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A B S T R A C T

Crowd behaviour analysis is an emerging research area. Due to its novelty, a proper taxonomy to organise its
different sub-tasks is still missing. This paper proposes a taxonomic organisation of existing works following
a pipeline, where sub-problems in last stages benefit from the results in previous ones. Models that employ
Deep Learning to solve crowd anomaly detection, one of the proposed stages, are reviewed in depth, and
the few works that address emotional aspects of crowds are outlined. The importance of bringing emotional
aspects into the study of crowd behaviour is remarked, together with the necessity of producing real-world,
challenging datasets in order to improve the current solutions. Opportunities for fusing these models into
already functioning video analytics systems are proposed.
. Introduction

Last years have known a significant increase of crime and terrorism.
ideo-surveillance has become a crucial tool for preventing violence
nd crimes, especially in crowded places and events. The number of
ideo cameras installed in both, public and private places, multiplied
n the last years. On the other hand, technology advances allowed an
nprecedented improvement in video quality but at the cost of higher
omputational requirements. Manually analysing such volumes of data
s impossible, and automatic processing turns out to be essential. In this
ontext, automatic video-surveillance [1] emerges as a research field,
ttracting the attention of a large community. Areas such as dangerous
bject detection [2] or face recognition and identification [3] have been
roadly studied.

Automatic video-surveillance, including crowd behaviour analysis,
s increasingly attracting much attention [4]. This area aims to under-
tand how individuals behave when they are part of a large group, and
xtract meaningful information from videos in which crowds of people
re present. For example, the automatic analysis of the motion flow of
edestrians when accessing a crowded pilgrimage site, or monitoring
he behaviour of large amounts of fans in a sport stadium is crucial in
rder to detect dangerous situations previous to a catastrophe.

State-of-the-art Deep Neural Networks (DNNs), also known as Deep
earning models [5], have demonstrated impressive results in different
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computer vision tasks and time series analysis. These models are suit-
able for automatically analysing video sources, and thereby the use of
Deep Learning for crowd behaviour analysis is an emerging trend.

A large number of publications have addressed crowd behaviour
analysis using Deep Learning techniques in their pipelines [6–8]. Never-
theless, most of these works are sparse and difficult to compare. This is
particularly critical when developing new solutions, since it is difficult
to gather the previously developed knowledge. This dispersion is due to
three different factors: (1) There is a lack of consensus on what crowd
behaviour analysis is; (2) the sub-tasks that constitute crowd behaviour
analysis are not clearly determined; and (3) there is not an available
taxonomy on how these sub-tasks should be organised and addressed.

The three aforementioned problems are caused by the uncertainty
that surrounds this research area. The definition of the task itself and
most of the related concepts to the topic are ambiguous. In fact, it is
not even clear what should be considered as a crowd. For example, a
group of twenty persons can be considered as crowd in an underground
station, but it will be hardly interpreted as so in other environments,
such as a pilgrimage site like the Mecca. For this reason, designing a
general purpose model for crowd behaviour analysis is very difficult.
This is also problematic in order to perform a thorough review of
the published works, since most studies are not comparable to others,
because the specific problem they solve is completely different. Sim-
ilarly, there are very few standard datasets for benchmarking crowd
vailable online 29 July 2020
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behaviour analysis algorithms; most of the works make use of their own
datasets, conceived for the specific problem they want to solve.

With this paper, our aim is to establish a common taxonomy to
properly categorise the sub-tasks of the topic of crowd behaviour anal-
ysis. Afterwards, a comprehensive analysis of related works based on
this taxonomy will be performed, specially focusing on crowd anomaly
detection and emotional aspects of crowds, two key issues that are still
under-explored. To sum up, our contributions with this paper are the
following:

1. We review the previous categorisations of crowd behaviour anal-
ysis, and give clear definitions of the concepts of group and
crowd.

2. We propose a novel taxonomy that organises the existing ap-
proaches as a pipeline, using the hierarchical relation among the
different involved sub-tasks. This taxonomy comes to fix the lack
of structure in previous organisations, which were mere enumer-
ations of tasks without explicit relationships among them.

3. We thoroughly analyse the advantages and limitations of the
existing public datasets.

4. We perform a comprehensive review of the works that employ
Deep Learning to solve the task of crowd anomaly detection,
organising them according to the new taxonomy.

5. We expose the importance of taking into account emotional
aspects of the crowd in the analysis of its behaviour.

6. We outline the need of overcoming the current limitations of
available datasets, going beyond simulated scenarios towards
real-world environments.

7. We point out some possible future directions for the fusion of
these models into existing video analytics solutions, in order to
deploy these models in real-world video-surveillance contexts.

The rest of the paper is organised as follows, and as described in
ig. 1. In Section 2, some preliminary definitions related to crowd
ehaviour analysis are given, and previous efforts to categorise the
orks in the area are described. In Section 3, a comprehensive taxon-
my based on the hierarchical relation between sub-tasks is proposed.
ection 4 provides a review of the available datasets on the topic.
ection 5 describes the common metrics employed to evaluate crowd
ehaviour analysis models. In Section 6, a thorough review of the works
sing Deep Learning for crowd anomaly detection is conducted, with a
umerical comparison between them on the UCSD Pedestrians dataset
the most widely used in the topic). The importance of bringing emo-
ional aspects into crowd anomaly detection is outlined in Section 7.
ection 8 discusses main limitations in the field, and Section 9 high-
ights future directions in which crowd behaviour analysis solutions
ould be fused with other video analytics in order to build richer
ystems. Finally, Section 10 exposes conclusions.

. Crowd behaviour analysis: Concepts and previous work

There is a need for establishing a common ground for the analysis
nd characterisation of crowd behaviour. The first definition to be
emarked is about what should be considered a crowd. A proper way
o define the concept of crowd is through its differentiation from the
oncept of group:

• Group: It consists on a collection of people that can range from a
size of two persons to hundreds [9], in mutual presence at a given
moment, who are having some form of social interaction [10]. Its
members are close to each other, with a similar speed and with a
similar direction of motion [11].

• Crowd (or mass): A crowd is a unique large group of indi-
viduals sharing a common physical location [4]. It is usually
formed when people with the same goal become one single en-
319

tity, losing their individuality and adopting the behaviour of the
crowd entity [12]. Complex crowd behaviours may result from
repeated simple interactions among its constituent individuals,
i.e., individuals locally coordinate their behaviours with their
neighbours, and then the crowd is self-organised into collective
motions without external control [13].

Therefore, the definition of these two terms can be clarified by using
two different features: the density of individuals, which is higher in
crowds; and the relationships and interactions between the individuals,
which tend to be higher in groups. A group is usually formed by less
people, with a stronger relation and cohesion. A crowd typically refers
to a much larger collection of subjects, whose relationships are less
stronger, and with an organisation that emerges from the individual
interaction between agents.

Once the concept of crowd is properly defined, delimiting the scope
of the area becomes the next challenge. There are many different
suitable interpretations for the task of crowd behaviour analysis. In
general terms, the main goal in the area is to be able to understand how
a concentration of individuals behaves, using information retrieved
mainly from video sources. However, there are a lot of different aspects
in the behaviour of a crowd we can be interested in. For example,
the number of subjects on a certain location and how this number
varies in a period of time can be useful to prevent dangerous stampedes
of pedestrians. Also, the understanding of the predominant motion
directions in a moving crowd (e.g. when accessing a sport stadium) may
be useful to detect the persons whose movement differs from the main
flows and identify their reasons.

Few works have tried to organise the advances in the field by
categorising the problems/tasks that it constitutes, even though such
categorisations could be very useful for comparing related works that
address the same task. To the best of our knowledge, the most popular
categorisation was first proposed in [14]. After the original defini-
tion, it has been used in subsequent works [4]. According to this
categorisation, crowd behaviour analysis is divided into four main
problems:

• Crowd behaviour classification. This task involves the identifica-
tion and classification of behaviours usually known a priori.

• Crowd counting. The works whose aim is to estimate the number
of individuals present in a video are included in this category.

• People detection and tracking. It covers the works whose task is
to follow the trajectory of pedestrians in a video. Multiple Object
Tracking (MOT), when focused on pedestrians, belongs to this
subarea. It also covers the tracking of crowds, i.e., the estimation
of the flow of a large group of people moving.

• Crowd anomaly detection. In this case, the task is to identify
abnormal behaviours in a crowd, not known a priori. It is an
anomaly detection approach to the problem.

This categorisation includes the main sub-tasks in the topic, but
places all of them at the same level. However, it is clear that there
is a hierarchical relation among the four mentioned tasks, and some of
them can be performed as consecutive steps of a pipeline. For instance,
the crowd counting stage is often performed after the detection and
tracking of individuals. The output of crowd counting may also be used
as an input feature for detecting abnormal behaviour, such as conges-
tion. In the next section, we propose a categorisation that overcomes
the absence of hierarchy of the previous works, while keeping their
contributions as different parts of a pipeline.

