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Abstract

Hepatitis B virus (HBV) infection remains a major public health concern worldwide with about 

257 million individuals chronically infected. Current therapies can effectively control HBV 

replication and slow down disease progress, but cannot cure HBV infection. Upon infection, HBV 

establishes a pool of covalently closed circular DNA (cccDNA) in the nucleus of infected 

hepatocytes. The cccDNA exists as a minichromosome and resists to antivirals, thus a therapeutic 

eradication of cccDNA from the infected cells remains unattainable. In this review, we summarize 

the state of knowledge on the mechanisms underlying cccDNA formation and regulation, and 

discuss the possible strategies that may contribute to the eradication of HBV through targeting 

cccDNA.
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1. Introduction

Hepatitis B virus (HBV) infection remains a major public health burden. While one third of 

the people worldwide have been exposed to HBV, about 257 million of them are chronically 

infected according to WHO report (Revill et al., 2019). Those people are at high risk of 

developing cirrhosis and hepatocellular carcinoma (HCC) (Liang et al., 2015; Polaris 

Observatory, 2018).

HBV is a small DNA virus specifically targets hepatocytes. The virus infection is initiated 

through a low-affinity interaction of viral envelope protein with heparan sulfate 

proteoglycans (HSPG), followed by a high-affinity specific interaction with its receptor 
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sodium-taurocholate cotransporting polypeptide (NTCP) to facilitate viral entry (Schulze et 

al., 2007; Verrier et al., 2016; Yan et al., 2012). Furthermore, the epidermal growth factor 

receptor (EGFR) is involved in HBV internalization into hepatocytes(Iwamoto et al., 2019). 

Mediated by endocytosis, viral particle is then transported from early to late endosomes for 

releasing of nucleocapsid from the envelope (Macovei et al., 2013). Afterwards, viral 

nucleocapsid migrates along microtubules to the nuclear periphery (Rabe et al., 2006). 

Disassembly of capsid at the nuclear pore results in the release of viral relaxed circular DNA 

(rcDNA) genome into the nucleus, where the partially double-stranded rcDNA is converted 

into the covalently closed circular DNA (cccDNA). cccDNA serves as a template for 

transcription of viral RNAs through employing the cellular transcription machinery(Rall et 

al., 1983). In the cytoplasm, together with the viral polymerase, the 3.5 kb pregenomic RNA 

(pgRNA) is encapsidated by HBV core protein (HBc) to form viral capsid, inside of which 

pgRNA is reverse transcribed into negative-strand DNA, followed by an asymmetric 

synthesis of plus strand DNA to yield the viral genomic rcDNA. The rcDNA-containing 

capsids are either transported back to the nucleus to amplify the cccDNA pool or enveloped 

and released via multivesicular bodies as progeny virions. Additionally, HBV double 

stranded linear DNA (dslDNA), which is occasionally produced by reverse transcription of 

the pgRNA as an aberrant by-product, can be released as defective virions or integrated into 

host genome (Tu et al., 2017). Although HBV integration normally fails to transcribe 

precore mRNA and pgRNA due to the loss of upstream basal core promoter, it can still act 

as a template for hepatitis B surface antigen (HBsAg) expression(Sung et al., 2012; 

Wooddell et al., 2017).

The persistence of cccDNA in the infected hepatocytes is the major challenge to antiviral 

therapies. Currently, two classes of treatments are approved for chronic HBV infection, 

including interferon alpha (IFNα) or its PEGylated form PEG-IFNα and nucleos(t)ide 

reverse transcriptase inhibitors (NRTIs)(Xia and Liang, 2019). Both treatments are effective 

to some extent but have limitations(Tang et al., 2018). IFN-α is the only approved 

immunomodulatory drug, however, the response rate remains low and side effects are often 

difficult to tolerate(Ghany, 2017). NRTIs target the reverse transcriptase activity of viral 

polymerase to limit virus replication, but exhibit little or no effect on HBV cccDNA, thus 

cannot clear virus infection. Therefore, there is an urgent need to develop novel therapies 

that can cure HBV infection.

Complete sterilizing cure of hepatitis B, which is defined as undetectable HBsAg in serum 

and eradication of all forms of HBV DNA including cccDNA, can be hardly achieved at this 

moment(Lok et al., 2017). Current aim of chronic hepatitis B treatment is a “functional 

cure” of viral infection. This aim is defined as seroclearance of HBsAg, undetectable serum 

HBV DNA, normal liver enzymes and histology after stopping treatment, which requires 

complete blockade of HBV cccDNA(Lok et al., 2017). As the viral persistence reservoir 

which play a central role in HBV infection, HBV cccDNA is the key obstacle for a cure. 

