, Northern, Western, and Ft. Defiance 

(Figure 1). The tribal lands of the NN are sparsely populated, with a large proportion of the 

population living in rural and geographically remote locations with limited infrastructure. 

The majority of the NN is located on the Colorado Plateau, with elevation ranging from 

940–3,153 meters. More than half of the land area has an arid or desert climate. The 

population of the NN was 175,005 people in 2017, 95.3% of whom self-identified as 

indigenous. Economically, 52.3% of individuals living on the NN are unemployed and 

40.4% of households have an annual income of less than $25,000 (U.S. Census Bureau n.d.).

Methodology

This study adopted a GIS-MCDA approach that used fuzzy logic to model potential for 

contamination from AUMs on the NN. The accumulative contamination potential was 

determined using a weighted linear combination (WLC) of eight standardized factors as a 

proxy of interaction with contamination pathways from AUMs. These pathways were 

modeled across a geographic surface representing specific spatial characteristics. The factors 

selected for risk analysis are:

• Proximity to AUM sites

• Proximity to roads

• Proximity to downslope drainages from AUM sites

• Topographic landforms

• Wind index

• Topographic wind exposure (TWE)
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• Vegetation robustness (NDVI)

• Groundwater contamination

These factors were selected as they play a major role in the fate and transport of 

contaminants in the environment via different pathways. Detailed justification of each factor 

is discussed in the data preprocessing section. Proximity to AUMs, roads, and downslope 

drainage were modeled as the three primary risk factors. Topographic features, specifically 

valleys and lower slopes, represent a high likelihood of pollutant accumulation. Aeolian 

transport of dust was modeled as both TWE and a wind index, both of which consider areal 

location in relation to prevailing monthly winds. Finally, groundwater contamination 

interpolated from extant samples was used to account for the interaction between surficial 

contamination and transport below the pedosphere. Each factor was standardized using 

fuzzy membership. Factor weights were determined using pairwise comparisons in the 

analytic hierarchy process (AHP). Finally, the factors were aggregated and risk scores were 

generated using a WLC method. The overall framework of this paper is illustrated in Figure 

2. The framework follows a standard workflow of GIS-MCDA approach (Hamzeh, 

Abbaspour, & Davalou 2015; Koshand et al., 2018) along with sensitivity analysis and 

model validation. We used fuzzy logic to standardize each factor layer and to mitigate 

uncertainties in risk mapping, which is not commonly seen in most traditional GIS-MCDA 

approaches.

Geographical data sets consisting of point locations for each AUM feature as well as surface 

and underground polygons of AUMs, of which there are 523 sites within the study area, 

were obtained from US Environmental Protection Agency (USEPA) (USEPA 2006). Wind 

data (daily wind direction over the past 30 years) from 14 regional and major airports 

(Figure 1) around the NN were obtained from historical meteorological aerodrome reports 

(METARs) (Iowa State University, n.d.). Topographic data, including landform 

classification, slope, and aspect, were generated using a digital elevation model (DEM) at 

30-meter resolution obtained from the US Geologic Survey (USGS) (U.S. Geological 

Survey, n.d.). A road network was obtained as TIGER/line shapefiles from the U.S. Census 

Bureau (U.S. Census Bureau, n.d.). Downslope drainage area and groundwater quality data 

were obtained from USEPA (USEPA 2006) and an existing database at the University of 

New Mexico (Hoover et al. 2017), respectively. Vegetation data (normalized difference 

vegetation index [NDVI]) were obtained from the NASA Vegetation Index and Phenology 

(VIP) global dataset (Didan 2010). Scenes for every month between January 1984 and 

December 2014 were collected and averaged into monthly datasets.

Data preprocessing

Proximity to Abandoned Uranium Mines—Proximity to contamination sources plays 

a critical role in contaminant transport and dispersion. Numerous studies have used 

proximity as a proxy for contamination or exposure (Gong et al. 2016). Previous studies on 

AUMs on the NN found that residential proximity to AUMs was associated with elevated 

arsenic and uranium concentration in the environment and adverse health outcomes 

(deLemos et al. 2009; Hoover et al. 2017; Harmon et al. 2017).
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In this study, proximity to AUMs was calculated as the square root of the sum of the inverse 

distances of a geographic location to all AUM features within 50 kilometers, and weighted 

by the surface area of each feature (adapted from Harmon et al (2017)):

Pi = ∑j = 1
m wj

Dij
for Dij ≤ 50km (1)

wj = wJ
∑k = 1

N wk, wJ = areaj

where Pi is AUM proximity score, I is the spatial location of the centroid of interest, j is any 

AUM within a 50 kilometer threshold of I, m is the number of AUMs within the threshold, 

and wj is a weight based on the proportion of the size of the nearest AUM and all others 

within the threshold.