3. A taxonomy for crowd behaviour analysis

Previous categorisations in the topic of crowd behaviour analysis are
mere enumerations of different sub-tasks, without establishing relations
between them. With this new taxonomy, our aim is to link related
sub-areas by providing a hierarchical relationship between them.
The proposed taxonomy is based on two complementary aspects.
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Fig. 1. Organisation and contributions of this study. Numbers indicate corresponding sections in the paper.
• On the one hand, there are two main ways to face the problem of
crowd behaviour analysis, depending on the connection between
the individuals and the crowd. This is the distinction between
macroscopic and microscopic approaches, which will be further
analysed.

• On the other hand, independently of the chosen approach, the
different related sub-tasks are organised following a pipeline.
This pipeline has four main stages, as shown in Fig. 2, in which
subsequent stages strongly depend on the previous ones.

As it can be seen in the figure, these two aspects are presented
n two different axes, in order to show the interdependence between
hem. Every stage of the pipeline could be tackled using one of the two
pproaches. However, there will be subtle differences on the solution
epending on the approach chosen.

.1. Macroscopic vs. microscopic approaches

This first distinction distributes works depending on how individu-
ls are considered in relation to the crowd they belong to. As we have
tated, this categorisation is not part of the pipeline, but a complemen-
ary classification that heavily influences the different stages in it. Two
ain approaches can be found:

• Microscopic (or bottom-up) approaches. In these works, the crowd
is treated as a collection of individuals. Persons in the video are
studied individually, and afterwards the knowledge about these
individuals is used to infer information at crowd level [15,16].

• Macroscopic (or top-down) approaches. These are holistic ap-
proaches, where the crowd is treated as a whole single entity,
without the need of individually segmenting and tracking each
individual [17,18].

Usually, microscopic approaches tend to perform better in situations
here individuals can be tracked properly. That is, when pedestri-
ns are clearly visible, occlusions are not severe, and density is low.
320
However, when the density of individuals increases, tracking quality
degrades significantly. In this circumstance, macroscopic approaches
are more suitable, since specific individuals are not the main target of
interest and crowds are rather studied globally.

3.2. Crowd behaviour analysis pipeline

Independently of whether a microscopic or macroscopic approach
is followed, the pipeline for crowd behaviour analysis includes the four
stages depicted in Fig. 2:

1. Detection stage. Its objective is to localise the position of in-
dividuals (microscopic settings) and crowds (macroscopic ap-
proaches) in each frame. It is a broadly studied sub-task, and
several detection models with great performance and accuracy
are already available [19].

2. Tracking stage. It aims at uniquely identifying the specific per-
sons and crowd trajectories across a sequence of consecutive
frames. Frequently, the dominant flows of movement in the
crowd are also determined [20]. Many existing works have
successfully tackled this research sub-area [21].

3. Feature extraction stage. It computes a set of metrics that de-
scribe the dynamics, topological structure and affective state of
the crowd. These metrics can be monitored over time, and com-
puted both at the individual level, when the different subjects
are studied independently (microscopic approach), or at crowd
level, when a mass of pedestrians is considered as a unique
entity (macroscopic approach). Examples include crowd density,
velocity and arousal monitoring.

4. Crowd behaviour classification and anomaly detection stage. On
the basis of extracted features, this last stage aims at recog-
nising particular behaviours and/or abnormal events in video
sequences. There are two main approaches for this stage, de-
pending on the type of learning paradigm employed, supervised
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Fig. 2. Proposed taxonomy: The four main stages of the crowd behaviour analysis pipeline.
or unsupervised. Behaviour classification encloses the works that
confront the task in a supervised manner. These works previ-
ously define a set of behaviours (e.g. people talking, walking
together, greeting each other, fighting, snatching, etc.), and train
classification models over them. On the other hand, anomalous
behaviour detection tries to identify abnormal patterns in the
crowd, a priori unknown.

The last two stages of the pipeline will be further described in the
following sections. We will not go any deeper into the first two stages
of the pipeline, namely detection and tracking, because these two sub-
tasks have been widely developed and studied previously, and thus they
are out of the scope of this paper. For example, the reader can refer
to [19] for a thorough survey on pedestrian detection, and to [21] for a
review on multiple object tracking, with special emphasis on pedestrian
tracking.

3.3. Crowd features and related emotional aspects

After the detection and tracking of individuals (or crowds) present
in the scene, a feature extraction stage is usually performed. Despite
the vast diversity of information that can be extracted from a video
sequence, we have identified the following features as very relevant
for the understanding of the crowd behaviour:

1. Velocity. It measures the average speed at which individuals
(when the approach is bottom-up) or crowds (in top-down ap-
proaches) are moving [22].

2. Direction. At the macroscopic level, it determines the number of
main directions of movement followed by the crowd [23]. The
direction followed by each individual may be extracted as well
in microscopic approaches.

3. Density. It quantifies the proximity of individuals in the crowd,
determining how dense the crowd is. At the macroscopic level,
the objective is to perform density estimation rather than pre-
cise people counting, as clutter and severe occlusions make the
individual counting problem difficult in very dense crowds.

4. Collectiveness (or cohesion). This feature measures the degree
of individuals acting as a union in collective motions [15,24].
When being part of a crowd, instead of behaving independently,
individuals tend to follow the behaviours of others and move
along the same direction as their neighbours [25]. Then, some
spatially coherent structures emerge from the movements of in-
dividuals. Collectiveness aims at quantifying the stability of local
geometric and topological structures of the crowd. It depends on
multiple factors, such as crowd density, velocity, direction and
scene structures.
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5. Valence. It aims at measuring the positive and negative affect
of the crowd. According to the literature on Psychology, it is
usually presented as a [−1; 1] continuous scale, ranging from
unpleasantness to pleasantness.

6. Arousal. It aims at monitoring how calmed or excited the crowd
is. It is also presented in a [−1; 1] continuous scale, ranging from
passive to active.

Note that the latter two features, namely valence and arousal, are re-
lated to emotional aspects [26]. Crowd emotions occur when the same
event yields a similar appraisal and elicits a common emotion among
the members of a crowd [27]. Crowds suffer from strong emotion
regulation and contagion processes [28], which are critical to monitor.
For example, in crisis situations, negative emotions such as panic,
anxiety and fear may spread among the crowd and exert a considerable
adverse impact on human decision-making [29]. As a result, stampedes
or other catastrophes may occur.

3.4. Crowd behaviour classification and anomaly detection

Extracted features have to be summarised in order to obtain mean-
ingful information about the behaviour of the crowd. As previously
pointed out, there are two main approaches in this stage: crowd be-
haviour classification, where models are trained in a supervised manner
over the extracted features; and crowd anomaly detection, when learn-
ing is performed in an unsupervised way. Monitoring crowd features
over time opens the door to the detection of abnormal behaviours in
crowds, since sudden changes in these features are indicative of strange
patterns. For example, a sudden drift in crowd speed values is usually
an indicator of alert; unwanted congestion can be characterised in
terms of lower speed and higher density; and extreme values of valence
and arousal can lead to violent situations between groups of people.

When solving the problem from an anomaly detection perspective,
another possible organisation emerges from the source of the anomaly
itself. As we stated before, the nature of the anomaly may be diverse,
and thus the approach to solve the problem may differ slightly. In this
work, we have identified five types of anomalies. Four of them were
identified when reviewing the specialised literature, and the fifth one
is proposed by us, due to its importance despite the lack of works about
it:

• Anomalous position. The source of this anomaly comes from
an atypical position of an object in the scene. This kind of
anomaly occurs, e.g., when a non-authorised individual enters a
restricted area, or a pedestrian is detected on a dangerous zone.
It is considered the easiest kind of anomaly to detect, since it
usually involves just a pedestrian detection stage, combined with
bounding box overlapping computation.
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Table 1
Public datasets for crowd anomaly detection.

Dataset # Frames # Abnormal events Anomaly type Description of anomalies

Total Training Testing

UCSD Peds 1 14000 6800 7200 40 Motion + appearance Strange directions, speeds, forbidden objects (bikes, cars)
UCSD Peds 2 4560 2550 2010 12 Motion + appearance Strange directions, speeds, forbidden objects (bikes, cars)
CUHK Avenue 30652 15328 15324 47 Motion + appearance Abnormal directions, speeds and unexpected objects
ShangaiTech Campus 317398 274515 42883 130 Motion + appearance Abnormal directions or speeds, loitering
UMN Dataset 7725 - - 3 Motion Whole crowd suddenly changing speed and direction
BEHAVE Interactions 225019 - - 14a Action Fights and chases
CAVIAR 26402 - - 11b Action Abandoned objects, fights, falls
BOSS 48624 - - 10 Action Fights, stealing, people falling
UT Interactions 41373 - - 48 Action Shake hands push, point kick, punch, hug
UCF Crime 13M - - - Action Uncivil behavioursc

Peliculas 4991 - - 100d Action Violence
Hockey Fights 41056 - - 500d Action Violence

aOnly first video labelled.
bLabelled for behaviour classification.
c13 different types of uncivil behaviours reported together with normal videos.
dShort videos of fights and no-fights.
• Anomalous movement. In this case, the anomalous pattern is
produced by an unexpected trajectory of one individual or group
in the scene. Two different sources of irregularity can be found:
speed, when someone moves faster or slower than his/her sur-
roundings; and direction, when predominant flows exist and the
movement of an individual deviates from these trends.