Here, we summarize our current knowledge about the basic biology of HBV cccDNA, 

including its formation and regulation, and discuss potential therapeutic strategies to target 

cccDNA.
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2. The Formation of HBV cccDNA minichromosome

The formation of cccDNA in nucleus requires the nuclear transportation and uncoating of 

rcDNA, which is initially located in cytoplasmic viral capsid upon infection and de novo 
replication. Previous studies have demonstrated that viral envelope proteins regulate 

cccDNA formation through sorting the mature nucleocapsids into virion morphogenesis and 

egress route, hereby reducing the intracellular cccDNA amplification (Lentz and Loeb, 

2011; Raney et al., 2001; Summers et al., 1990). Furthermore, recent studies have identified 

capsid protein residues interacting with viral envelope or serving as CDK2 

phosphoacceptors play important roles in nucleocapsid maturation and/or rcDNA uncoating, 

which eventually affect the outcome of cccDNA formation in nucleus (Cui et al., 2015a; Cui 

et al., 2013; Liu et al., 2015; Luo et al., 2020b). The detailed molecular mechanisms 

underlying the conversion of rcDNA to cccDNA remain elusive. Many evidences suggest 

that a multi-step process, including cellular ATR-CHK1 DNA damage response, DNA repair 

and chromatinization, is involved (Guo and Guo, 2015; Hu et al., 2019; Luo et al., 2020a; 

Nassal, 2015). Presumably, this multi-step process involves the release of the covalently 

bound viral polymerase and RNA primer from the rcDNA negative strand and positive 

strand, respectively; the cleavage of terminal redundancy from the negative strand; repair of 

the incomplete positive strand and ligation of both DNA strands (Figure 1).

Removal of the viral polymerase from rcDNA is considered as a mandatory step in cccDNA 

formation, giving rise to a deproteinated (DP) (or protein-free) rcDNA as putative precursor 

for cccDNA biosynthesis (Gao and Hu, 2007; Guo et al., 2007; Guo et al., 2010). Previous 

studies suggested that cytoplasmic rcDNA deproteination is associated with a nucleocapsid 

conformation shift, which leads to the exposure of capsid protein nuclear localization signal 

(NLS) for karyopherin-mediated nuclear transportation of the DP-rcDNA-containing capsid 

(Guo et al., 2007; Guo et al., 2010). The mechanism of rcDNA deproteination remains 

largely unknown. A DNA repair enzyme tyrosyl-DNA phosphodiesterase 2 (TDP2) has been 

shown to unlink the attached viral polymerase from HBV and duck hepatitis B virus 

(DHBV) rcDNA in vitro (Jones et al., 2012; Koniger et al., 2014). However, TDP2-knockout 

cells still support human HBV infection, indicating that other protein(s) functionally close to 

TDP2 may contribute to this activity(Cui et al., 2015b). Alternatively, it has been shown that 

host factor flap structure-specific endonuclease 1 (FEN1) is involved in cccDNA formation, 

which perhaps cleaves the putative 5’ flap-like structure on the negative strand of rcDNA to 

remove the terminal redundant sequence (r) together with viral polymerase (Kitamura et al., 

2018). However, it remains very possible that the 5’ r is removed by FEN1 after rcDNA 

deproteination as a previous study demonstrated that the 5’ r was maintained on DHBV DP-

rcDNA (Guo et al., 2007), or the 3’ r is removed by other nuclease(s) during cccDNA 

formation.

Inhibition of HBV polymerase by NRTIs does not block cccDNA formation in various HBV 

de novo infection models, suggesting that the host DNA polymerase(s) rather than viral 

polymerase is responsible for cccDNA formation if DNA synthesis is required. (Hantz et al., 

2009; Qi et al., 2016; Xia et al., 2017). In line with this, DNA polymerase κ and λ (Pol κ 
and λ) have been shown to play a critical role in cccDNA formation in HBV-infected 

