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Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic 

diseases implicated in the development of end stage renal disease (ESRD). Although FDA has 

recently approved a drug against ADPKD, there is still a great need for development of alternative 

management strategies for ADPKD. Understanding the different mechanisms that lead to 

cystogenesis and cyst expansion in ADPKD is imperative to develop new therapies against 

ADPKD. Recently, we demonstrated that caloric restriction can prevent the development of cystic 

disease in animal models of ADPKD and through these studies identified a new role for pregnancy 

associated plasma protein-A (PAPP-A), a component of the insulin-like growth factors (IGF) 

pathway, in the pathogenesis of this disease. The PAPP-A-IGF pathway plays an important role in 

regulation of cell growth, differentiation, and transformation and dysregulation of this pathway has 

been implicated in many diseases. Several indirect studies support the involvement of IGF-1 in the 

pathogenesis of ADPKD. However, it was only recently that we described a direct role for a 

component of this pathway in pathogenesis of ADPKD, opening a new avenue for the therapeutic 

approaches for this cystic disease. The present literature review will critically discuss the evidence 

that supports the role of components of IGF pathway in the pathogenesis of ADPKD and discuss 

the pharmacological implications of PAPP-A-IGF axis in this disease.
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Introduction

Autosomal dominant polycystic kidney disease (ADPKD), one of the most common genetic 

diseases is caused by mutations in PKD1 and PKD2 genes which encodes polycystin 1 

(PC1) and polycystin 2 (PC2) proteins respectively [1]. The hyperproliferation of tubular 

epithelial cells causes cyst formation and the cyst expansion eventually leads to the kidney 

enlargement which often results in ESRD [2]. Although FDA has recently approved 

tolvaptan drug against ADPKD to slow the progression of cystic disease, there are several 

adverse effects of this drug that make it unsuitable for many patients [3]. Therefore, the 

management strategies for ADPKD still remain largely supportive and limited. It is 

extremely important to understand the different molecular mechanisms that lead to 

cystogenesis and cyst expansion in order to develop new therapeutic strategies for 

management of ADPKD. Many signaling pathways have been reported to be involved in the 

pathogenesis of ADPKD including cyclic AMP (cAMP), MAPK/ERK, mammalian target of 

rapamycin (mTOR), AMP-activated protein kinase (AMPK) and growth factors [4–6]. The 

present review will explore the role of components of IGF pathway in ADPKD and its 

potential therapeutic implications. In particular, we will discuss the complexity of IGF 

pathway and the regulation of IGF bioavailability by the metalloproteinase, pregnancy 

associated plasma protein-A (PAPP-A).

The pathogenesis of ADPKD

Mutation in PKD1 gene is responsible for about 80% ADPKD patients, whereas PKD2 gene 

mutation accounts for 15% cases [7]. ADPKD patients generally carry a germline mutation 

in one allele of either PKD1 or PKD2, and second hits like somatic inactivation of the 

remaining wild-type PKD1 or PKD2 allele or loss of heterozygosity should occur in order to 

initiate the cyst formation [8]. The activity of the polycystins complex is thought to be 

necessary to prevent the cell-autonomous renal epithelial cell cystogenesis and when the 

level of functional PC1 or PC2 is reached below a certain critical threshold level, it leads to 

cystogenesis [8, 9]. The polycystins form multimeric protein complexes that are involved in 

regulation of components of various signaling cascades including Ca2+, cAMP and mTOR. 

The reduction in functional PC1 or PC2 therefore leads to several cellular alterations in 

cystic epithelial cells including cellular processes like fluid transport, proliferation, 

apoptosis, cell adhesion and differentiation [5, 10–12]. Reduction in Ca2+ influx, induction 

in cAMP levels, and abnormal activation of MAPK/ERK pathway in renal epithelial c ells 

are critical mediators of cyst growth and expansion [9]. Other mechanisms that have also 

been shown to be involved in cyst growth include dysregulated signaling of heterotrimeric G 

proteins, mTOR, phosphoinositide 3-kinase (PI3K)/Akt, AMPK, Janus kinase -signal 

transducer and activator of transcription (JAK/STAT) and nuclear factor-κB (NF-κB) 

pathway [13–16]. Additionally, metabolic alterations including defective glucose 

metabolism, impaired beta-oxidation, and abnormal mitochondrial activity are also shown to 

be associated with cyst expansion [17–22].