Due to the fact that proximity alone does not fully explain measured contamination in the 

environment or biomonitoring data in previous studies on the NN (Erdei et al. 2019; Lewis 

et al. 2017), the following factors were included in the model based on their role in 

contaminants fate and transport.

Proximity to Roads—Roads are considered a pathway of heavy metal contaminants and 

pollutant dispersion from AUMs, largely due to dust associated with traffic, both on paved 

and unpaved roads (Apeagyei et al. 2011; Duong & Lee 2011). The inclusion of this factor 

was based on the EPA’s NN AUM Screening Assessment Report (EPA 2007) which found 

increased concentration in contaminants with increased proximity to roads. Proximity to 

roads was calculated as the Euclidean distance from each road segment.

Proximity to Downslope Drainage—Pollutants from AUMs may be transported via 

surface water in ephemeral or perennial drainages. Previous research shows that 

environmental media in drainages downstream of AUMs contain metals found in AUM 

waste largely because of high water solubility of contaminants (deLemos et al. 2009; 

Lameman Austin 2012). The EPA’s NN AUM Screening Assessment Report (EPA 2007) 

also found increased concentration in contaminants with increased proximity to downslope 

drainage. The proximity to these drainages was calculated as the Euclidean distance from 

each drainage.

Landform Classification—Much of the physical geography of the NN is typified with 

flat or gentle slopes incised with steep, precipitous valleys and lower slopes. These lower 

regions receive downhill air flow wherein winds may be naturally directed – transporting 

metals from AUM sites (Deacon 1969). Different landforms have been identified as an 

important factor in pollutant dispersion in several physical process models that consider air 

and soil pathways (Yudego et al. 2018). Landforms were identified across the study area by 

first calculating the topographic position index (TPI) (Jenness 2006) from elevation values in 

a 30-meter DEM. TPI is a dimensionless value that is determined by comparing the pixel of 

interest with the elevations of pixels in a user-specified neighborhood. Using a 5-pixel 
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neighborhood, 6 landforms were identified based on TPI: valleys, steep slopes, gentle 

slopes, lower slopes, ridges, and flat land. A detailed procedure of how each landform is 

classified can be found elsewhere (Jenness 2006). All parameters in the landform 

classification were calibrated with an accuracy assessment through random sampling as 

discussed in the results section.

Wind Index—Wind in the NN is both culturally-significant (McNeley 1981; Sherry 2002) 

and a prevalent feature of the physical landscape. Recent warming trends and historic land 

use patterns have led to an increase in Aeolian sediment mobility characterized by large sand 

dune migration and substantial dust storms (Draut et al. 2012). Most air dispersion models 

consider wind direction relative to contamination sources (e.g. leeward and windward) 

(Elangasinghe et al. 2015; Kim et al. 2015). As such, a wind index is used to model general 

patterns of wind-borne fugitive dust from AUMs across the study area. The wind index is a 

scaled value between 0 and 1 calculated based on the equation (Ryan et al. 2008):

W ind Index = 1 − cos θ − β
2 (2)

where θ is the Euclidean direction from the nearest AUM and β is the prevailing wind 

direction of any geographic location in the study area in degrees. Locations directly 

downwind of the nearest AUM have a wind index value of 1, those perpendicular to the wind 

direction have an index of 0.5, and those upwind have an index near 0.

Prevailing wind direction was obtained based on wind rose plots of 30-year wind 

information measured weekly at 14 regional and major airports in and around the NN for 

each month (Figure 1). Each pixel in the study area was assigned the monthly prevailing 

wind value of the nearest airport. A wind index was generated for each month using monthly 

wind direction.