• Anomalous appearance. This abnormality occurs when a non-
recognised object enters the scene. A typical example of this
anomaly is the presence of a vehicle in a pedestrian path.

• Anomalous action. It is the most difficult anomaly to be identified.
It involves the understanding of the usual behavioural patterns of
the individuals in the scene, and the detection of non-common
ones.

• Anomalous affect. This anomaly is produced by the presence of
abnormal or extreme emotions in the crowd. It is the most under-
studied topic, due to the lack of properly annotated datasets, but
constitutes a promising direction for research, since emotional
aspects often arise prior to anomalous situations such as violence.

In practice, the detection of these types of anomalies is often com-
ined. For example, anomalous movement and anomalous appearance
re usually tackled together. A clear example of this combination is
resent in the UCSD Pedestrian dataset [30], which is the most em-
loyed one in the literature. In this dataset, two types of anomalies are
resent: people walking in strange directions (motion) and presence of
nauthorised vehicles (appearance). Some examples of different types
f anomalies are illustrated in Fig. 3.

.5. Focus of this study: Why?

As discussed in Section 2, previous surveys have mostly focused
n detection, tracking and crowd counting tasks, treating them as
ndependent subareas of study, regardless of their role in the crowd
ehaviour analysis pipeline. Detection and tracking are undoubtedly
ey stages of the process, since inaccurate results in these tasks will
ead to poorly performing subsequent stages. Similarly, crowd counting
s considered to be one of the most critical metrics to extract, since
n abnormal high density of people may produce catastrophes such as
tampedes and floods, and thus it is one of the most studied features.
owever, these stages are incomplete without a last stage of crowd
ehaviour understanding, in which raw features are converted into
roper knowledge of the situation. This study will then focus on the two
ost under-studied aspects of the crowd behaviour analysis pipeline:

rowd emotions and crowd anomaly detection.
On the one hand, emotional aspects have been ignored in previous

iterature on crowds. While valence and arousal have been widely
322
studied in the fields of Affective Computing, Human–Human, Human–
Machine and Human–Robot Interaction, they have been mostly limited
to the analysis of individuals [31] or at most of small groups of
persons [28,32]. There is a need to bring these emotional concepts to
crowd analysis.

On the other hand, crowd anomaly detection is one of the most diffi-
cult tasks among all the previously discussed, mainly due to the lack of
specificity that usually involves anomaly detection approaches. Despite
their difficulty, these approaches have an important advantage when
compared to classification methods. The problem of supervised learning
in behaviour understanding is that human activities and interactions
are really diverse, and it is very difficult to properly represent these
behaviours in a database. As a consequence, systems will not perform
adequately when dealing with behaviours that are not present in the
training database. On the contrary, anomaly detection approaches will
deal with these situations smoothly, since they will mark the unknown
activities as anomalies, triggering and alarm that can be further anal-
ysed afterwards. There are scarce reviews in the literature focusing on
anomaly detection, and the few that do present traditional Machine
Learning techniques [33] instead of state-of-the-art approaches based
on Deep Learning.

The rest of the paper will provide a comprehensive review on these
two under-explored aspects of crowd behaviour analysis.

4. Datasets for crowd anomaly detection

Due to the complex nature of the crowd behaviour anomaly de-
tection problem, many different datasets that focus on solving diverse
tasks are publicly available. In this section, we will categorise these
datasets depending on the main task tackled by each one. In Sec-
tion 4.1, datasets whose main task is motion anomaly detection will
be described. Section 4.2 will focus on datasets for action anomaly
detection. Note that, as there are not specific datasets for appearance,
position and emotion anomaly detection, we will not devote sections
to them. Table 1 briefly summarises the main features of the datasets
covered in this section.

4.1. Datasets for motion anomaly detection

Datasets in this subsection are designed to present different anoma-
lous motion patterns. These anomalies are usually defined by speeds
or trajectories that deviate from expected normal motion flows in the
scene. The presence of non-authorised elements is also a common trend
in these datasets (e.g. vehicles or bicycles on pedestrian paths), and
thus abnormal motion and appearance are usually considered together.
The datasets most widely used for motion anomaly detection are the
following:
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Fig. 3. Example of different types of crowd anomalies present in publicly available datasets. (For a color version of the image, the reader is referred to the web version of this
article. Best viewed in color).
UCSD Pedestrian dataset. UCSD anomaly detection datasets1 [30]
are the most popular in the literature. There are two different sets
of videos, called Peds1 and Peds2. Peds1 contains 34 training and
36 testing video sequences, and Peds2, 16 training and 12 testing
sequences. Each clip is approximately 200 frames (20 s) long, with a
158 × 238 resolution. The main difference between Peds1 and Peds2 is
the direction of the moving pedestrians. In Peds1, people walk towards
and away from the camera, while in Peds2 individuals move in parallel
to the camera plane. No anomalies are present in training videos, which
are intended to show what is considered to be a normal behaviour. In
testing videos, various abnormal events occur. The frame is considered
to be anomalous if there is a non-pedestrian element in the scene
(e.g. bikers, skaters, etc.) or if a pedestrian shows an abnormal motion
pattern (e.g. somebody running, changing its direction abruptly, and so
on). In total, approximately 3400 frames contain anomalies, and 5500
frames are normal. There are two different ways to indicate that an
anomaly is present in the frame:

• For each clip, the ground truth includes a binary flag per frame,
indicating whether an anomaly is present or not (frame-level
ground truth).

1 UCSD dataset available at: http://www.svcl.ucsd.edu/projects/anomaly/
dataset.htm.
323
• In 10 of the videos, a pixel-level mask per frame is provided,
which locates the position of the anomaly in the frame (pixel-level
ground truth).

Despite being the most employed dataset for crowd anomaly de-
tection, it lacks an online leaderboard for algorithm comparison. An
example of anomaly in this dataset can be found in Fig. 3, top left side.
Most of the works using this dataset solve both motion and appearance
anomaly detection in parallel, since the provided annotations do not
distinguish between the two different anomalies, and thus there is no
way to score both tasks separately.
CUHK Avenue dataset: The CUHK Avenue dataset2 [34] contains 16
training and 21 testing videos, with 15328 frames for training and
15324 testing. Again, normal samples are formed by people walking
in parallel to the camera plane; people moving in other directions,
with strange motion patterns or moving vehicles, are considered to
be anomalous. In this case, the ground truth for anomalous objects
is marked with a bounding box, and the evaluation criteria is the
Intersection over Union (IoU) between detection and ground truth [35].

2 The CUHK Avenue dataset can be downloaded at http://www.cse.cuhk.
edu.hk/leojia/projects/detectabnormal/dataset.html.

http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html
http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html
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UMN dataset: The UMN dataset3 is a synthetic dataset composed by
three different scenes, with a total length of 4 min and 17 s (7725
frames). In each video, an unstructured crowd is walking in the scene,
and suddenly everyone starts running, moment that is marked as an
anomaly. The objective on this dataset is to accurately detect the
change in the movement of the crowd. It can be seen both as motion
and behaviour anomaly detection, since the source of anomaly is pro-
duced by a sudden change in the speed and direction of people in the
scene, but the motion pattern is completely unstructured, in contrast
with the structured nature of movement in the previous datasets. Due
to this lack of structure, it is not possible to learn the main trends and
directions of movement, and thus to use the usual approach for motion
anomaly detection. The Web Dataset [36] was proposed as a harder
version of UMN dataset, with denser crowds.
ShanghaiTech Campus dataset: The ShanghaiTech Campus
dataset4 [37] is divided into 330 videos for training and 107 videos for
testing, taken in 13 different scenarios across the campus. Anomalous
events are produced by strange objects in the scene, pedestrians moving
at anomalous speed (running or loitering), and moving in unexpected
directions.

4.2. Datasets for action anomaly detection

The main task of the datasets presented in this subsection is to
identify when a person in the scene presents an abnormal behaviour.
Usually, behaviours considered as abnormal are uncivil behaviours
such as stealing, fighting, snatching, etc. The most relevant datasets for
behaviour anomaly detection are the following:
BEHAVE dataset: The BEHAVE Interactions dataset5 [38] contains
4 video sequences, of a total length of 2 h. Anomalies are mainly
produced by fighting. Only the first sequence is fully annotated. It is
divided into 8 fragments, and each fragment is groundtruthed at the
frame-level.
CAVIAR dataset: The CAVIAR Test Case Scenarios dataset6 is a set
of videos taken from two different scenes: the entrance hall of a lab
building and a hallway in a shopping centre. There are several video
sequences for each scenario. In each recording, a person or group of
people performs a different action. Most of the anomalies in this dataset
are provoked by fighting between pedestrians.
BOSS dataset: The BOSS dataset7 [39] is a collection of 19 scenes
taken inside a moving train, in which groups of people, ranging from
single individuals to crowds of more than 10 pedestrians, interact in
different manners, both normally and abnormally. For every scene, the
action is recorded from different perspectives, using several cameras.
Fights, people falling and group panic are examples of anomalies in
this dataset.
UT Interactions dataset: The UT Interactions dataset8 [40] is a col-
lection of 20 videos around 1 min each, presenting six different classes
of Human–Human interactions: shake-hands, point, hug, push, kick and
punch. All the videos contain several interactions, along with distractor
pedestrians. The aim is to correctly detect and classify the type of
interaction between subjects. Ground-truth labels for these interactions
are provided, including time intervals and bounding boxes.