Therefore, cyst expansion is an important factor in the pathogenesis of ADPKD which 

results in compression and damage of surrounding tissue, and eventually leads to 

inflammation, fibrosis and kidney failure [4]. It is clear that the expansion of cysts involves 
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several mechanisms including dysregulation in cell proliferation processes. Therefore, the 

possibility of involvement of growth factors pathways cannot be denied in pathogenesis of 

ADPKD. In fact, epidermal growth factors (EGF), fibroblast growth factor 23 (FGF23) and 

insulin like growth factors (IGFs) have been reported to be involved in ADPKD [23–26]. 

However, to date the specific role and mechanisms of dysregulation of growth factor 

pathways in ADPKD have not been elucidated. In particular, the role of components of the 

IGF-1 pathway in ADPKD is largely unknown.

IGF-1 pathway in ADPKD

Circulating IGF-1 is mainly produced in liver and exerts endocrine effects, but locally 

produced IGF-1 acts in an autocrine/paracrine manner. Therefore, IGFs can function as 

circulating hormones as well as tissue growth factors. The effects of both IGF-1 and IGF-2 

are largely mediated through the IGF-1 receptor. Interaction of IGF-1 with IGF-1R triggers 

PI3K-Akt and mitogen-activated protein kinase (MAPK) pathways which regulate processes 

like cellular metabolism, apoptosis, cell adhesion, and angiogenesis [27, 28]. Since these 

pathways have also been shown to be involved in ADPKD pathogenesis, understanding the 

exact role of the IGF pathway and its components in ADPKD could identify potential new 

therapeutic targets for this cystic disease. The IGF-1 pathway is a complex growth factor 

pathway with multiple regulatory components [29]. It plays a key role in several 

physiological and pathological conditions such as aging, cancer, and tissue growth [30–34]. 

While it has previously been speculated that IGF-1 may play a role in ADPKD [35–40], no 

direct causal or mechanistic in vivo data implicating a role for any of the components of the 

IGF1 pathway in ADPKD can be found in the literature. In fact, the role of components of 

the IGF-1 pathway had never been directly tested in ADPKD until recently [41].

Components of the IGF pathway

As mentioned above, IGF pathway is a complex system consisting of two peptides: IGF-1 

and IGF-2, two receptors: IGF-1 and −2 receptors (IGF-1R and IGF-2R), six IGF-binding 

proteins (IGFBP-1–6) and IGFBP proteases (Figure 1).

IGF ligands—IGFs are crucial for normal growth and development. They promote cell 

proliferation, differentiation and survival and also exert insulin-like metabolic effects in a 

wide range of cells and tissues. Although, hepatocytes are the main source of circulating 

IGF-1, IGFs are ubiquitously expressed on cells and have multiple endocrine, autocrine and 

paracrine effects [42]. IGF-I production is stimulated by growth hormone (GH) and insulin. 

IGF-I can also be released independent of GH. IGF-1 and IGF-2 belong to the same family 

and were first characterized as possessing insulin like activity [43]. IGFs share nearly 50% 

homology with insulin. In humans, Igf1 gene is located on the chromosome 12q23 [44]. It 

has 6 exons and four transcriptional variants that are originated by alternative splicing [45], 

generating different isoforms for this gene, namely IGF-IEa (MGF), IGF-IEb, and IGF-IEc. 

These isoforms are differentially regulated, for instance, in response to exercise or muscle 

regeneration [46, 47]. Igf2 gene is located on chromosome 11, possesses 9 exons and also 

gives rise to multiple mRNA variants and three isoforms, which have tissue specific 

expression [45, 48]. This transcriptional diversity contributes to IGF-1 and IGF-2 regulation, 

but the mechanisms involved are still mostly unknown. IGF-1 plays an important role in 
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aging, fetal development, growth during childhood and adolescence, and tissue homeostasis. 

On the other hand, IGFs are risk factors in obesity and cancer due to the potent proliferative 

activity [31, 34, 49, 50].

IGF-1 receptors—IGFs exert their effects by interacting with the specific cell surface 

receptors known as IGF-1R and IGF-2R. IGFRs are tyrosine kinase receptors that are 

extensively expressed on mammalian tissues [51–53]. IGF-1R shares approximately 60% 

homology with the insulin receptor (IR) and a number of their downstream molecules are the 

same, including insulin substrate-1, PI3K, protein kinase B (PKB/Akt), mTOR and p70S6 

kinase. IGF-1R is a heterotetrameric receptor comprising two α and two β subunits (α2β2). 