HepG2-NTCP(Qi et al., 2016), while Pol α as well as Pol δ and ɛ are required for cccDNA 
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formation in HBV stable cell line HepAD38 (Tang et al., 2019), suggesting that the first 

round of cccDNA formation from incoming virus and the intracellular cccDNA 

amplification pathway may rely on different host polymerases. SAMHD1, which is 

traditionally considered as an antiretroviral host factor functions through depleting the 

cytoplasmic pool of dNTPs to block reverse transcription, has been recently reported to play 

a role in the early steps of cccDNA formation in HBV-infected cells (Wing et al., 2019). The 

detailed mechanism of how SAMHD1 promotes cccDNA formation is unclear. It has been 

reported that SAMHD1 can bind ssDNA and act as a scaffolding protein to facilitate both 

homologous recombination and DNA resection, thus may account for its proviral role in the 

rcDNA repair process (Daddacha et al., 2017; Goncalves et al., 2012). Recently, 

topoisomerase I (TOP1) and II (TOP2) have been shown to be required for both de novo 
synthesis and intracellular amplification of HBV cccDNA, probably during the 

circularization of negative-strand DNA (TOP1) or both strands of rcDNA (TOP2) (Sheraz et 

al., 2019). Finally, the ligation of both strands of rcDNA during cccDNA formation is 

mediated by DNA ligase 1 and 3 (Long et al., 2017). Considering the existence of a closed 

minus-strand rcDNA (cM-rcDNA) intermediate in HBV-replicating cells (Luo et al., 2017a), 

it is possible that the ligation of processed rcDNA may be strand- and/or ligase-specific 

during cccDNA formation. A recent study using yeast- and human-extract screenings 

identified the five core components of DNA lagging strand synthesis machinery for cccDNA 

formation, including the proliferating cell nuclear antigen (PCNA), the replication factor C 

complex (RFC), Pol δ, FEN1 and DNA ligase 1, which confirmed several aforementioned 

earlier studies (Wei and Ploss, 2020).

Upon the release of rcDNA into nucleus, chromatinization of rcDNA may occur 

concurrently with DNA repair. Loaded with histone and non-histone proteins, HBV cccDNA 

is stably maintained as a mini-chromosome in infected hepatocytes(Bock et al., 1994; Bock 

et al., 2001) (Figure 1). However, the dynamics of HBV cccDNA chromatinization is 

obscure. A numbers of DNA viruses, like herpes simplex virus, Epstein-Barr virus, Kaposi’s 

sarcoma-associated herpesvirus and papillomavirus, become rapidly chromatinized upon 

infection(Knipe et al., 2013). While not completely understood, it is clear that this process is 

a dynamic interplay of cell-mediated deposition of chromatin and virally directed 

modulation of histone modification and nucleosome remodeling(Knipe et al., 2013). For 

HBV, after entry into the nucleus, the viral DNA genome is loaded with host histones to 

form a chromatin-like structure (Bock et al., 1994). The resulted HBV cccDNA 

minichromosome contains nucleosomes and histone post-translational modifications (PTMs) 

similar to cellular chromatin (Tropberger et al., 2015). In addition, viral core proteins which 

initially constitute the incoming capsid remain associated with cccDNA by binding to CpG 

islands within the viral genome(Chong et al., 2017; Guo et al., 2011b). HBx has been shown 

to activate HBV transcription through its recruitment onto cccDNA by host PCAF/GCN5, 

p300, and CBP acetyltransferases; and to inhibit cellular factors involved in chromatin 

regulation, such as PP1/HDAC1 complex (Belloni et al., 2009). A recent study examined the 

three-dimensional localization of cccDNA within higher-order chromatin architecture and 

found that cccDNA preferentially interacts with host genome at unmethylated CpG islands 

(CGI)-rich regions which are often associated with highly expressed genes(Moreau et al., 

2018). Although little is known, studying how histones and other factors (like histone 
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chaperones, chromatin remodelers, transcription factors and other viral proteins) are 

temporally and spatially organized on HBV genome is crucial to understand the chromatin-

based regulation of cccDNA.

Understanding the stability of the cccDNA pools in the infected hepatocytes is important to 

the design and evaluate antiviral therapies against HBV infection. In DHBV infection, 1–18 

cccDNA molecules was found per infected cells(Li et al., 2018; Zhang et al., 2003). For 

HBV, 1 to 10 cccDNA copies per infected hepatocyte were reported(Allweiss et al., 2014; 

Ko et al., 2018; Lucifora et al., 2011; Lucifora et al., 2014). The half-life of DHBV cccDNA 

ranges from 35 to 57 days in vivo(Addison et al., 2002), while in NRTI-suppressed chronic 

hepatitis B patients, average half-life of cccDNA was estimated at 9.2 months (Boyd et al., 

2016). A recent kinetic study on the replacement of wide type HBV with NRTI-resistant 

mutants in treated patients indicated that cccDNA turnover could occur in several months, 

raising a possibility of HBV cure with finite therapy through completely blocking cccDNA 

replenishment(Huang et al., 2020).