3 The UMN dataset is available at http://mha.cs.umn.edu/proj_events.
html#crowd.

4 ShanghaiTech Campus dataset can be downloaded at https://svip-lab.
ithub.io/dataset/campus_dataset.html.

5 The BEHAVE dataset can be downloaded at http://groups.inf.ed.ac.uk/
ision/BEHAVEDATA/INTERACTIONS/.

6 CAVIAR dataset is available at http://groups.inf.ed.ac.uk/vision/CAVIAR/
AVIARDATA1/.

7 The BOSS dataset is available at http://velastin.dynu.com/videodatasets/
OSSdata/index.html.

8 UT Interactions can be downloaded from https://cvrc.ece.utexas.edu/
DHA2010/Human_Interaction.html.
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UCF-Crime dataset: The UCF-Crime dataset9 [41] was produced in
2018, and contains 1900 videos, 950 of normal events and 950 of
abnormal ones, divided into 13 classes: abuse, arrest, arson, assault,
road accident, burglary, explosion, fighting, robbery, shooting, stealing,
shoplifting and vandalism. Two main tasks are proposed: detection and
localisation of generic anomalies, at a first stage; and specific anomaly
classification, at second stage. This dataset is specially relevant due to
its large size (more than 13 million samples) and novelty.
Peliculas dataset and Hockey Fight dataset: The Peliculas dataset
[42] contains 100 short clips of fights in films, and other 100 clips of
normal behaviours. Similarly, the Hockey Fight dataset [43] contains
500 short clips of each class. These two datasets have been typically
employed in violence detection systems, which is considered to be an
action anomaly detection task.

5. Common evaluation metrics for crowd anomaly detection

The crowd anomaly detection problem can be seen as a binary
estimation task. For each frame in the video, a label indicating whether
the frame contains an anomaly or not should be generated. Also, it is a
heavily unbalanced problem, since the amount of anomalous examples
is far scarcer than the amount of normal ones. In this context, the classic
metrics that are commonly applied to unbalanced binary classification
tasks can be reported. Additionally, as predictions can be given in terms
of frames or in terms of areas inside the frame, a distinction between
frame-level and pixel-level metrics must be made. This section reviews
how both types of metrics apply to crowd anomaly detection.

5.1. Classic metrics

The following classic metrics have been recurrently reported in the
reviewed crowd anomaly detection works:

• Accuracy: It is the most common metric for binary classification
problems. It is computed as the number of correct predictions
divided by the total number of predictions made. The main
drawback of this metric is its inadequacy for unbalanced setups.

• Confusion matrix: Given a classification problem with 𝑛 different
classes, the confusion matrix is a 𝑛 × 𝑛 matrix, whose entry 𝑎𝑖𝑗 is
an integer number that represents the amount of elements of class
𝑗 that have been predicted to belong to class 𝑖. Related to this
matrix, several metrics are defined. In crowd anomaly detection,
three of them are usually reported:

– True Positive Rate (TPR): Also known as recall, it is the frac-
tion of positive samples that have been correctly identified.

– False Positive Rate (FPR): It is the fraction of negative
samples that have been incorrectly classified.

– Precision: It computes the fraction of correctly classified
elements that belong to the positive class.

– F-score: It is defined as the harmonic mean of precision and
recall.

• Receiver Operating Characteristic (ROC) curve and Area Under
the ROC Curve (AUC): The ROC curve is a graphical plot that
illustrates the discrimination capability of the model at various
discrimination thresholds. In binary classification, it is considered
that given two models, a higher AUC indicates higher overall
performance.

• Equal error rate (EER): It was initially defined as a performance
metric for biometric systems, but now it is widely employed for
anomaly detection. It is defined as the operating point at which
the miss and false alarm rates are equal. It can be computed
directly from the ROC curve as illustrated in Fig. 4.

9 UCF-Crime dataset can be downloaded from https://webpages.uncc.edu/
chen62/dataset.html.
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http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/INTERACTIONS/
http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/INTERACTIONS/
http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
http://velastin.dynu.com/videodatasets/BOSSdata/index.html
http://velastin.dynu.com/videodatasets/BOSSdata/index.html
https://cvrc.ece.utexas.edu/SDHA2010/Human_Interaction.html
https://cvrc.ece.utexas.edu/SDHA2010/Human_Interaction.html
https://webpages.uncc.edu/cchen62/dataset.html
https://webpages.uncc.edu/cchen62/dataset.html
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Fig. 4. Example of ROC curves and calculus of the EER for one of them. The model
with the red ROC curve is expected to have a better discrimination capability than the
blue one, since its AUC is higher. The intersection between the ROC curve and the
dotted diagonal marks the point where FPR and TPR are equal, which is defined as
the EER. (For a color version of the image, the reader is referred to the web version
of this article. Best viewed in color).

5.2. Frame-level and pixel-level metrics

Since crowd anomaly detection in videos is closely related to image
detection, there are different related evaluation criteria that are com-
monly applied. The two predominant ones are frame-level and pixel-
level metrics. In frame-level evaluation, the whole frame is marked
as anomalous when an anomaly is present. Detection models are ex-
pected to mark the whole frame as abnormal, without stating the exact
position at which the anomaly is located. In pixel-level evaluation,
instead, the anomaly is marked as a mask over the frame, showing
the exact location of the abnormal event. In this case, algorithms are
asked to generate a comparable mask, and the anomaly is considered
to be correctly identified if the predicted mask is similar to the ground
truth one. A typical criterion for this association is the Intersection over
Union (IoU). The expected output of the algorithm is a collection of
bounding boxes where the anomalies have been detected. Given the
ground truth bounding box 𝐺𝑇 and the predicted bounding box 𝑃𝐵,
the IoU is defined as:

𝐼𝑜𝑈 (𝐺𝑇 , 𝑃𝐵) =
|𝐺𝑇 ∩ 𝑃𝐵|
|𝐺𝑇 ∪ 𝑃𝐵|

An anomaly is considered to be correctly identified if the IoU
between its corresponding GT and predicted bounding box is greater
than a predefined threshold, which is usually set to 𝐼𝑜𝑈 (𝐺𝑇 , 𝑃𝐵) ≥ 0.5.
Then, results are computed as follows: predicted bounding boxes with-
out a ground truth matching candidate are considered false positives;
ground truth boxes marked as anomalous without a matching predic-
tion are considered false negatives; and ground truth boxes marked
as normal behaviour without prediction boxes are considered true
negatives.

6. Deep learning for crowd anomaly detection: Approaches and
numerical analysis

This section presents a thorough review of the works on anomaly
detection using Deep Learning. It is structured according to the previous
classification of possible anomalies. In Section 6.1, works that perform
motion and appearance anomaly detection are shown. We have decided
to combine anomalous motion and appearance detection, because these
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problems are usually tackled together. The most employed dataset for
motion anomaly detection, namely UCSD Dataset, marks both types of
anomalies in the ground truth indistinctly, and thus the majority of
works that use this dataset for evaluation tend to solve both tasks simul-
taneously. Works that perform action anomaly detection are presented
in Section 6.2, while Section 6.3 focuses on position anomaly detection.
Finally, in Section 6.4, a numerical comparison of the works that report
results on the UCSD Dataset is given.

6.1. Deep learning for motion and appearance anomaly detection

This subsection reviews state-of-the-art deep models for motion
and appearance anomaly detection, which have been further grouped
depending on the type of approach used to accomplish the task.

6.1.1. Deep feature extraction and one-class SVM classification
A common approach to solve the crowd anomaly detection problem

is making use of one-class Support Vector Machines (SVMs) [44] to
classify deep features. Deep models are employed as feature extractors,
and then a one-class SVM is trained over the extracted features to learn
the normal pattern. SVMs learn the smallest region of the feature space
that encloses the examples considered to be normal. During inference,
new samples located outside the region marked as normal are classified
as anomalies.

In [45], three Denoising AutoEncoders (DAE) [46] are trained over
original video frames (appearance features), optical flow of the frames
(motion features), and concatenation of both inputs (joint appearance
and motion features). After the DAEs have been trained over this infor-
mation, the bottleneck layer (where the most reduced representation of
the frames is computed) is used to train three SVMs. Finally, a voting
ensemble of the three learned models is used to perform inference.
Similarly, in [47], Gutoski et al. trained a Convolutional AutoEncoder
(CAE) [48] to reconstruct the input image data using three different
channels (original image, edges detected by the Canny Detector and
Optical Flow). In a second stage, they calculated the reconstruction
error in the three channels separately, and trained the one-class SVM
using these three values. In the first work, anomalous regions are
marked, which enables pixel-level evaluation. In the second one, whole
frames are marked as anomalous.