Similar to the IR, IGFRs require a series of post-translational modifications such as 

glycosylation, disulfide linkage, and proteolytic cleavage before reaching their mature form 

consisting of two α subunits, containing the ligand biding site, and two β subunits, 

consisting the transmembrane and tyrosine kinase domains [54, 55]. Upon binding to IGFs, 

IGFR undergoes conformational changes that bring β subunits to close proximity triggering 

trans-autophosphorylation of the β subunits and activating the cytoplasmic tyrosine kinase 

domain. IGF-2 also binds to IGF-1R but with lower affinity compared with IGF-1. The 

IGF-2R, also known as the cation independent mannose 6-phosphate receptor, is a large 

single transmembrane protein with no homology with the IGF-IR. It binds to IGF-2 with 

higher affinity compared to IGF-1 [56]. The signaling pathways activated by the IGF-2R are 

not well defined. Most of the biological actions of IGF-2 are believed to be mediated by 

IGF-IR.

IGF-binding proteins—IGF-biding proteins (IGFBPs) are the important members of the 

IGF system and association between IGFs and IGFBPs is a major regulatory step in the IGF 

signaling pathway [57]. These proteins are present in the extracellular space as well as in the 

circulation and possess high affinity to IGFs [58, 59]. Over 95% of IGFs in serum are bound 

to IGFBPs. As the affinity of IGFBPs for IGFs is higher than the affinity of IGF to the cell -

surface IGF-IR, IGFs which are bound to IGFBPs do not bind to IGF-IR. Thus, IGFBPs, in 

addition to stabilizing IGF by increasing its half-life in tissues and blood, play an important 

role in preventing the interaction between IGFs and their receptors for downstream signaling 

[57]. For example, in vascular smooth muscle cells (VSMCs), IGFBP-4 binds to IGF-1 and 

blocks its interaction with the IGF1R inhibiting IGF-1-stimulated DNA synthesis [60]. In 

addition, liver specific deletion of IGF-1 resulted in 80% reduction in circulating IGF-I, but 

did not change postnatal growth, indicating the importance of local IGF-1 [61].

Six members of IGFBP family, IGFBP-1 to IGFBP-6 have been identified [57]. IGFBPs 

share structurally similar features such as a three-domain structure cysteine-rich C and N-

terminals, which are stabilized by multiple disulfide bounds, with a central linker domain in 

between [62]. Both N- and C- terminal domains are highly conserved across IGFBP family 

and form the IGF-binding site. Their structural domains include binding sites to components 

of the extracellular matrix, proteolytic cleavage sites, and sites for post-translational 

modifications [57, 62]. Although structurally similar, the different IGFBP proteins have 

distinct functions and their expression and mechanisms of regulation are cell and tissue 

specific. For instance, IGFBP-3, and to some extent IGFBP-5, can form a ternary complex 
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of 150 kDa with IGF and the glycoprotein acid labile subunit (ALS) [63, 64]. ALS stabilizes 

this complex extending its half-life in the circulation; therefore this association is important 

to keep IGF in the circulation for a longer period of time compared to its binary complex 

due to its high molecular size. While the majority of circulating IGFBP-3 and IGFBP-1 are 

produced in the liver, IGFBP-3 and other IGFBPs are also expressed in many peripheral 

tissues [57]. Hepatic expression is regulated by different stimuli e.g. IGFBP-3 expression is 

regulated in response to GH stimulation [65, 66], whereas IGFBP-1 expression is increased 

by starvation, hypoxia, and glucocorticoids and decreased in response to insulin [67–70]. In 

some circumstances, some IGFBPs may also potentiate IGF actions. For instance, when 

associated with extracellular matrix components, IGFBP-5 affinity to IGF can decrease upon 

biding to some components of the extracellular matrix which further regulates the effects of 

IGF-1 [71, 72]. Interestingly, IGFBPs also have IGF-independent functions like cell 

migration promotion by binding to cell surface proteins such as integrins [73, 74]; 

antiangiogenic activity promoted by IGFBP-6 interaction with vascular endothelial growth 

factor (VEGF) [75]; and transcriptional transactivator functions in the nuclei [76–78].

In addition, IGFBP-related proteins (IGFBP-rP1–9) have been identified, which have several 

fold lower binding affinity for IGFs than IGFBPs, but their physiological and 

pathophysiological functions are still not clear [79].

IGFBP proteases—IGFBP proteases cleave IGFBPs into fragments that have lower 

affinity for IGFs. The reduced affinity of IGFBP fragments towards IGFs leads to the 

increased bioavailability of IGFs and thus activates IGF receptors and downstream signaling. 

Although, there are three major groups of proteases which cleave IGFBPs and modulate the 

availability of free IGF, consisting serine proteases, cathepsins and matrix 

metalloproteinases [80–85] (Table 1), this review will mainly focus on metalloproteinase, 

PAPP-A.