Topographic Wind Exposure—Existing models acknowledge the effect of topographic 

terrain on Aeolian transport (Yudego et al. 2018). Therefore, we used the topographic wind 

exposure (TWE) to model localized vulnerability of dust exposure by relating the angle of 

wind incidence to physical features. Studies have demonstrated the validity of TWE in 

predicting contaminant dispersion (Böhner & Antonić 2009). TWE is a calculation of the 

angle between a plane orthogonal to the wind and a plane that represents the local 

topography according to the equation (Antonić & Legović 1999; Böhner & Antonić 2009):

cosα = cos μ sin β + sin μ cos β cos δ − γ (3)

where cosα is the angle of TWE, μ is the terrain slope calculated from a DEM, β is the 

horizontal angle of wind, δ is the wind direction, and γ is the terrain aspect also calculated 

from a DEM. For the scope of this study, only wind horizontal to flat ground was considered 

(β = 0). Topographic wind exposure was derived for each month due to the monthly 

variation in wind direction.

Groundwater Contamination—About 30% of NN residents rely on unregulated water 

sources, including groundwater wells (deLemos et al. 2009). The hydrogeology of the region 
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includes 3 primary aquifer units, each comprised of multiple water bearing formations 

(Cooley et al. 1969). To account for potential exposure to metals via groundwater we 

calculated a hazard index (HI) score for 467 groundwater sources across the NN previously 

tested for arsenic and uranium concentrations (Hoover et al. 2018) and interpolated the 

results as a proxy measure of potential contamination, informed by existing water quality 

results (Gong et al. 2014). Previous research on the NN demonstrated a spatial clustering of 

elevated arsenic and uranium in groundwater sources proximal to AUM sites (Hoover et al. 

2017).

Vegetative Robustness—Vegetation cover and substrate reduces the transport of 

windblown dust (Bogle et al. 2015; Draut et al. 2012). Existing physical models such as 

DUSTRAN (A GIS-Based Atmospheric Dust Dispersion Modeling System) model Aeolian 

transport using vegetation cover as a significant factor (Allwine et al. 2006). Largely, the NN 

is sparsely vegetated and is typified by low scrub and brush (Draut et al. 2012). Forested 

areas in Navajo land extend from the southeastern up to the north-central portions. Monthly 

30-year averages of normalized difference vegetation index (NDVI) were calculated to 

capture the broad trends of vegetative phenology across the study area in order to predict the 

likelihood of impeding windblown dust transport. The NDVI values range between −1 and 

1. Values approaching 1 indicate the highest level of vegetative cover and thus low 

likelihood of facilitating windblown dust transport and those of 0 and smaller indicate bare 

earth and thus high likelihood of facilitating windblown dust transport.

All above environmental factors were preprocessed and mapped in a GIS software – ESRI 

ArcMap 10.4.1.

Fuzzy membership

Each of the criteria layers were standardized using the fuzzy logic technique, which has been 

widely used to address uncertainties in environmental risk assessment processes (Eldrandaly 

2013). Fuzzy membership values range from 0 to 1 and indicate the degree to which an input 

value represents the set as a whole (ESRI 2016; Zadeh 1965). Four algorithms were used to 

transform input raster values to fuzzy membership values, using ESRI ArcMap (v. 10.4). 

The fuzzy large (monotonically increasing sigmoidal) function indicates that larger values in 

the input dataset have a higher degree of membership and therefore present a higher 

potential for contamination. Fuzzy small (monotonically decreasing sigmoidal) is the inverse 

of fuzzy large wherein larger input values indicate lower membership (lower risk of 

contamination). The fuzzy MS large algorithm is similar to fuzzy large, but the midpoint and 

spread are defined by the mean and standard deviations of input raw values. The fuzzy MS 

small algorithm is the inverse of MS large.

Fuzzy functions were selected based on the following assumptions for each factor layer. 

Areas with higher AUM proximity, wind index, TWE, or groundwater hazard index have 

greater potential for AUM contamination; conversely, areas with low vegetation index values 

have greater contamination potential due to soil instability and windblown dust. Areas close 

to roads and drainages downstream of AUMs may also have higher contamination potential. 
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Lastly, valleys and lower slopes were considered to be associated with higher vulnerability 

to contamination risk due to the greater likelihood of pollutant accumulation (Deacon 1969).