Authors in [49] proposed an ensemble method of two Stacked DAEs
(SDAEs) (see Fig. 5). The first SDAE received the original video as input,
while the second received the foreground sequence, calculated using
the Kanade–Lucas–Tomasi descriptor [50]. For both inputs, a motion
map was calculated and fed into the SDAE. After features extracted,
a Deep Belief Network performed a dimensionality reduction and the
final classification was given by a one-class SVM for both models. After-
wards, the final anomaly score was computed as a linear combination
of both outputs. Authors apply this pipeline both for motion and action
anomaly detection, but we have decided to include it in this section
since the dataset used to test anomalous action detection is not publicly
available.

Fang et al. [51] used two classical features, saliency maps [52]
and Multi-scale Histograms of Optical Flow (MHOF) [53], to train a
deep network called PCANet [54], whose aim is to perform Cascaded
Principal Component Analysis over the input data. After data reduction,
a one-class SVM learned the normal pattern. In [55], a pretrained VGG-f
network [56] is used as a fast feature extractor, and a SVM is trained
over extracted features, resulting in a detection model capable to work
at nearly 20 FPS, making it suitable for real-time applications, and
achieving a performance close to deeper models. In a similar manner,
Sun et al. [57] embedded a one-class SVM layer into a CNN, performing
end-to-end training of the whole model.

In [8], an ensemble of several models was proposed. Three different
models of CNN were fine tuned as feature extractors (namely VGGNet,
AlexNet and GoogLeNet), and their outputs were concatenated to form
a feature vector. Afterwards, feature vectors were used to train different

SVMs, whose output was combined to perform the final classification.
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Huang et al. [58] proposed also an ensemble of features, extracted
using Convolutional Restricted Boltzmann Machines. Three different
models were trained to extract information from visual patches (regions
of original frames), energy patches (feature maps extracted by applying
Gaussian filters to input patches), and motion patches (calculated using
Optical Flow). After the feature extraction step, all features were fed
into a one-class SVM that learned the normal pattern.

Another interesting example can be found in [7]. Authors proposed
a model working in two stages. In the first stage, a modified version
of Fast R-CNN [59], tuned for multitask learning, was trained in a
supervised manner in large scale datasets, so it was able to extract
semantic information of the objects in the scene. Specifically, for each
object, its class, action and attributes were reported. In the second
stage, after the generic semantic extractor was trained, an anomaly
detector learned the specific normal pattern for each dataset, and
reported an anomaly score for each piece of information in inference
time. Different abnormality detectors were tested, getting the best
results using one-class SVM. Despite being a general approach, also
suitable for anomalous action detection, authors only report results
using the motion anomaly dataset, and thus we decided to include it in
this section.

6.1.2. Deep feature extraction and Gaussian models
Another approach consists in learning a probabilistic model from

features, usually employing Gaussian distributions, and considering as
anomalies the samples that deviate from the normal distribution. Again
in this case, Deep Learning models are employed as feature extractors.

In [6], two different descriptors were learned. The video was di-
vided into non-overlapping 3D patches (regions of the scene in several
subsequent frames), and both local and global descriptors were com-
puted. Local descriptor was a similarity score between the current
patch and some adjacent ones, whilst the global descriptor was a
sparse representation computed using an autoencoder. In both cases,
a Gaussian model was constructed to represent the normal pattern,
and new patches were marked as anomalous if both classifiers gave
an anomalous response. Same authors refined their work in [60], using
the local descriptor as fast rejector of easy patches. When a new patch
arrived, the local descriptor classified it. If the answer was normal, the
classification was finished. However, if the local descriptor marked the
patch as anomalous, it was further processed by the global analyser,
marking it as normal or anomalous with more precision.

Additionally, the same authors proposed another cascaded method
in [61]. In this case, the first discriminator was computed as the
reconstruction error of a shallow autoencoder, used to discard easy
patches (specially background patches, whose reconstruction error is
low). Afterwards, a deep 3D CNN was trained to detect abnormal
situations. Using the CNN extracted features, a Gaussian model was
trained, using a Mahalanobis distance between new patches and the
Gaussian model as anomaly score.

Feng et al. [62] proposed a method based on 3D gradients. For each
video to be classified, 3D gradients were computed (horizontal, vertical
and temporal differences of video frames), and a PCANet [54] was
trained over these maps. After the PCA features had been computed,
a deep Gaussian Mixture Model (Deep GMM) [63] was trained over
them. Deep GMMs are an adaptation of Gaussian models to be trained
as a Deep Neural Network, performing its optimisation via Gradient De-
scent. In inference time, if the Deep GMM output is below a threshold,
the patch is marked as an anomaly.

6.1.3. Reconstruction-based techniques
The idea behind reconstruction-based techniques relies on training

a deep model capable of reconstructing the original image from its
compressed representation. After training using normal images, the
results of applying these models over abnormal images are irregular, so
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that an anomaly can be detected from the reconstruction. The measure
of irregularity widely employed for this purpose is the reconstruction
error.

An example of this approach can be found in Ramchandran
et al. [64]. Authors trained a Convolutional AutoEncoder (CAE) with
LSTM structure, which is a CAE with a recurrent configuration so
that it can deal directly with video fragments instead of individual
frames. Particularly, the LSTM-CAE learned to reconstruct normal
video fragments from original frames and edges extracted using the
Canny detector. When an abnormal video fragment is reconstructed
in inference time, the committed error grows noticeably, and thus
anomalies are detected if higher than a threshold.

Another example of reconstruction error is presented in [65]. In this
model, a temporal CNN with binary output translated an input video
into a set of binary feature maps. Using these feature maps, a dictionary
of binary codes was computed, and every video block was represented
by an histogram of such codes. In inference time, the irregularity
of the histogram, measured as the amount of information lost when
representing the video using the dictionary, contained information
about the degree of abnormality in the video. Moreover, Optical Flow
was computed to refine the anomalous region.

6.1.4. End-to-end deep learning approaches
Some authors have trained Deep Learning models whose aim is

to output an anomaly score directly, instead of using deep models
as feature extractors and then employing another model afterwards.
The main advantage of this approach is that models can be trained
end-to-end without needing several steps.

Zhou et al. [66] presented a spatio-temporal CNN whose output was
the probability of a certain video fragment to contain an anomaly. In
their algorithm, each video was divided into small video patches, and
the Optical Flow was computed over them. If the patch had a moving
object, it was considered to be relevant, and it was further processed
by the neural network. If no moving object was detected using Optical
Flow, the fragment was directly marked as normal, avoiding useless
processing and thus speeding the whole pipeline. This pipeline is also
employed for action anomaly detection, but most of the work is focused
on motion anomaly, and thus we decided to include it in this section.

In [67], two Generative Adversarial Networks (GANs [68]) were
trained. In the first model, the generator had to compute Optical Flow
maps from original frames, while in the second one the generator had
to perform the inverse task, i.e. computing original frames from Optical
Flow. In both cases, GANs were trained only over normal frames.
During inference, only the discriminators were used, and since they
were not trained over anomalous frames, they tended to mark them
as anomalous. The final anomaly score was computed by adding both
outputs together.

6.1.5. Other approaches
Some models follow completely different approaches from the pre-

vious ones. In [69], a model in cascade was built. In first instance, a
shallow CNN discarded easy normal patches (mainly background ones).
If the first CNNs could not mark the patch as clearly normal, it was
processed by a deeper CNN. The visual features extracted by the CNN
were employed to study the motion model of the subject using a flexible
Kalman Filter, which is a modification of the classic Karman Filter to
measure how much the subject has deviated from the normal motion
model. The deviation was considered to be anomalous and it was used
as an anomaly indicator.

Hu et al. [70] proposed an interesting solution. In their work,
they introduce a new deep model, called D-IncSFA, whose aim is
to perform a dimensionality reduction using a technique called Slow
Feature analysis (SFA) [71]. This technique performs a dimensionality
reduction over a time series, trying to isolate the ‘‘most slow varying’’
feature that defines a time signal. Since the computation of SFA is
very time- and resource-consuming, the deep network was trained to

compute an approximation. After being trained over normal videos,
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Fig. 5. Example of one-class SVM model for deep feature classification. Two Stacked Denoising Autoencoders receive motion maps from original videos and their corresponding
foreground sequences, and try to reconstruct the input map. Afterwards, the one-class SVM model learns the normal pattern, and this information is used in inference time to
detect anomalies. Image adapted from method described in [49]. (For a color version of the image, the reader is referred to the web version of this article. Best viewed in color).
the anomaly score was defined as the square of the derivatives of the
output signal. Since the SFA technique tried to reduce this metric when
trained over normal videos, when it was applied over anomalous ones
it grew noticeably. Two different possible solutions were given using
this model. To perform frame-level anomaly detection, the output of
the last layer was taken. To perform pixel-level anomaly detection,
the output from five different layers was employed, using them as
multiscale feature maps.