Pappalysins are proteases in the metzincin superfamiliy of metalloproteinases, and 

pregnancy associated plasma protein-A (PAPP-A), alias pappalysin-1, is the founding 

member of this protease family [86, 87]. PAPP-A specifically cleaves IGFBP4 in an IGF-

dependent manner [88] and may be the only protease responsible for IGFBP-4 cleavage 

under physiological condition [89]. Although IGFBP-4 is the main substrate of PAPP-A, it 

has also been reported to cleave IGFBP-5 [90] and IGFBP-2 [91] in an IGF-independent 

manner. PAPP-A2 a paralog of PAPP-A, is the second member of pappalysin family and 

cleaves IGFBP-5 and IGFBP-3 in an IGF-independent manner [92].

Role of PAPP-A in regulation of local IGF signaling in tissues

PAPP-A was first identified as one of the placental proteins present at higher levels in serum 

of pregnant women [93, 94]. During pregnancy, it is primarily produced by placental 

syncytiotrophoblasts and secreted into the circulation, increasing its levels from early 

detection at first trimester until delivery at term. Initially, despite being recognized as a 

clinically relevant marker used in screening for Down’s syndrome [95], PAPP-A was 

considered a pregnancy protein with no physiological function. In 1990s, several studies 

reported the novel IGF-dependent protease activity of PAPP-A towards IGFBP-4 in cell 
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culture media from various cell types [96–98], however, Lawrence et al were first to prove 

that PAPP-A was the protease responsible for the IGF-dependent protease activity towards 

IGFBP-4 [88]. Subsequently, PAPP-A was reported to specifically cleave IGFBP-4 in 

human, ovine, bovine, equine, and porcine ovarian follicular fluid and shown to be expressed 

in granulosa cells of these mammals and in culture media from osteoblasts, lung cells, 

smooth muscle cells [99] [100–104]. Over the past years, PAPP-A has been reported to be 

ubiquitously expressed in multiple tissues [86, 94] and shown to have important roles in 

several physiological functions outside of pregnancy [105, 106].

PAPP-A exists in two major forms. During pregnancy, it circulates as a disulfide bound 

500kDa heterotetrameric complex consisting of 2 PAPP-A subunits covalently bound to two 

proform of eosinophil major basic protein (pro-MBP) [107] [105]. ProMBP is the 

endogenous inhibitor of PAPP-A, thus in this complex, PAPP-A is proteolytic inactive. 

proMBP recognizes cell bound PAPP-A and readily forms a complex which is unable to 

bind to cell surface, thus it enters the circulation [108]. On the other hand, the non-pregnant 

form of PAPP-A is a proteolytically active homodimer not covalently linked with pro-MBP.

Human PAPP-A sequence is comprised of 1547 amino acid residues with a distinct set of 

protein modules (Figure 2). In each subunit, at N-terminal, there is a 250-residue laminin G-

like module with unspecified function followed by a 350 residue proteolytic domain 

containing the so-called elongated zinc binding consensus sequence and a short sequence for 

Met-turn formation, which are the characteristics of the metzincin super family of 

metalloproteinases [87]. The proteolytic domain is then followed by two regions M1 and M2 

which are not very well characterized yet. The C-terminal module has five short consensus 

repeat (SCR) modules or complement control protein (CCP) modules, SCR 1–5. SCR3 and 

SCR4 are responsible for binding to glycosaminoglycans (GAGs) present on cell surfaces, 

enabling interactions between PAPP-A and cell surfaces [86]. PAPP-A also contains three 

Lin12-Notch repeat (LNR) modules, and each binds a calcium ion and determines the 

proteolytic specificity. LNR1–2 is present in the proteolytic domain and LNR-3 is in the C 

domain.

PAPP-A proteolytic activity cleaves IGFBP-4 at Met-135/Lys-136 in the linking domains 

and this cleavage only happens when IGFBP-4 is bound to IGF-1, thus showing its 

dependency on IGF-1. N- and C-terminal domains of IGFBPs have reduced affinity for 

IGFs, therefore this cleavage of IGFBP-4 by PAPP-A allows dissociation of bound IGF and 

increases its local bioavailability [109]. Proteolytically active PAPP-A is cell surface bound; 

therefore cleavage of IGFBP-4 happens in close proximity to IGF1R and released bioactive 

IGFs can interact with its receptors and trigger downstream signaling. This in turn enhances 

the effects of IGFs on cell proliferation, survival, and differentiation. Therefore, proteolysis 

of IGFBP-4 by cell surface bound PAPP-A is the final modulating step delivering IGF to its 

receptor.