3. The regulation of HBV cccDNA

Mediated by host RNA polymerase II, HBV cccDNA serves as a template for transcription 

of all viral RNAs through the cellular transcription machinery(Rall et al., 1983). cccDNA 

transcription is under the control of two enhancers and four promoters (the pre-C/C, pre-S1, 

pre-S2/S, and X promoters), which contain binding sites for ubiquitous and liver-enriched 

transcription factors and nuclear receptors. Enhancer I is responsible for the activation of 

HBx mRNA transcription, while enhancer II is involved in the expression of other 

transcripts (Doitsh and Shaul, 2004). Enhancer 1 harbors binding sites for hepatocyte 

nuclear factor (HNF)1, HNF3, nuclear factor 1 (NF1) and CCAAT-enhancer-binding protein 

(C/EBP)(Chen et al., 1994; Ori and Shaul, 1995; Spandau and Lee, 1992; Trujillo et al., 

1991). pre-S1 promoter contains binding sites for HNF1 and HNF3(Courtois et al., 1988; 

Guo et al., 1993; Lopez-Cabrera et al., 1990; Raney et al., 1995). Transcription from the pre-

S2/S promoter is mediated by transcription factor SP1 and it is also responsive to retinoid X 

receptor alpha (RXRα), peroxisome proliferator- activated receptor alpha (PPARα) and 

HNF4α (Raney et al., 1992; Tang and McLachlan, 2001). In addition, the pre-C/C promoter 

and both enhancers contain binding sites for nuclear receptors including HNF4α, RXRα, 

PPARα, the chicken ovalbumin upstream promoter transcription factors (COUP-TF) 1 and 2 

and human testicular receptor 2 (TR2) (Guo et al., 1993; Lopez-Cabrera et al., 1990; Yu and 

Mertz, 1997). Activating protein-1 (AP-1) has been shown to bind on X promoter(Choi et 

al., 1998). Recently, a Hi-C-based study identified the CpG-binding protein CXXC finger 

protein 1 (Cfp1) as a bridge linking cccDNA and the CGI-rich regions of host genome, 

suggesting a role of Cfp1 in cccDNA transcriptional regulation(Moreau et al., 2018).

Cellular miRNAs can also regulate HBV replication either indirectly, by targeting cellular 

proteins that are essential for HBV replication, or directly, by targeting viral RNAs. Several 

miRNAs, including miRNA-1, 15b, 18a, 26b, 125b, 141, 148a, 152, 210, 372/373, 449a and 

501, are involved in the regulation of HBV replication, mainly by targeting host factors 

(Braconi et al., 2010; Dai et al., 2014; Guo et al., 2011a; Hu et al., 2012; Jin et al., 2013; Liu 

et al., 2009; Zhang et al., 2009; Zhang et al., 2011; Zhang et al., 2014; Zhao et al., 2014). A 

Xia and Guo Page 5

Antiviral Res. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



number of miRNAs can directly target HBV transcripts. miR-122, the most abundant liver-

specific miRNA, is able to suppress HBV replication in HBV-replicating hepatoma cells 

through binding to pgRNA sequence (Chen et al., 2011; Wang et al., 2012). miR-199a-3p 

and miR-210 efficiently reduced HBsAg expression and HBV replication in HepG2.2.15 

cells(Zhang et al., 2010). miRNA-125a-5p, which can be induced by HBx, inhibits HBV 

translation by binding to the 2.1-kb RNA in HBV plasmid transfected cells (Mosca et al., 

2014; Potenza et al., 2011). miR-1231 targets HBV core sequence, resulting in reduced 

HBV replication(Kohno et al., 2014). miR-15a/miR-16–1 target the coding region for HBV 

polymerase and the overlapping region between HBV polymerase and HBx and exhibited 

antiviral effect in HBV-transfected HepG2 cells(Wang et al., 2013). However, most these 

studies were conducted with overexpressing system in hepatoma cells. The physiological 

roles of these microRNA in HBV infection in primary hepatocytes should be further 

evaluated.