6.2. Deep learning for action anomaly detection

In this section, models specialised in action anomaly detection are
summarised. These works are not further classified since the amount
of them is greatly reduced compared to those performing anomalous
motion detection.

Following their previous works on motion anomaly detection, [72]
proposed a cascaded classifier for anomalous action detection. Using a
pretrained fully convolutional neural network (FCN) [73] based on the
AlexNet architecture, feature patches at different scales were extracted
from the frame. Two different Gaussian classifiers were trained. The
first one only used the 𝑘 shallower layers of the FCN, and a simple
discriminator was learned from this information. If the prediction of
the classifier was clear (two thresholds marked the clear normal and
abnormal behaviours), the classification was considered as completed.
If the prediction was unclear, deeper features were computed, and a
more specific Gaussian model was employed to refine the decision, at
a higher computational cost.

Reconstruction errors have been also employed for anomalous ac-
tion detection. An example of this kind of models can be found in [74].
In this work, two Stacked Denoising Autoencoders (SDAE) were trained
to extract visual and motion features from detected trajectories in a
video. After the autoencoders had extracted the mentioned features, a
bag of words was computed from them, and the reconstruction error
of the original features from the bag of words was considered as an
anomaly score.

Authors in [41] proposed an end-to-end Deep learning based solu-
tion to the problem (Fig. 6). In their work, the action anomaly detection
problem is seen from a multiple instance learning perspective. Since
they employ a large scale dataset without per-frame annotations, train-
ing videos were split into short sequences, forming a bag of examples,
and all were marked as positive examples if there was an anomaly
pattern in the complete video (negative if the whole video was normal).
Bags were processed by a 3D CNN with a proper loss function to
perform multi-instance learning. In inference time, the anomaly score
of a whole sequence is computed as the maximum of the predicted
values for the video fragments.

In [75], the action anomaly detection problem is solved using a hy-
brid anomaly detection and behaviour classification approach. A CNN
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was trained to distinguish among six different classes of anomalous
behaviours, given some frames of an anomalous video sequence. Two
different experiments were performed in this work. In the first one, the
output was a binary label, indicating whether there was an abnormal
action present in the video or not. In the second experiment, the actual
behaviour category, if present, was also reported.

Violence scenes are widely studied in the context of action anomaly
detection. One of the first examples of the use of Deep Learning for
violence detection can be found in [76]. In this work, four different
traditional feature maps were computed. All of them were derived from
Optical Flow representation of input frames. In these feature maps,
information about orientation, magnitude and speed of Optical Flow
were encoded. This information was fed into a pretrained AlexNet
model that extracted visual features. Afterwards, a Relief-F feature
selection [77] was employed to reduce data dimensionality, and then
two different classifiers were tested, a one-class SVM and a k-NN based
model for novelty detection. The same year, Sudhakaran et al. [78]
proposed an end-to-end deep model, composed by a FCNN for feature
extraction followed by a LSTM for motion model learning. Finally, a
group of fully connected layers performed the final classification. The
particularity of this model is the resolution of the violence detection
as a classification problem, instead of following the anomaly detection
approach, but we have decided to include it in this section for the sake
of completeness. A visual scheme of this model can be found in Fig. 7.

An interesting solution is provided by Marsden et al. in [79]. Their
model was based on a multitask CNN that jointly learned three different
tasks: violence detection, crowd counting and density estimation. Out-
puts from the network were a binary label indicating the presence of
violence in the image, a regression neuron that reported the predicted
number of subjects in the image, and a heatmap of pedestrians density.
As addition, the set of 100 fully annotated images used for training is
provided. The main drawback of this model is that it received images
(and not videos) as input.

In [80] a 3D CNN based model was proposed. According to the
authors, the main contribution of this work was the random frames
sampling method. Key frames in the video were detected using a classic
clustering technique. A set of 16 random frames was selected between
two consecutive key frames, and fed into the 3D CNN to extract spatio-
temporal features. These features were then processed by an anomaly
detection classifier, though the actual model employed in the work was
not reported in the paper. In [81], Dinesh et al. proposed a bidirectional
LSTM model, modified in order to work properly in a big data setup.
Firstly, the videos were processed inside a Spark engine, and a HoG
representation of the frames was computed. This representation was
then fed into the LSTM model, that learned the temporal patterns of
violent events. Again, the problem was solved as a binary classification.
Finally, a benchmark of different models was performed in [82]. The
authors tried different models based on CNNs and LSTMs and different
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Fig. 6. Example of end-to-end Deep Learning approach for action anomaly detection. In this example, anomaly detection is formulated as a multiple instance learning problem,
and the deep model is built to directly output the anomaly score for each video segment. Final anomaly score for a video is the maximum value of the predicted segments that
compose the video. Image adapted from method described in [41]. (For a color version of the image, the reader is referred to the web version of this article. Best viewed in color).
Table 2
Experimental results of crowd anomaly detection algorithms using Deep Learning on UCSD datasets (Ped1 and Ped2).

UCSD PED1 UCSD PED2

FL AUC FL EER PL AUC PL EER TPR FL AUC FL EER PL AUC PL EER TPR

[45] 92.10 16.00 67.20 40.10 90.80 17.00
[47] 59.00 53.00 61.00 81.00
[7] 90.80 17.10 𝟖𝟕.𝟑𝟎 𝟏𝟗.𝟒𝟎
[57] 91.40 15.60 69.10 39.30 91.10 16.10
[8] 93.20 92.10
[58] 92.60 11.20
[49] 94.30 10.00 70.30 34.00
[6] 19.00 𝟐𝟒.𝟎𝟎
[60] 93.20 8.40 𝟖𝟑.𝟎𝟎 93.90 7.50 𝟖𝟒.𝟎𝟎
[62] 92.50 15.10 69.90 25.10
[64] 𝟗𝟖.𝟒𝟎 𝟎.𝟕𝟓 𝟗𝟖.𝟓𝟎 𝟎.𝟗𝟐
[65] 95.50 8.00 64.50 40.80 88.40 18.00
[66] 87.00 24.00 𝟖𝟓.𝟎𝟎 81.30 88.00 24.40 86.00 81.90
[67] 96.80 7.00 70.80 34.00 95.50 11.00
learning politics, giving a numerical comparison of the results. The
dataset was composed by several videos collected from YouTube, where
a dense crowd presented some violent episodes. They concluded that
the best models, taking into account the lack of data they suffered, were
the pretrained ones, specially those for image classification, followed by
a fine tuning stage over the training dataset. The models trained from
the scratch tended to perform worse, despite being more complex, due
to the lack of training samples.

6.3. Deep learning for position anomaly detection

As we have stated before, this type of anomaly is the easiest to
detect. An anomaly due to position is produced when an unidentified
subject enters a forbidden area. Usually, the pipeline for this problem
is simplified to a pedestrian detection step, followed by an overlap
calculation between detected bounding boxes and certain regions at the
background.

The previous pipeline was employed by Cheng et al. in [83]. In this
work, authors considered the anomaly as the trespassing of a forbidden
area in a harbour. Videos were recorded by an aerial camera over a
harbour, and the constructed model was a combination of a Single-Shot
Detector (SSD) fine tuned for pedestrians and an illegal area defined in
the background. The system produced an alarm trigger when the area
was trespassed by a harbour worker.
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6.4. A practical comparison of anomaly detection approaches with the
UCSD dataset

Table 2 presents a numerical comparison between existing anomaly
detection models. It focuses only on models tested over UCSD datasets,
in order to perform a meaningful comparison, since the number of
models tested over other datasets is reduced. It is important to note that
the reported information has not been double checked, and it is directly
extracted from the authors. For each algorithm, the following metrics
are reported: frame-level area under ROC curve (FL AUC), frame-level
equal error rate (FL EER), pixel-level AUC (PL AUC), pixel-level equal
error rate (FL EER) and true positive rate (TPR); both for UCSD Ped1
and UCSD Ped2 sets, when available. Reported metrics are expressed
as a percentage. For each column, best result is marked in bold, and
second best is underlined.

As we can observe in the table, there are some well-performing
models for frame-level anomaly detection. Particularly, [64], a model
based on Convolutional AutoEncoders with LSTM structure and using
reconstruction error as anomaly score, got top score in metrics AUC and
EER for both datasets. Model [67] also obtained high results for both
datasets, and it is second best model for frame-level metrics. However,
pixel-level anomaly detection results are slightly worse, with the best
model getting around 10 points less than the best at frame-level. This
means that there is still room from improvement in this aspect.

It is also worth mentioning that no significant differences are found
between the different types of algorithms, considering the previous
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Fig. 7. Example of stacked architecture for violence detection. The model in the image is designated as CNN-LSTM. It consists of a CNN model whose features are fed into an
LSTM model that learns the temporal patterns. After temporal relations from visual features have been extracted, a group of fully connected layers produce the final classification.
Image adapted from method described in [78]. (For a color version of the image, the reader is referred to the web version of this article. Best viewed in color).
categorisation. Best performing models are based on reconstruction
errors, but the difference with other algorithms is small.