The effects of PAPP-A are reported to be mainly local. For example, PAPP-A deficient mice, 

which are about 40% smaller than their wild-type littermates, showed no proteolytic activity 

against IGFBP-4 and no changes in circulating IGF levels, suggesting that PAPP-A plays a 

role in the regulation of autocrine/paracrine (but not endocrine) effects of IGF and local IGF 
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bioavailability [89]. Furthermore, transgenic mice over-expressing PAPP-A in skeletal 

muscle and osteoblasts have increased skeletal muscle mass and bone formation respectively 

[110, 111]. However, dual overexpression of a protease-resistant IGFBP-4 along with PAPP-

A completely diminished these anabolic effects of PAPP-A in mice [112] indicating that an 

increase in local IGF bioavailability through IGFBP proteolysis is the primary reason for the 

anabolic effects caused by PAPP-A. In summary, PAPP-A is not a direct inhibitor of IGF 

signaling, but acts as an important regulator in local bioavailability in IGF through 

proteolysis of IGFBP-4. PAPPA activity can be regulated by different protein binding 

inhibitors such as stanniocalcins (STNC). Both STNC1 and 2 have been shown to bind to 

PAPP-A and inhibit its proteolytic activity providing an extra layer of regulation for the IGF 

system [113].

PAPP-A expression in cultured cells is shown to be upregulated by proinflammatory 

cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 [114, 115]. 

PAPP-A is also upregulated by TGFβ, IL-4, as well as by the cAMP-inducing agent 

forskolin and other factors [106].

Several lines of evidence indicate an important role for PAPP-A in a number of 

physiological and pathological conditions. PAPP-A plays a crucial role during pregnancy 

[103, 116] by regulating the IGF bioavailability. The IGFs play an important role in 

regulating fetal growth [117] [118], autocrine and paracrine control of trophoblast invasion 

of decidua and early development and vascularization of placenta [119]. Thus, during 

pregnancy, high levels of un-complexed PAPP-A could be required locally for placental 

development, whereas in circulation PAPP-A:proMBP complex inhibits the proteolytic 

activity of PAPP-A which would otherwise lead to unusual systemic higher IGFBP-4 

proteinase activity. Low levels of PAPP-A in maternal plasma during the first trimester have 

been linked with Down syndrome, as well as many abnormal pregnancy outcomes including 

pregnancy induced hypertensive disorders, premature delivery, and still birth [120–122]. 

Low levels of PAPP-A in pregnancy can be associated with high IGFBPs and consequently 

less availability of free IGF. Therefore, reduced availability of free IGF that can interact with 

its receptor could lead to abnormal pregnancy outcome. Outside pregnancy, PAPP-A 

expression has been shown to be upregulated in vascular injury models in pigs [101], and 

mice [123] and also in healing skin wounds in human [124] indicating a role for PAPP-A in 

vascular injury and tissue remodeling. PAPP-A also plays an important role in healthy 

ovarian follicular development [99, 125, 126] and regulates prenatal or postnatal growth and 

skeletal muscle formation [110]. In addition, PAPP-A has also been implicated in the 

pathogenesis of many diseases like atherosclerosis and cancer, as well as age-related 

disorders [127–133]. Plasma PAPP-A is present at higher levels in patients on dialysis, and 

is an independent predictor of mortality of patients on hemodialysis [134, 135]. Elevated 

PAPP-A levels have also been associated with diabetes [136] and cerebrovascular diseases 

[137].

What is known about IGF pathway in ADPKD.

Several indirect lines of evidence over the years have indicated that the IGF-I could be 

involved in progression of cystic lesions in ADPKD (Table 2). Initially, a study by 
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Nakamura et al [35] had reported that renal Igf1 mRNA expression increased progressively 

with age in the DBA/2FG-pcy mouse model of PKD compared to the control DBA/2 mice. 

The authors suggested that decreased mRNA expression of renal epidermal growth factor 

and increased mRNA expression of IGF-l, PCNA, TGFβ, PDGF-A and PDGF-B chains as 

well as bFGF might be involved in progression of cystic disease in DBA/2FG-pcy mice. 

Later, Aukema and Housini also reported that in Han:SPRD-cy rat model of PKD, IGF-1 

levels were 32 to 76% higher in kidneys of cy/+ (heterozygotes for PKD mutation) 

compared with control rats (+/+). Treatment with dietary soy protein delayed the progression 

of cystic disease and reduced the kidney IGF-1 levels in male and female cy/+ rats [36]. 