Analytic hierarchy process

A pairwise comparison among the factors following the AHP method was completed to 

determine weights for each factor. The pairwise rank between two factors was assigned 

based on literature (Bogle et al. 2015; deLemos et al. 2009; Hoover et al. 2017; Lindsey et 

al. 1999; Lowe et al. 2018), the research team’s knowledge of the study area through in-

person field work, and conversations with experts and local residents. The priority ranks 

satisfy the additivity constraint (Chen et al. 2010; Saaty 1977), where the sum of all weights 

equal 1.

Factors were aggregated using the WLC method based on the generated weights according 

to the following equation (Malczewski 2006b):

ri = ∑j = 1
n wjaij (4)

where ri is the risk value at location i, wj is the criterion weight, and a is the criterion value 

at location i for criterion j.

Specifically, a weighted sum was applied for each standardized factor layer and the 

aggregation was conducted for each month. The overall estimated environmental risk score 

of contamination ranges between 0 and 1, representing lowest to highest risk, respectively.

Sensitivity analysis and model validation

In order to ascertain the degree to which the input factor weights influence the model, a 

sensitivity analysis using the one-at-a-time (OAT) method was conducted where each weight 

was incrementally adjusted by a percent change (PC) for a range of percent change (RPC) of 

±20% and reapplied to the weighted linear combination. Following Chen and colleagues 

(2010), when each individual weight is adjusted, the associated weights of the other criteria 

layers must be moderately adjusted to ensure that the additivity constraint is consistently 

met. This process was implemented using Python scripting in the arcpy environment and the 

following equation:

W ci, pc = 1 − W cm, pc × W ci, 0
1 − W cm, 0 , i ≠ m, 1 ≤ i ≤ n (5)

where W ci, pc  is the weight of the ith criterion, ci at the base run, cm is the main changing 

criterion, and n equals the total number of criteria in the model.

A total of 320 results were generated for each one-month period employing the OAT method 

(Chen et al. 2010; Daniel 1973). Change was quantified in terms of how many pixels in the 

results fell within low (R1), medium (R2), or high (R3) risk groups, defined as tertiles of the 

initial overlay (0 PC). To reduce the computational burden, only surfaces for April and 

September were analyzed in the sensitivity analysis, as they are representative of high and 

low windy seasons and vegetation tends to be at different phenological stages. It should be 
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noted that the differences in wind characteristics might not be captured due to a lack of wind 

speed data used in the study.

The environmental risk scores were validated using uranium concentrations in sediment and 

soil samples collected across the NN as part of the National Uranium Resource Evaluation 

(NURE) Hydrogeochemical and Stream Sediment Reconnaissance dataset (U.S. Geological 

Survey 1975) as well as EPA’s Airborne Spectral Photometric Environmental Collection 

Technology (ASPECT) data of detected radiation levels (USEPA 2019). Because both 

datasets are spatially autocorrelated, meaning they exhibit nonstationary relationships (p-

value for Moran’s I tests on both datasets < 0.001), a geographically weighted regression 

(GWR) was applied to test the statistical fit between ground data and the modeled risk score. 

GWR is a local form of linear regression which has been widely used to model spatially 

varying relationships (Fotheringham et al. 2002).

Results

Environmental factors

Figure 3 presents individual factor surface results for the month of April. Results indicated 

areas in Eastern, Northern, and Western Agencies with higher AUM proximity values due to 

the concentration of AUM sites in these areas (Figure 3a). Drainage areas located downslope 

of AUMs followed a similar pattern with the highest downstream distances located the 

furthest from areas with high AUM proximity values (Figure 3c). The groundwater 

contamination map (Figure 3h) also followed this general pattern but an area of elevated 

contamination was observed in the Ft. Defiance agency away from AUM locations. The 

wind index map (Figure 3g) is centered on AUMs and is reflective of prevailing wind 

direction observations in sub-regions. The TWE map illustrates a positive index value for 

terrain features with aspects coincident to prevailing monthly winds (Figure 3f).

Landform classification results indicated that 65% of the study area was classified as gentle 

slopes, 20% as upper slopes, 12% lower slopes, 2% ridges, 0.18% valleys below steep 

slopes, and 0.05% steep slopes (Figure 3d). The landform classification accuracy assessment 

indicated that 86% of the landforms were correctly classified using the specified model.