Another important aspect to be remarked is that frame-level metrics
are widely employed, but pixel-level metrics are reported in much
lesser occasions. This means that it is more common to develop frame-
level anomaly detectors than pixel-level ones. However, works that per-
form pixel-level anomaly detection are far more useful, since the infor-
mation they provide is more complete: a precise anomaly localisation
is crucial to act quickly on a possible threat.

7. Studies of emotions in crowds

The theory of collective emotions in crowds has been widely studied
in the field of Psychology [29,84,85], but there is still a need for trans-
ferring this knowledge to automatic crowd behaviour analysis. This
section presents the challenges that arise when bringing the analysis
of crowd affect into practice, and reviews the scarce literature that has
been published on the topic.

7.1. From individual to crowd emotions

Affective Computing delves in transferring the theoretical knowl-
edge of emotions and affects into systems capable of recognise, model
and express such human aspects [86]. Significant advances in the field
have taken place in recent years, but they have mainly focused on
single individuals. The most studied human channels for individual
emotion recognition are: speech [87], physiological signals [88,89],
facial expressions [90,91] and body language [32,92,93]. However,
most of these approaches are not transferable to groups and crowds.
For example, invasive methods that require people wearing physio-
logical sensors, such as electroencephalography (EEG), galvanic skin
response (GSR) or electromyogram (EMG) sensors, are not viable in
this context. Approaches grounded on speech (e.g. analysis of prosody
or verbal contents) would also be impractical to set up, as it is virtually
impossible to capture the sound of the crowd in large outdoor places
without a high level of noise and distortion. Video analysis, in the
form of facial and bodily expression recognition, turns out as the most
appropriate way to tackle the study of affect in crowds, but it is not
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without limitations either. Existing methods usually require nearly-
frontal face/body regions with a resolution above 64 × 64 pixels to
accurately identify emotions [94], which is difficult to obtain in a
crowded scenario.

Psychological studies on human perception of crowd emotions go
in the same direction. When confronted to crowd imagery, we humans
mostly focus our attention on facial expressions and body pose of
individuals to infer overall crowd affective information. Nevertheless,
as facial expressions are not always possible to resolve visually in
individuals from afar, body expression is likely to be a more relevant
cue [95]. Particularly, findings in [96] demonstrate that the dynamics
of body movements play an essential role in the understanding of crowd
emotions. Even though all these findings suggest that our brain makes
use of a microscopic approach to infer crowd emotion, there is little
knowledge on the exact mechanisms that take place to describe and
aggregate affective information from individuals to crowd.

Previous studies on the perception of emotion from facial expres-
sions evidence that facial expressions are perceived as categorical,
i.e. as belonging to a set of discrete emotional categories such as
‘‘joy’’, ‘‘anger’’, ‘‘sadness’’ or ‘‘fear’’ [97,98]. However, it is unknown
whether more complex emotional visual stimuli are also perceived in
a categorical way. Some works suggest that emotional body language
and crowd perception are not [95]. As such, the perception of emotion
in groups and crowds may rely on a different description level that has
not yet been fully understood by psychologists.

From the Affective Computing perspective, valence and arousal
are interesting metrics to explore for the aggregation of emotional
information in crowds. The categorical approach is just a discrete list
of emotions with no real link between them. It does not represent a
dimensional space and has no algebra: each emotion has to be studied
and recognised independently. Instead, valence and arousal allow to
consider emotions in a continuous affective scale. This continuous
approach is attractive because it provides an algebra to aggregate
individual contributions [31] and monitoring the intensity of crowd
emotion over time.

Overall, there is a need for new inventive ways to address crowd
emotion analysis. While both literature on Psychology and Affective
Computing seem to point to the microscopic and dynamic analysis of
facial and bodily expressions as the most suitable way to tackle the
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Fig. 8. Images of groups of people in social events from the HAPPEI database [28]. Each image is manually annotated in terms of group happiness intensity, ranging from 1
(neutral) to 10 (thrilled). The Group Expression Model (GEM) proposed by the authors predicts happiness intensity with close-to-human accuracy. (For a color version of the image,
the reader is referred to the web version of this article. Best viewed in color).
problem, there are still open questions to be answered, such as in which
terms crowd affect should be described and measured.

7.2. Emotion analysis in groups

Research in Affective Computing has just started to address the
detection of emotions in small groups of persons. The main bottleneck
to advance the field is that public datasets showing images/videos
involving groups and crowds, such as the ones presented in Section 4.2,
do not provide emotional annotations. The only exception is the HAPpy
People Images (HAPPEI) dataset [28],10 which contains 4886 images
collect from Flickr and Facebook. Each image is annotated with a 1-
to −10 group level mood intensity, corresponding to different stages
of happiness: neutral (1), smile (3.5), laugh (6.5) and thrilled (10).
HAPPEI was collected for understanding the overall happiness con-
veyed by a group of people in an image, however it is limited to small
groups of at most 15 persons -which is far from crowded situations- and
to static images (Fig. 8).

The baseline model proposed by HAPPEI’s authors is called Group
Expression Model (GEM), and formulates the overall group mood as a
weighted average of happiness intensities of all individual faces in the
group. Individual faces are analysed using Histogram of Oriented Gra-
dients (HOG) features extracted from the facial region, which are then
classified in terms of intensity by an SVM classifier. The contribution
of each individual face is weighted depending on several attributes: (i)
attributes of the group members such as age, attractiveness and gender;
and (ii) context attributes, such as the position of the person inside the
group or his/her distance to the camera.

The HAPPEI dataset was then used in the EmotiW 2016 Group-Level
emotion recognition challenge [101]. The top performing entry was
from Li et al. [102], with a technique based on ensemble of features
in Long Short Term Memory (LSTM) and ordinal regression. The first
runner-up was the method from Vonikakis et al. [103], which is based
on geometric features extracted from faces in an image. Partial least
square regression is used to infer the group-level happiness intensity.

10 The HAPPEI dataset is available at: https://cs.anu.edu.au/few/Group.htm.
330
Sun et al. [104] proposed a LSTM-based approach and fine-tuned the
AlexNet model by training it on the HAPPEI database.

The latter work was one of the first to use Deep Learning in its
pipeline, but more recent studies also include CNNs in the happiness
intensity detection task, either as end-to-end models [99] or as feature
extractors [105]. Most popular works utilise two channels of infor-
mation [99,106]: one channel studying individual faces (microscopic
channel) and one channel analysing the whole image (macroscopic
channel), as depicted in Fig. 9. Nevertheless, given the small size of the
HAPPEI dataset, models often need to be pre-trained on larger datasets
(such as ImageNet) and then fine-tuned using HAPPEI [99,104,107].

The emotional analysis of multiple people in terms of valence and
arousal still remains an unexplored topic. Mou et al. [100] did some
pioneering work on static images of small groups, by using a self-
collected dataset of 400 colour images from Flickr and Google (Fig. 10).
For each person in an image, they propose to extract a set of facial
features (Quantised Local Zernike Moments – QLZM), body features
(HOG) and context attributes. These features are then used to feed
a k-Nearest Neighbours (k-NN) classifier and detect 3 categories of
arousal (‘‘low’’–‘‘medium’’–‘‘high’’) and valence (‘‘negative’’–‘‘neutral’’–
‘‘positive’’). The final overall group valence and arousal categories
are estimated by fusing individual contributions at the decision level.
Nevertheless, the fact of discretising valence and arousal into a finite
set of categories, instead of using them as a continuous affective scale,
makes the approach lose descriptive power.

7.3. Towards emotion analysis in crowds

As we have seen in the previous subsections, most literature on
automatic emotion analysis has been limited to single persons or,
at most, small groups of persons. The study by Rabiee et al. [108]
is the first work tackling the problem of emotion detection in large
crowds (Fig. 11). The authors make use of their own private dataset,
opening up avenues for both tasks of crowd behaviour classification
and emotion recognition, as well as for the analysis of the correlations
between these two tasks. Their dataset consists of 31 video clips, each of
them annotated with one of 5 crowd behaviour labels (‘‘panic’’, ‘‘fight’’,
‘‘congestion’’, ‘‘neutral’’ and ‘‘obstacle’’) and one of 6 crowd emotion la-
bels (‘‘angry’’, ‘‘happy’’, ‘‘excited’’, ‘‘scared’’, ‘‘sad’’ and ‘‘neutral’’). The

https://cs.anu.edu.au/few/Group.htm


Information Fusion 64 (2020) 318–335F. Luque Sánchez et al.
Fig. 9. Example of end-to-end Deep Learning architecture for happiness intensity detection in groups. Top channel analyses the whole scene at the macroscopic level. The bottom
channel analyses individual faces, including facial attribute extraction. Image adapted from method described in [99]. (For a color version of the image, the reader is referred to
the web version of this article. Best viewed in color).
Fig. 10. Images from the private dataset used in [100]. Images are annotated in discrete categories of valence (‘‘negative’’–‘‘neutral’’–‘‘positive’’) and arousal
(‘‘low’’–‘‘medium’’–‘‘high’’). (For a color version of the image, the reader is referred to the web version of this article. Best viewed in color).
approach followed for classification is macroscopic, i.e. based on scene
features and not on individuals, and takes into account scene dynamics.
Their method uses classic Machine Leaning features extracted from
the whole scene, including HOG, HOF (Histogram of Optical Flow),
MBH (Motion Boundary Histogram) and dense trajectories, which are
used to feed a multi-class SVM classifier for the classification of each
video. They first detect crowd emotion as mid-level features, and then
perform behaviour detection. They prove that by exploiting jointly the
complimentary information of these two tasks, all baselines of both
tasks significantly outperform. Thus, interestingly, crowd behaviour
classification seems to improve when emotional features are taken into
account, which is in line with the crowd behaviour analysis pipeline
proposed in this paper (c.f. Section 3.3).