Epigenetic modifications of HBV cccDNA minichromosomes, such as DNA methylation 

and histone modifications, have been implicated in regulating the transcriptional activity of 

HBV cccDNA (Hong et al., 2017; Mitra et al., 2018). HBV has been shown to induce 

methylation of both host and viral DNA in vitro through the induction of DNA 

methyltransferases(Vivekanandan et al., 2010). Hypoacetylation of the cccDNA-associated 

H3 and H4 histones and the recruitment of cellular HDAC1 onto cccDNA are associated 

with low HBV replication in vitro and in vivo (Pollicino et al., 2006). Similarly, HDAC11 

inhibits HBV transcription and replication in both HBV-transfected and -infected cells 

through deacetylating cccDNA-associated histone H3 (Yuan et al., 2019). Various host 

factors involved in epigenetic modifications, including cAMP response element-binding 

protein (CREB), CREB-binding protein (p300/CBP), p300/CBP-associated factor (PCAF), 

CREB-regulated transcriptional coactivator 1 (CRTC1), general control nonderepressible 5 

(GCN5) and Yin Yang 1 (YY1), bind to cccDNA and promote its transcription (Belloni et 

al., 2009; Hayashi et al., 2000; Tang et al., 2014). On the other hands, signal transducer and 

activator of transcription (STAT) 1 and 2, HDAC1, HDAC11, sirtuin (SIRT1) 1 and 3, 

protein arginine methyltransferase (PRMT) 1 and 5, enhancer of zeste homolog (EZH)2, 

heterochromatin protein 1 (HP1) and chromosome 5/6 complex (Smc5/6) interact with 

cccDNA to silence HBV cccDNA transcription (Belloni et al., 2012; Belloni et al., 2009; 

Benhenda et al., 2013; Decorsiere et al., 2016; Guo et al., 2011b; Ren et al., 2018; Riviere et 

al., 2015; Yuan et al., 2019; Zhang et al., 2017).

To counteract the host restriction mechanisms of cccDNA transcription, HBV encodes a 

transactivator protein HBx for this purpose (Lucifora et al., 2011; Slagle and Bouchard, 

2016). A key function of HBx is to redirect the DNA-damage binding protein 1 (DDB1)-

CUL4 E3 ubiquitin ligase to target Smc5/6 for degradation and thus relieve this suppression 

(Decorsiere et al., 2016; Murphy et al., 2016). In addition, HBx counteracts SETDB1-

mediated histone 3 di- and tri-methylation (H3K9me3) and HP1 recruitment that represses 

cccDNA transcription (Riviere et al., 2015). Another study revealed that a host long non-

coding (lnc) RNA HOTAIR forms complex with RNA helicase DDX5 and recruits 

polycomb repressive complex 2 (PRC2) to suppress cccDNA transcription, but HBx 

antagonizes this mechanism by activating polo-like kinase 1 (PLK1) to phosphorylate PRC2 

subunit SUZ12 and downregulating DDX5. This is followed by SUZ12 ubiquitination by 
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HOTAIR-binding E3 ligase Mex3b and subsequent proteasomal degradation, leading to 

reactivation of cccDNA transcription (Zhang et al., 2016). Recently, Parvulin 14 and 

Parvulin 17 were discovered to bind to HBx and cccDNA and promote HBV replication in 

an HBx-dependent manner (Saeed et al., 2019). Thus, HBx itself and HBx involved protein-

protein interactions are considered as new molecular targets for therapeutic development.

4. HBV cccDNA as a therapeutic target

Because HBV cccDNA is responsible for viral persistence, the removal, destruction, or 

inhibition of cccDNA represent the key to virus eradication. However, HBV cccDNA 

clearance as a hallmark of complete sterilizing cure has been very difficult to achieve in 

chronically infected livers.

The loss or partial loss of cccDNA can be achieved through different mechanisms (Figure 2). 

First, hepatocyte division can result in cccDNA loss. Experiments with HBV-related viruses 

indicated that cell division can lower cccDNA amount in the infected hepatocytes(Addison 

et al., 2002; Lutgehetmann et al., 2010). In the liver of human chimeric mice, in vivo 
proliferation of HBV-infected primary human hepatocytes leads to a strong cccDNA 

reduction(Allweiss et al., 2018). These results suggest that curative therapeutic approaches 

should suppress HBV replication and involve destruction of infected hepatocytes. This 

would accelerate cccDNA clearance also in the surviving proliferating hepatocytes, while 

strategies aiming at suppressing HBV replication would prevent the intracellular cccDNA 

amplification and virus spread.