The vegetation index map (Figure 3e) illustrated higher values in the central forested areas 

proximal to the New Mexico/Arizona border and lower index values in eastern and 

southwestern NN where barren land is common. Additionally, the proximity to roads map 

(Figure 3b) suggests a fairly dense road network through the NN with small patches of lower 

road density and a limited number of roads in an area in the northwestern NN along the 

Colorado River and Grand Canyon National Park.

Initial modeled results

In total, 41 fuzzy surfaces were generated including monthly models for vegetation cover, 

topographic wind exposure, and the wind index. A single fuzzy surface was created for the 

other 5 factors that are not temporally variable. Descriptive statistics for the fuzzy layers, 

where a membership value close to 1 indicates greater contamination risk, are presented in 

Table 2.

Lin et al. Page 10

Environ Sci Pollut Res Int. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Factor weights were determined based on AHP input. From 28 comparisons in the AHP 

process, a consistency ratio (CR) of 9.4% was reached with a principal eigenvalue of 8.921. 

The resultant decision matrix and output factor weights are presented in Table 3. There is 

minimal quantitative difference between the overlay results for all 12 months. Monthly 

results are listed in the supplemental document table S1.

Figure 4 shows a risk surface generated as an average of the 12 monthly surfaces. There are 

three areas of higher contamination potential that align with the proximity to AUMs, due to 

the high weight assigned to this factor. Within these areas, potential contamination varies 

based on other factors. The northwestern corner of the Western Agency along the Colorado 

River, northeastern corner of Eastern Agency, as well as several areas in the south-central 

area of Ft. Defiance Agency have relatively low risk values because these areas are further 

from AUMs, roads, or drainages, which were the top three weighted factors. Because fuzzy 

values are dimensionless, the degree of risk represented in the overlay models is relative to 

all pixels contained within the study area limits.

Sensitivity analysis and model validation results

The initial sensitivity test focused on results for the month of April (typically windy season), 

which was compared to September (typically non-windy season). If incremental adjustment 

of input weights affects little to no change in the output overlay results, the model is 

insensitive to minor changes and demonstrates good overall strength. Three risk groups (low 

(R1), medium (R2), and high (R3)) were defined using the following intervals: 0.139 – 

0.399, 0.399 – 0.659, and 0.659 – 0.918.

Figure 5 shows the sensitivity analysis results from 320 simulations for each factor in the 

month of April. Amongst all factors, the majority of the study area was dominated by the 

medium risk classification (R2). Having the highest weight in the model, proximity to 

AUMs and proximity to roads demonstrated a moderate degree of sensitivity, while the 

remaining six factors were relatively stable. For proximity to AUMs, significant change 

started at the +8 PC in weights where the low risk (R1) areas grow and medium risk (R2) as 

well as high risk (R3) areas shrink. For proximity to roads, the low risk (R1) areas decreased 

while the medium risk (R2) and high risk (R3) areas increased, with the most salient change 

observed below −14 PC in weights. While the drainage and landform factors were relatively 

stable, the conceptualizations of low risk (R1) and high risk (R3) approached convergence 

near the lower and upper extremes of the sensitivity analysis, respectively. The sensitivity 

analysis results were similar for the month of September (see supplementary file table S2).

The adjusted weight values and pixel counts per risk grouping at each PC using the 

proximity to AUMs in April and September as an example are presented in supplement file 

table S2. For both months, the average change of the number of cells in low, medium, and 

high risk groups was 3%, −0.6%, and −0.9%, respectively, for every 1% change in the 

weight of proximity to AUMs. The average change imparted on the overlay maps when 

adjusting weight values for all other criteria maps was less pronounced, with a less than 1% 

change in tertile membership for every simulation run.
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In order to better visualize the sensitivity spatially, we calculated the standard deviations of 

risk scores across the study area surface from all 320 test runs for April (Figure 6). We 

observed a low standard deviation (low sensitivity) in the three clusters of high risk areas in 

close proximity to AUMs.

The R2 of GWR for each monthly contamination risk score are presented in Table 4. The 

average R2 is 0.84 using ASPECT data and 0.95 using NURE data across all months, 

suggesting a strong fit between modeled results and environmental monitoring data.