Both of these studies indicated that the levels of IGF-1 are increased in rodent ADPKD 

models.

Using the conditionally immortalized tubular epithelial cells from human ADPKD patients 

with defined germline PKD1 mutations, Parker et al showed that polycystin-1 deficiency 

was linked to increased sensitivity to IGF-1. In cystic cells, IGF-1 stimulated cell 

proliferation in a dose-dependent manner (38). These authors also showed that IGF-1, as 

well as cAMP, stimulated proliferation in these cystic cells in a PI3K- and ERK-activity 

dependent manner. Higher IGF-1-stimulated GTP-Ras levels were observed in PKD1 cystic 

cells compared to control cells, indicating that PC1 deficiency could lower the threshold for 

activation of Ras-Raf-mediated signaling; leading to IGF induced hyper proliferation.

A later study employed a systems biology approach to explore the growth-modulating gene 

pathways in renal cyst growth in ADPKD [37]. Song et al performed global gene profiling 

on cysts of different sizes and minimally cystic tissues (MCT) from five PKD1 human 

polycystic kidneys and used gene set enrichment analysis to identify the dysregulated 

signaling pathways, as well as key transcription factors, between cysts and MCT. They 

observed that human PKD1 cysts showed downregulation of kidney epithelial differentiation 

genes and up-regulation of developmental and mitogenic signaling pathways. Interestingly, 

the up-regulation of IGF-1/IGF-1R pathway was observed along with Wnt/β-catenin, G-

protein-coupled receptor signaling, and was associated with renal cystic growth. This further 

supported the role of the IGF axis in renal cyst growth.

In addition to these studies, Liu et al [39] also reported that in cell culture studies, IGF-1 

increased the cystic epithelial cells growth by 15–20% in a dose-dependent manner 

compared to normal cortical tubular epithelia cells. Rosiglitazone, a thiazolidinediones 

(TZD) inhibited the proliferation-inducing activity of IGF-1 in cystic cells, in part by 

inhibiting the IGF-1-induced p70S6K activation.

In a previous study, we showed that food restriction ameliorates the cystic disease in murine 

models of ADPKD [40]. Interestingly, in that study we also found that food restriction, 

which significantly reduced the cystic disease, also reduced the serum IGF-1 levels, as well 

as renal Igf1 mRNA expression, indicating a potential role for IGF-1 in the pathogenesis of 

ADPKD.

All these studies together indirectly support the idea that the IGF-1 pathway is involved in 

ADPKD. However, because the IGF system is complex and consists of several components, 
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it is imperative to determine which components of the IGF pathway are involved in the 

pathogenesis of PKD. It wasn’t until recently that a direct role for any component of the IGF 

pathway was clearly demonstrated in ADPKD [41] (Table 2). In fact, our recent work 

demonstrated that IGF-1 and other components of this pathway are upregulated in ADPKD, 

and reported that the metalloproteinase PAPP-A plays a crucial role in ADPKD pathogenesis 

by increasing the local bioavailability of IGF-1 [41].

PAPP-A as a therapeutical target in ADPKD

As mentioned above, several studies provided indirect evidences that the IGF-1 pathway is 

involved in pathogenesis of ADPKD. Our recent study, for the first time, evaluated different 

IGF pathway components in ADPKD and demonstrated that PAPP-A plays a central role in 

pathogenesis of ADPKD. A significant increase in gene expression of several components of 

IGF-1 pathway was observed in ADPKD, including Igf1, Igf1r, and Igfbp5. Interestingly, the 

greatest upregulation was observed in the expression of Pappa, and this increase in Pappa 
was specific to kidney [41]. The increased renal Pappa expression was observed in several 

murine models of PKD [41]. To assess if PAPP-A expression was induced in human, we 

analyzed cystic fluids, as well as kidney tissues from ADPKD patients. Indeed, PAPP-A was 

significantly higher in human cystic fluid, and kidney tissues showed stronger expression of 

PAPP-A in cystic epithelia and renal tubules compared to normal kidney. Additionally, 

ADPKD cystic epithelial cells 9–12, derived from ADPKD patients, also showed higher 

PAPP-A expression compared to normal renal cortical tubular epithelial cells (RCTE), 

clearly showing that upregulation of PAPP-A was a common feature of several ADPKD 

models. Interestingly, PAPP-A expression was reduced in food restricted (FR) mice that 

shown reduced cystic disease. Forskolin (FSK), a cAMP inducing agent, significantly 

induced the PAPP-A expression in 9–12 cells in a time- and dose- dependent manner. 