Another important mechanism for viral clearance is killing of the infected hepatocytes by 

cytotoxic T cells. Spontaneous viral clearance of HBV infection is characterized by vigorous 

and sustained multi-epitope-specific CD4+ and CD8+ T-cell responses during the acute 

phase of infection(Schmidt et al., 2013). However, HBV-specific T cells in chronic hepatitis 

B patients are scarce and functionally defective, and this exhaustion state is a key 

determinant of virus persistence(Schmidt et al., 2013). This suggests that T cells related 

therapies may be promising options for chronic hepatitis B treatment. It has been 

demonstrated that T cells expressing a chimeric antigen receptor binding HBV envelope 

proteins specifically eliminated HBV-infected hepatocytes(Bohne et al., 2008; Krebs et al., 

2013). Moreover, a significant reduction of HBV infection in humanized mice was recently 

demonstrated after repeated adoptive transfers of human T cells engineered to express HBV-

specific T cell receptor(TCR) via mRNA electroporation(Kah et al., 2017). In an HBV-

related HCC patient who had undergone liver transplantation, the gene-modified T-cells 

targeting HBsAg survived in vivo, expanded, and mediated a reduction in HBsAg levels 

without exacerbation of liver inflammation or other toxicity(Qasim et al., 2015). This 

encourages the development of therapies restoring T-cell responses in chronic hepatitis B by 

therapeutic vaccination, adoptive T-cell transfer, redirection of T-cells, or the use of 

checkpoint inhibitors.

In HBV-infected chimpanzees, HBV cccDNA loss was observed without elevation of liver 

enzymes, which is known as non-cytolytic clearance of HBV(Guidotti et al., 1999). 

Antiviral cytokines are believed to play a role. In HBV-infected human hepatocyte models, it 
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has been shown that high doses of IFN-α or lymphotoxin-β receptor-agonists are able to 

trigger non-cytolytic degradation of cccDNA from infected hepatocytes through induction of 

nuclear deaminase APOBEC3(A3)A or A3B, respectively (Lucifora et al., 2014). 

Interestingly, upregulation of A3A in the liver is correlated with antiviral response from 

IFN-α treated patients(Li et al., 2017b). Unfortunately, due to the side effects, it may not be 

feasible to increase the dose of IFN-α treatment to achieve this goal, but a novel, longer 

acting IFN-α may be an option. In HBV transgenic mice, PASylated IFN-α showed a 

profoundly increased antiviral effect compared to the non-modified version without toxicity, 

providing a proof-of-concept that an improved IFN-α can achieve higher rates of HBV 

antiviral and immune control(Xia et al., 2019). In cell cultures, basal line level of A3A and 

A3B negatively correlate with cccDNA amount(Brezgin et al., 2019; Xia et al., 2016). 

Overexpression of A3A in a Cre-mediated HBV recombinant cccDNA cell line resulted in 

cccDNA loss, suggesting an alternative way to induce cccDNA degradation without IFN-α 
treatment(Wu et al., 2018). Furthermore, it has been showed that IFN-β, IFN-λ1, and IFN-

λ2 induce cccDNA deamination and degradation at least as efficiently as IFN-α, indicating 

that these antiviral cytokines are interesting candidates for the design of new therapeutic 

strategies aiming at cccDNA reduction and HBV cure(Bockmann et al., 2019). T cell-

derived cytokines IFN-γ and TNF-α also induce A3A and A3B in a synergistic fashion, an 

effect becoming obvious also during acute or fulminant hepatitis B(Xia et al., 2016). This 

study identified the molecular mechanism of how T-cells not only control HBV through 

direct killing but even induce cccDNA degradation in a non-cytolytic fashion. In vivo, TCR-

reprogrammed nonlytic T cells are capable of activating A3B in cell cultures and in HBV-

infected human hepatocytes in mice, limiting viral infection(Koh et al., 2018). These 

engineered T cells with limited cytotoxicity could be further developed for treatment of 

chronic hepatitis B.

The use of genetic editing technology has shown promise in inactivating or eliminating 

cccDNA from infected cells. Several tools, including zinc finger nucleases (ZFNs), 

transcription activator-like effector nucleases (TALENs) and the clustered regularly 

interspaced short palindromic repeats associated nuclease (CRISPR/Cas) system, have been 

tested to target HBV cccDNA. ZFNs are used to create a DNA double-strand break in a 

sequence-specific target site and repair by creating sequence alterations at the cleavage sites. 