Discussion

This study created a GIS-MCDA model for environmental risk mapping to identify areas at 

greatest vulnerability to contamination from AUM sites on the NN. The model accounts for 

proximity to AUMs, meteorology, topography, vegetation, and proximity to roads and 

surface drainages. To date, no studies have included this combination of environmental 

factors for mapping potential AUM contamination for the full spatial extent of the NN. This 

approach is a viable assessment method for modeling contamination potential in the absence 

of comprehensive environmental and metrological monitoring across the study area.

Based on the results of this study, 20.2% of NN are at higher risk (R3) for AUM 

contamination, and 65.7% and 14.1% areas are at medium (R2) and lower risk (R1), 

respectively. Three areas with higher risk are observed close to AUMs, due to the higher 

relative weight for AUM proximity (above 40%). Elevated home dust metal concentration as 

well as water contamination of arsenic and uranium has been found in areas close to AUM 

sites in the NN (deLemos et al. 2009; Gonzalez–Maddux et al. 2014; Hoover et al. 2017). 

Residents of Navajo communities who self-reported exposure to AUM tailings in the Eastern 

Agency (New Mexico portion of NN, see Figure 1) demonstrated an elevated risk for 

diabetes, hypertension, and kidney disease (Hund et al. 2015). Additionally, serum 

inflammatory markers from 273 Navajo men and women living in the Eastern Agency were 

inversely associated with residential proximity to abandoned waste piles and induction of a 

pathway leading to development of atherosclerosis and cardiovascular disease (Harmon et al. 

2017). In this area of the NN, our team also identified that living close to AUM sites and U 

contamination in the drinking water increased the risk of developing environmentally 

induced autoimmune biomarkers, potentially increasing the risk of the development of 

severe immune dysfunction (Erdei et al. 2019).

Although the environmental risk map is most influenced by proximity to AUMs, proximity 

to roads, drainages, and landforms (valleys and lower slopes) also influenced the aggregated 

output. Road dust contamination has been well documented in mining areas (Yang et al. 

2016) and is likely a source of airborne dust in the study area because the majority of the 

roads in the NN are unpaved (>83%). Moreover, an association between exposure to road 

dust and high rates of asthma prevalence and severity among Navajo children exists (Lowe 

et al. 2018). Contaminants from AUMs and roads may be dispersed by winds. This process 

is impacted by wind direction, wind speed, vegetation cover, and terrain factors, which were 

quantified in terms of the wind index, topographic wind exposure, vegetation index, and a 

landform classification. Although these factors account for a small portion of the overall 
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weight (16%), their role has been well documented in the literature (Bogle et al. 2015; 

Lindsey et al. 1999).

This study also considered drainages downstream of AUMs as potential water pathways for 

contamination because they transport contaminants during episodic flooding (Lameman 

Austin 2012). Some contaminants, such as uranium from AUMs, are highly soluble and thus 

water concentration is much higher for those contaminants when they are saturated with 

rainwater (deLemos et al. 2009). As such, we included the proximity to downstream 

drainages since the surficial contaminants can be leached and accumulated in the adjacent 

soils. Groundwater resources in surficial alluvium may be contaminated by run off from 

AUM sites, as has been documented along the Rio Puerco in Eastern Agency (deLemos et 

al. 2009; Rock 2017). Groundwater concentrations of arsenic and uranium may also be 

elevated in deeper aquifers because the uranium bearing formations are the same water 

bearing formations that residents may use for livestock watering (Hoover et al. 2017).

In this study, we used a WLC to model the interaction between factors standardized with 

fuzzy membership. Many environmental service or risk models employ linear aggregation 

methods (Gemitzi et al. 2006) largely because, while certain ecological processes will result 

in repercussions across space, they do not entirely supplant other processes. In other words, 

factors in environmental models are usually present despite diminished relative influence on 

the observed phenomenon.

This study adopted a well-established workflow which first developed a fuzzy AHP, 

determined factors weights, and collected and processed data for decision making (Kuo et al. 

2002). This workflow has been widely used in GIS-MCDA and remains relatively 

unchanged, though there has been considerable research into the specific methods employed 

therein. The most pronounced component to this workflow has emerged in the form of 

model validation and sensitivity assessments.