Interestingly, we also reported that the expression of PAPP-A in these models was positively 

regulated by the cAMP/CREB/CBP/p300 pathway (Figure 3) [41].

Furthermore, genetic deletion of PAPP-A showed significant reduction in cyst development 

and significantly improved the inflammation, kidney injury and fibrosis in the Pkd1RC/RC 

mouse model. Even a single copy deletion of PAPP-A was able to improve the cystic 

disease, glomerular filtration rate and survival in ADPKD mice, confirming the role of 

PAPP-A in pathogenesis of ADPKD. PAPP-A deficiency led to the reduced expression of 

downstream signaling components of IGF-1R like ERK, Akt, and PCNA, whereas it also 

showed an induction in AMPK expression. There was no difference in the IGF levels 

measured in circulation. In addition, preclinical studies demonstrated that treatment with a 

monoclonal antibody that blocks the proteolytic activity of PAPP-A against IGFBP4 

ameliorated ADPKD cystic disease in vivo in Pkd1RC/RC mice, as well as ex vivo in 

embryonic kidneys [41]. Therefore, this study demonstrated that PAPP-A–IGF-1 axis plays 

an important role in the cystogenesis and introduced a new therapeutic strategy for ADPKD 

involving the inhibition of PAPP-A (Figure 3). Moreover, there exists a cross talk between 

IGF and EGF receptors pathway not only on cell surface level but downstream too [138], 

and IGF-1 mediated transactivation of EGFR and subsequent downstream signaling have 

been reported earlier [139]. Therefore, although future studies are needed but it could be 

speculated that PAPP-A inhibition might regulate the local IGF-1 levels and thus inhibit the 
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crosstalk with these receptors further inhibiting these signaling pathway responsible for 

cystic disease.

Pharmacological approaches to inhibit PAPP-A

Although, direct inhibition of IGF signaling targeting IGF1R has been proposed in diseases 

like cancer, phase III clinical trials did not demonstrate a clear benefit and shown some 

disadvantages due to the lack of specificity [140–142]. PAPP-A could be an alternative 

therapeutic target to inhibit the IGF signaling, since inhibition of PAPP-A does not inhibit 

the IGF-1/IGF1R signaling directly, but limits the tissue specific bioavailability of IGF. 

Moreover, PAPP-A is an ecto-enzyme and therefore it can be targeted by specific 

monoclonal antibodies that can inhibit its proteolytic activity [143]. For example, Mikkelsen 

et al showed the selective inhibition of PAPP-A proteolytic activity against IGFBP-4 in vitro 
by using monoclonal antibodies that target the unique substrate binding site exosite of 

PAPP-A [143]. Later, they also reported that IGF signaling can be targeted in vivo using 

monoclonal antibodies against PAPP-A in a murine xenograft model [144]. Similarly, these 

neutralizing antibodies inhibited ovarian cancer growth and ascites accumulation in human 

tumor avatar models in mice [145]. Recently, Mohrin et al also reported the development of 

a neutralizing antibody against PAPP-A (anti-PAPP-A) and demonstrated that short-term 

treatment with anti-PAPP-A leads to a reduction in IGF signaling in mesenchymal stromal 

cells (MSCs) which causes functional changes at the tissue level [146]. All these studies 

clearly provide the evidence that inhibition of proteolytic activity of PAPP-A using 

monoclonal antibodies can be utilized to modulate IGF signaling in tissues.

Therefore, the development of therapeutic monoclonal antibodies against PAPP-A will 

provide a novel approach to target the IGF signaling. There are several advantages in using 

monoclonal antibodies for therapeutical interventions. For example, monoclonal antibodies 

can provide highly specific targeting, therefore decreasing the potential for off- target effects 

and increasing its therapeutic window. In addition, antibodies have long and reliable half-

lives [147].

Somatostatin analogues like octreotide and lanreotide have also been implicated in the 

treatment of ADPKD, and several clinical trials have been conducted with varying outcomes 

[148–151]. Somatostatin acts on 5 G-protein coupled receptors (GPCRs) and binding to 

these receptors blocks the mitogen activated protein kinase, cell proliferation and also 

suppresses the expression of IGF-1, as well as other growth factors [152, 153]. Thus, 

somatostatin analogues could block the cystic growth via multiple mechanisms, including 

suppression of IGF-1. Therefore, combination therapies including somatostatin analogs and 

PAPP-A antibodies could provide an alternative approach to treat ADPKD patients.