ZFNs targeting HBV were first described by using HBV plasmid transfection 

model(Cradick et al., 2010). After 3 days treatment, 26% of the target plasmid remained 

linear, whereas ~10% was cleaved and misjoined tail-to-tail. (Cradick et al., 2010). AAV-

mediated delivery of ZFNs targeting different regions of HBV sequence was also tested in 

HepAD38 cells(Weber et al., 2014). TALENs are dimeric engineered nucleases that 

comprise a DNA-binding protein fused to an endonuclease domain. In HepG2.2.15 cells, 

where HBV DNA exists as integrated DNA, rcDNA, and cccDNA forms, as well as 

hydrodynamic injection mouse model, engineered TALENs showed inhibitory effect on viral 

replication (Bloom et al., 2013). DNA mutations were found in approximately 31% of 

cccDNA in HepG2.2.15 cells(Bloom et al., 2013). Furthermore, TALENs can specifically 

target and inactivate the HBV genome and are potently synergistic with IFN-α in cell 

cultures, resulted in a decreased cccDNA level and misrepaired cccDNAs without apparent 

cytotoxic effects. (Chen et al., 2014). The promise of CRISPR/Cas as a tool for the cleavage 
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and elimination, or at least inactivation, of HBV cccDNA and HBV genome integration has 

prompted a considerable number of studies, that provide a clear proof of concept that this 

approach indeed has the potential to treat or even cure chronic hepatitis B(Li et al., 2017a; 

Ramanan et al., 2015; Seeger and Sohn, 2014). Using next generation sequencing, the 

efficiency of Cas9 cleavage was determined as over 90%, which is more efficient than A3A-

mediated degradation induced by IFN-α in HepG2 cells (Seeger and Sohn, 2016). Although 

data acquired from experimental models looks promising, challenges which are broadly 

associated with genetic editing therapies need to be met for the approach to be successful 

against chronic HBV infection. Efficient hepatic-specific delivery using viral or non-viral 

vehicles remains a challenge. Improving DNA-targeting specificity and defining off target 

effects are vital to limit unintended side effects. Additionally, potential immune responses 

raised by the transduced editing proteins could be harmful or even lethal to a patient if the 

transduction frequency is high. Finally, since HBV DNA often integrates, undesirable gene 

cleavage of host chromosome may occur.

Screening small molecule compound libraries for cccDNA inhibitors has been conducted in 

HBV stable cell lines using HBeAg as a cccDNA surrogate marker, and a handful of 

preclinical drug candidates have been reported, including the disubstituted sulfonamide 

compounds and hydrolyzable tannins as cccDNA formation inhibitors (Cai et al., 2012; Liu 

et al., 2016), and a cccDNA destabilizer compound ccc_R08 (Wang et al., 2019). However, 

the viral or host targets of these cccDNA inhibitors remain unknown. It is envisioned that the 

identification of compound target(s) would turn the phenotypic assay into target-based 

screening for small molecule cccDNA inhibitors. It is worth noting that the aforementioned 

host DNA repair enzymes involved in cccDNA formation can be considered as drug target(s) 

for cccDNA inhibition, but potential cytotoxicity and the redundant effect of host DNA 

repair systems on cccDNA formation may limit the development of such drugs into 

therapeutics (Fanning et al., 2019; Guo and Guo, 2015; Schreiner and Nassal, 2017). As 

above mentioned, HBV nucleocapsid maturation and uncoating are the essential 

prerequisites for cccDNA formation, thus, the capsid assembly modifiers (CpAMs) hold 

promise for reducing cccDNA biosynthesis through depleting the rcDNA precursors, 

especially in combination with NRTIs (Fanning et al., 2019). However, though HBV core 

protein has been shown to be associated with cccDNA minichromosome, CpAM treatment 

did not induce the reduction of preexisting cccDNA copy number or transcription in HBV-

infected humanized mice (Klumpp et al., 2018). The ongoing clinical trials of CpAMs will 

reveal the long-term effect of these capsid inhibitors on cccDNA metabolism and activity.