The validity of MCDA models is tested in a number of ways. Uncertainty and sensitivity 

may be quantified through techniques such as the Dempster-Shafer Theory (DST) to 

understand information representation and combination (Feizizadeh & Blaschke 2013). 

Monte Carlo simulation (MCS) is a similar technique where adjustments and inputs are 

statistically randomized, allowing for a higher degree of variability while minimizing 

computational burden (Chang et al. 2008; Paquette & Lowry 2012). This study adopted the 

one-at-a-time (OAT) method which incrementally adjusts criteria weights by set amounts in 

a highly controlled set of simulation runs (Chen et al. 2010; Daniel 1973; Eldrandaly 2013). 

The model in this study has been proven consistent based on sensitivity analysis.

Ground truth validation has also proven to be a viable measure of model reliability (Fuller et 

al. 2003). However, many models are limited in terms of availability of reliable data against 

which conclusions may be validated. The NURE samples used in the current study included 

soil (17%), stream sediment (81%), and spring sediment samples (2%) (n = 4344). We 

observed a strong fit between the NURE soil and sediment samples collected in the NN and 

our overall modeled results. Further examination of GWR residuals revealed that the overall 

model with the 8 factors significantly improved the final modeled results which produced 
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randomly distributed residuals compared with the proximity-based model that only used the 

proximity factor as the environmental contamination potential which had a poor fit in 

geographic areas close to AUMs.

Limitations

This study has several limitations. First, it is critical to select control points of fuzzy 

membership functions. The middle point of the fuzzy membership functions was set to the 

numeric mean value of the inputs such that the maximum fuzzy value of the membership of 

any criterion is equal to half of all of the instances of any other fuzzy value in the set (Yen & 

Langari 1999).

This set compliment holds that nothing is certainly known about the distribution of 

observable phenomena represented in the set and, by extension, the interaction between 

criteria within the model. Future work should conduct a rigorous sensitivity analysis on the 

choice of different control points of fuzzy membership functions.

Second, although we adopted AHP to derive factor weights, subjectivity still exists in factor 

ranking and thus derived weights. Existing work has conducted uncertainty analysis on AHP 

factor rank and associated results (Feizizadeh & Blaschke 2013). The current study 

conducted rigorous sensitivity analysis and found that the model is not sensitive to the 

majority of the factors. Future work should consider uncertainty analysis as well.

Third, wind speed was not used in the model, which might impact the air/dust flow in the 

study. The seasonal variation (e.g. windy season vs non-windy season) was not truly 

reflected in the study due to the ignorance of wind speed, which possibly explains the 

relatively minor differences among monthly overlay results. However, the factors (e.g., wind 

index and topographic wind exposure) do not have wind speed built in the function. Future 

work should include wind speed in the wind index or topographic wind exposure factors. 

Furthermore, wind data at finer spatial scales should be used when available. Wind data 

from the North American Regional Reanalysis at 32 km grid should be considered in future 

work. Fourth, the Hopi Reservation, which is encompassed by the NN, was not included in 

the risk analysis due to incongruent environmental information available within its boundary. 

Two coal mine sites across the NN and Hopi, Black Mesa and Kayenta mines, should be 

included if research focuses on contamination in general.

Lastly, as discussed above, this study was limited by the availability of detailed datasets with 

which sophisticated models may be constructed or validated. Existing air quality dispersion 

models (e.g., AERMOD, CALINE3, and CTDMPLUS) provide more accurate estimates. 

However, our current study could not adopt these models due to a lack of detailed emission 

source data and the large footprint of the study area. Regardless, this study aimed to estimate 

the relative risk or vulnerability level rather than absolute contaminants concentration in the 

environment. Thus, the use of GIS-MCDA is sufficient in addressing this question. Also, the 

NURE and ASPECT datasets are pure environmental datasets which might not capture all of 

the contamination pathways. Future work should collect a variety of more contemporary 

environmental samples (air, dust, water, and soil) to test the validity of the model. 
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Meanwhile, future work should consider using biomonitoring data as another source for 

validation.

Conclusion

This is the first study to use a GIS-MCDA framework to map potential for abandoned 

uranium mine contamination on the NN. We considered multiple contamination pathways 

including air and water transport of contamination from AUM sites. The model was tested 

with a rigorous sensitivity analysis and ground truth validation. The results of this modeling 

work indicated that 20.2% of the NN was at higher risk for AUM contamination, specifically 

areas of Eastern, Northern, and Western Agencies due to the proximity to AUM sites. 