Conclusions

Recently, we described a direct role for PAPP-A, a component of the IGF pathway, in the 

pathogenesis of ADPKD. Targeting PAPP-A-IGFBP-IGF axis could provide a new avenue 

for the management of this cystic disease. For example, therapeutic monoclonal antibodies 

could be used to provide specific target engagement and higher efficacy with reduced 
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toxicity. Therefore, pharmacological inhibition of PAPP-A using therapeutic monoclonal 

antibodies could be a novel approach to target the IGF pathway in ADPKD.
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Figure-1. IGF system and its components.
IGF system consists of Insulin like growth factors (IGFs), IGF binding proteins (IGFBPs), 

IGF1 and 2 receptors (IGF1R and IGF2R) and proteases. ALS: Acid labile subunit.
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Figure-2. Schematic representation of primary structure of PAPP-A subunit.
At N-terminal, there is a 250-residue laminin G-like module with unspecified function 

followed by a 350 residue proteolytic domain containing the so-called elongated zinc 

binding consensus sequence and a short sequence for Met-turn formation. The proteolytic 

domain is followed by two ill-defined regions M1 and M2. The C-terminal module has five 

short consensus repeat (SCR) modules or complement control protein (CCP) modules, SCR 

1–5. SCR3 and SCR4 are responsible for binding to glycosaminoglycans (GAGs) present on 

cell surfaces, enabling interactions between PAPP-A and cell surfaces. PAPP-A also 

contains three Lin12-Notch repeat (LNR) modules, and each binds a calcium ion and 

determines the proteolytic specificity. LNR1–2 is present in the proteolytic domain and 

LNR-3 is in the C domain.
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Figure 3. Role of PAPP-A in pathogenesis of ADPKD.
Higher levels of PAPP-A in ADPKD leads to increased proteolytic activity towards IGF 

bound IGFBP-4; which consequently results in the increased bioavailability of IGF. This 

free IGF leads to interaction with its receptor, IGF1R and cause the activation of 

downstream signaling. Inhibition of PAPP-A provides the novel therapeutic target in 

ADPKD. PAPP-A: pregnancy associated plasma protein, cAMP: cyclic AMP, CREB: cAMP 

response element-binding protein, IGF: Insulin like growth factor, PKA: Protein kinase A.
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Table 1.

Major groups of IGFBP proteases and their substrates.

Enzyme IGFBPs

Serine proteinases

Prostate specific antigen (PSA) [80, 154] IGFBP-3,5

Kallikreinlike proteinase, Y-nerve growth factor [80, 155] IGFBP-3,4, 6

Plasmin [156, 157] IGFBP-1, 3, 5

Complement protein 1S (C1s) [83] IGFBP-5

Thrombin [158] [156] IGFBP-5, 3

Matrix Metalloproteinases

Pappalysins [88, 90, 92, 159]
PAPP-A IGFBP-2, 4, 5

PAPP-A2 IGFBP-3, 5

Adamalysins [84, 160, 161] IGFBP-3, 5

Matrixins/MMPs [80, 162–165] IGFBP-2, 3, 5,

Cathepsins Cathepsin D [166–169] IGFBP 1–5
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Table 2.

Evidences in support for the role of IGF-1 pathway in pathogenesis of autosomal dominant polycystic kidney 

disease (ADPKD).

Study ADPKD model Findings

1 Nakamura et al. 1993 [35] DBA/2FG-pcy mice • Increase in IGF-1 mRNA

2 Aukema et al. 2001 [36] Han:SPRD-cy rat • IGF-1 levels higher in cy/+

• Dietary soy protein delays the disease progression

3 Parker et al. 2007 [38] Conditional immortalized cystic cells • IGF-1 induces hyperproliferation via ras/raf pathway

4 Song et al. 2009 [37] Cysts of different sizes and minimally 
cystic tissue from human ADPKD 
kidney

• Upregulation of IGF-1/IGFR1

5 Liu et al. 2013 (39)[170] Immortalized epithelial cells from 
ADPKD patients

• Rosiglitazone inhibits IGF-1-induced cyst lining 
epithelial cell proliferation

6 Warner et al. 2016 [40] Pkd1RC/RC mice • Food restriction reduced the serum IGF-1 levels

• Food restriction also reduced renal Igf 1 mRNA 
expression.

7 Kashyap et al. 2020 [41] Human ADPKD kidney tissue 
sections and cystic fluids, 9–12 
ADPKD tubular epithelial cells,
Pkd1RC/RC, Pkd2WS25/−, Pkd1RC/RC-
Pappa mutant mice and metanephros

• PAPP-A significantly higher in human and 
experimental ADPKD

• PAPP-A genetic deficiency as well as antibody 
treatment ameliorates the cystic disease.
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