Drugs that modify epigenetic regulation have been developed to treat patients with cancer or 

viral infections(Gherardini et al., 2016; Khan et al., 2018). With the goal of silencing 

cccDNA in infected hepatocytes, epigenetic therapy might be a promising therapeutic 

strategy for a functional cure (Hong et al., 2017). Some observations have been made in cell 

culture and mouse models. HDAC inhibitors have been shown to suppress cccDNA 

transcription in tissue culture under noncytotoxic conditions(Yu et al., 2018). A small 

molecule C646 inhibits cccDNA transcription by specifically inhibiting p300 and CBP 

histone acetyltransferases(Tropberger et al., 2015). GS-5801, an oral liver-targeted prodrug 

of a lysine demethylase-5 inhibitor, demonstrated antiviral activity in HBV-infected primary 

human hepatocytes with significant declines in viral proteins and HBV RNA(Gilmore et al., 
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2017a). In addition, in vivo data demonstrated the pharmacodynamic response of GS-5801 

within the liver in animal models(Gilmore et al., 2017b). However, in 2018, Gilead Sciences 

terminated a phase I trial that was designed to evaluate the safety, tolerability, 

pharmacokinetics and pharmacodynamics of GS-5801, and the effect of food on GS-5801 

pharmacokinetics in healthy subjects (WHO International Clinical Trials ID: 

ACTRN12616001260415p). The limitation of tissue-specific drug delivery and systemic off-

target effects substantially hamper the clinical application of epigenetic therapies. Thus, 

further research is needed to elucidate the favorable effects and drawbacks of anti-HBV 

epigenetic therapies in different experimental models.

5. Perspective

Our current knowledge of cccDNA formation, transcriptional regulation and turnover in 

HBV-infected hepatocytes is still limited. A greater understanding of the mechanisms 

regulating these processes will not only advance our knowledge of HBV basic biology, but 

also assist the discovery of new antiviral targets for future development of novel HBV 

therapeutics.

A functional or complete sterilizing cure for chronic HBV infection requires innovative 

therapeutic approaches aiming at silencing or eliminating HBV cccDNA minichromosome. 

Though there are challenges, treatments that act directly on the HBV cccDNA, such as 

designer nucleases editing, cccDNA destabilizers, and epigenetic modifiers, possess the 

potential to disable viral replication permanently. Restoration of the anti-HBV immune 

response may also facilitate the decay of cccDNA pool through cytokine induced non-

cytolytic degradation of cccDNA and direct killing of infected hepatocytes. Taken together, a 

combination of direct cccDNA-targeting agent and immune therapy may serve as the 

effective means to achieve a cure of chronic hepatitis B.
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Highlights

• HBV establishes a pool of covalently closed circular DNA (cccDNA) 

minichromosome in the nucleus of infected hepatocytes.

• HBV cccDNA is responsible for viral persistence and resistance to current 

antiviral treatments.

• The formation of cccDNA involves host DNA repair machinery.

• HBV hijacks host ubiquitous and liver-enriched transcription factors for 

cccDNA transcriptional regulation.

• Elimination or transcriptional silencing of cccDNA is essential for HBV cure.
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Figure 1. The formation of HBV cccDNA
The formation of HBV cccDNA involves: 1. the release of viral polymerase, which may 

mediated by tyrosyl-DNA-phosphodiesterase 2 (TDP2) or its related proteins (Koniger et al., 

2014) (Cui et al., 2015b).; 2. removal of RNA primer from the positive strand by some yet 

unknown enzymes; 3. cleavage of terminally redundant sequences (r) from the negative 

strand, which may require flap structure-specific endonuclease 1 (FEN1) activity (Kitamura 

et al., 2018); 4. repair of the positive strand, with the help of DNA polymerase κ(Qi et al., 

2016) or polymerase α, δ and ɛ (Tang et al., 2019), and DNA topoisomerase I and II (Sheraz 

et al., 2019); 5. ligation of minus strand (Luo et al., 2017b) and 6. Plus strand DNA 

separately or simultaneously by DNA ligase 1 and 3 (Long et al., 2017); 7. chromatinization, 

which involves histone chaperones, chromatin remodelers, transcription factors and viral 

proteins.
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(Note: the numbers (1–7) are indicative of each specific step involved in cccDNA formation, 

but not the time sequence of these reactions, which remains obscure, and some reactions/

steps may occur simultaneously.)
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Figure 2. Mechanisms of cccDNA loss or inactivation
Cell division, or direct killing of infected cells by T cells can cause HBV cccDNA loss. 

Additionally, cccDNA destabilizer, cytokine-induced deamination or gene editing tools can 

affect the integrity of cccDNA. Furthermore, epigenetic drugs may be able to silence 

cccDNA transcription, resulting in cccDNA inactivation.
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