Several areas far from AUM sites also demonstrated elevated contamination potential when 

different environmental processes were considered. The sensitivity analysis and validation 

work demonstrated the reliability of the model in the study. This work provides novel 

modeling information illustrating areas of higher potential contamination by combining 

AUM locations with roads, drainages, meteorological factors, topographic factors, as well as 

other physical characteristics. Although further model refinement and validation using other 

environmental data is suggested, this research may prove useful to tribal, state, and federal 

agencies working to remediate abandoned uranium mines and reduce human exposure to 

harmful contaminants found in these wastes.

Supplementary Material
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Figure 1. 
Study area map showing administrative agencies, AUMs, and airports within the Navajo 

Nation, located in the southwest United States. Agencies are numbered as 1) Western, 2) 

Northern, 3) Central, 4) Eastern, and 5) Ft. Defiance
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Figure 2. 
Methodology framework
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Figure 3. 
Criteria maps generated prior to fuzzification: a) proximity to AUMs, b) proximity to roads, 

c) proximity to downslope drainage, d) landforms, e) vegetation, f) topographic wind 

exposure (TWE), g) wind index, h) groundwater contamination. Maps of vegetation, TWE, 

and wind index are generated from data for the month of April.

Lin et al. Page 22

Environ Sci Pollut Res Int. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Composite environmental risk map illustrating potential AUM contamination as the average 

of all monthly risk surfaces
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Figure 5. 
Summary results from 320 simulation runs (40 per criteria layer) (low risk (R1), medium 

risk (R2), and high risk (R3))
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Figure 6. 
Standard deviations of risk scores from all 320 simulation runs in April
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Table 1

Fuzzy function, midpoint, and spread for each factor layer used to create the environmental risk map

Factor Fuzzy Function Midpoint (Spread)*

Proximity to AUMs MS large 0.269 (1)*

Proximity to roads MS small 1 (1)*

Downslope drainage Small 39,530.762 (10)

Landforms Small 1.5 (3)

Wind Index Large 0.499 (2)

TWE MS large 1 (0.025)*

Vegetative robustness Small 3,231.5 (2)

Groundwater contamination Large 13.652 (5)

*
Note: indicates mean (standard deviation)
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Table 2

Descriptive statistics of fuzzy membership scores for the criteria layers

Proximity AUMs Proximity Roads Drainage Landforms Vegetation* TWE* WI* GW

Min 0.000 0.055 0.001 0.111 0.211 0.000 0.000 0.000

Average 0.292 0.917 0.893 0.135 0.674 0.458 0.439 0.002

Max 0.923 1.000 1.000 1.000 0.996 0.988 0.8 0.968

Std. Dev. 0.243 0.179 0.262 0.068 0.133 0.469 0.31 0.016

*
Note. Criterion calculated using April values

AUM: abandoned uranium mines; TWE: topographic wind exposure; WI: wind index; GW: groundwater
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Table 3

Pairwise comparison decision matrix for factors from AHP

Categories: Prox Roads Drainage Landform Veg TWE WI GW Weights

Proximity to AUM 1 5 6 7 8 9 9 9 0.441

Roads 1/5 1 4 6 7 7 8 8 0.239

Drainage 0.17 1/4 1 4 5 6 6 6 0.134

Landforms 0.14 0.17 1/4 1 3 4 4 5 0.072

Vegetation 0.12 0.14 1/5 1/3 1 2 3 3 0.041

TWE 0.11 0.14 0.17 1/4 1/2 1 2 2 0.029

Wind index 0.11 0.12 0.17 1/4 1/3 1/2 1 2 0.024

Groundwater pollution 0.11 0.12 0.17 1/5 1/3 1/2 1/2 1 0.020
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Table 4

Validation results (R2) between all monthly surfaces and NURE sediment samples and ASEPCT data

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ASPECT 0.848 0.846 0.847 0.844 0.845 0.844 0.844 0.845 0.847 0.846 0.846 0.846

NURE 0.955 0.954 0.955 0.955 0.955 0.955 0.954 0.954 0.955 0.954 0.955 0.954
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