To conclude, according to this review, there is a large room for
improvement in the field of crowd emotion analysis. Firstly, there is a
need for transferring all the psychological knowledge about collective
crowd emotions to the field. Secondly, there is a lack of crowd video
datasets with emotional annotations, specially in terms of valence and
arousal. These datasets could be either built from the scratch or from
existing ones (such as UCSD, or any other presented in Table 1), by
extending them with affective labels. Finally, Deep Learning methods
have not been fully explored yet in the field, and are a very promising
line of research.

8. Going beyond simulated scenarios: Limitations of current solu-
tions

Crowd behaviour analysis in video-surveillance sources is a research
area experiencing a fast development, gaining increasing attention from
the scientific community everyday. However, it is still in its infancy,
and there is a large room for improvement on several aspects related
to the topic.
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8.1. Main limitations

Some of the main problems we have identified while performing
this review are the following:

• Lack of definition about the topic
• Lack of realistic datasets available
• Lack of interdisciplinary approaches

As we have remarked in Sections 1 and 3, there is still a lack of
consensus about a proper definition of the crowd behaviour analysis
problem. This is partly due to the broad interpretation of the terms
related to it. This ambiguity makes it easier to enclose various sub-
problems within this area of research. These different sub-tasks, despite
being closely related, are not exactly identical, and therefore the way
to tackle them is not exactly the same. There is a need to organise and
categorise all the sub-problems considered in crowd behaviour analysis,
in order to ease the research. A precise definition of the problem will
simplify work for new researchers, and will facilitate the discovery
of new weaknesses and challenges. Our proposed taxonomy is a step
towards unifying this branch of knowledge.

Moreover, a clear absence we have detected while gathering infor-
mation about currently available datasets is that of a standard bench-
mark with an online table of results or a public maintained leaderboard.
UCSD dataset is the standard benchmark for motion anomaly detection,
since most of the authors perform experiments over it, but results
are not properly gathered and made publicly available. For behaviour
anomaly detection, BOSS and BEHAVE datasets are the most employed
ones, but comparing results between models also remains a problem for
the same reason.

Another problem related to datasets, even more important than the
lack of a public standard benchmark, is the fact that available videos
are usually recorded in simulated scenarios, and thus they are not
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Fig. 11. Emotion-based crowd representation by [108]. (For a color version of the image, the reader is referred to the web version of this article. Best viewed in color).
Fig. 12. Efficient fusion of crowd behaviour analysis into a typical video analytics solution. (For a color version of the image, the reader is referred to the web version of this
article. Best viewed in color).
realistic, spontaneous and diverse enough. Moreover, most of them
are composed by small groups of people rather than actual crowds.
The UCF Crime Dataset [41] is a recent effort to provide the scientific
community with a dataset for crowd behaviour understanding, but due
to its novelty it has not been widely employed in research works for
the moment. In addition, to the best of our knowledge, this dataset also
lacks a public table of results or leaderboard.

Finally, the lack of interdisciplinary approaches is also a relevant
issue. The problem of crowd behaviour analysis is clearly related to
several areas of knowledge. There is a lot of research about collective
human behaviour and interactions in other fields, like Psychology or
Social Studies. However, this knowledge is not widely employed when
facing the problem from the perspective of Machine Learning, even
further when Deep Learning is employed. Leveraging the advances
made in the topic from other approaches would improve the obtained
results by a large margin. Furthermore, a close cooperation between
researchers and law enforcement bodies (such as Polices) would also
bring great benefits to both parts. Researchers would have the oppor-
tunity to test and refine their models in realistic scenarios, and social
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forces would experiment important improvements in the technology
they currently employ for the video-surveillance of crowded scenarios.

8.2. New opportunities

Nowadays, despite the visible usefulness of automatic video-
surveillance, there is a lack of widely available commercial solutions
for crowd behaviour analysis. Research in the topic is not sufficiently
advanced in order to exploit it at a large scale. There are some partial
solutions, which solve very specific tasks, being tested and deployed,
but their aim is usually to analyse individuals rather than complete
crowds. Solutions for automatic behaviour understanding in crowds are
an increasing need.

Also, ethical concerns are continuously rising about the invasion of
surveillance technology in our lives, specially regarding automated and
AI-driven tools. Interdisciplinary approaches could help in the adoption
of such useful technologies in a fair and ethical manner. It is crucial
to ensure that the developments in this area respect the privacy, data
protection regulations and integrity of the possible individuals to be
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monitored. The collaboration between different agents with diverse
backgrounds and perspectives is important to pursue this end. In fact,
crowd behaviour analysis from a top-down perspective can be a useful
approach to preserve the privacy of the individuals being monitored,
since they are not individually focused, while performing a crucial task
in catastrophe avoidance.

Finally, the irruption of the Covid-19 pandemic has shown the
importance of respecting social distancing politics and certain rules
of behaviour in public spaces. This is not always easy in a world as
global and crowded as ours. Because of that, monitoring congestion
and overcrowding in public spaces has become a top priority around the
world. There is an urgent need to incorporate fast solutions to this prob-
lem into existing video-surveillance and video analytics solutions. In
the next section, different opportunities to fuse novel crowd behaviour
analyses and previously employed systems will be addressed.

9. Fusion of crowd behaviour analysis into existing video analyt-
ics solutions: Prospects

Automatic video-surveillance is becoming a widely employed tool
to ensure public safety around the world. However, crowd behaviour
analysis, and more particularly crowd anomaly detection solutions, are
still underemployed in terms of commercial applications. There are a
lot of opportunities to combine steps from our pipeline into already
functioning video analytics systems. By fusing crowd analysis, not only
the extracted information from a scene will become richer, but also the
total amount of resources and computation needed for the solution will
be lower than the required when tackling these problems separately.

As an illustration of the previous idea, Fig. 12 depicts how crowd
behaviour analysis could be efficiently fused into a typical video ana-
lytics solution. The first two steps of the pipeline, namely detection and
tracking of crowds, could be performed jointly with those of individu-
als, objects, vehicles and other targets. This combination of detection
and tracking of different objects avoids processing multiple times the
same video stream. Detection and tracking are very computationally
expensive Deep Learning processes of the video analysis pipeline, and
thus this fusion approach would allow saving a large amount of com-
putational resources. This is particularly critical in video-surveillance
settings that require real-time responses from law enforcement bodies.

After detection and tracking, video analytics solutions usually im-
plement separate high-level analyses. For instance, face recognition
may be performed over each detected individual; in the case of detected
vehicles, license plate and car model recognition may take place.
When it comes to detected crowds, this high-level analysis stage would
include crowd anomaly detection and crowd behaviour classification.

Each of these high-level analyses generate alerts of different nature.
E.g., face recognition may notify the name of an identified person;
license plate recognition may notify a vehicle license plate number; and
crowd anomaly detection could notify about a potentially dangerous
abnormal behaviour of the crowd. There is another opportunity for
fusion in this step. Simple alerts from different systems can be fused
into advanced information about the scene in a subsequent stage. For
example, crowd features monitoring and face recognition can be fused
to alert about the presence of a blacklisted person or a weapon in the
middle of a high-density crowd, or crowd anomaly detection together
with face recognition could be used to automatically tag the people
participating in a fight.

Another important advantage of fusing different video analyses is
the possibility of cross-validating results where applicable, as it is stated
in [109]. The use of different models, that may analyse different targets
and obtain information at different timings, enables to fill the gaps
of missing or inaccurate data, which is important in order to obtain
a robust and complete overview of the situation. This task becomes
particularly necessary when attempting to patch coverage holes in a
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deployment through multiple sources of information.
10. Conclusions

In this work, different aspects related to the crowd behaviour anal-
ysis topic have been addressed.

Firstly, a new hierarchical taxonomy taking into account the dif-
ferent stages that conform the crowd behaviour analysis problem has
been proposed. Previous categorisations of works placed very different
tasks at the same level, presenting a mere enumeration of problems
that could be faced from the crowd behaviour analysis perspective.
This organisation was incomplete, as it did not take into account the
relationship between sub-tasks. With our new organisation, the tasks
identified by previous authors are considered as different steps of a
global pipeline.

Then, we have focused on one of the last stages of this pipeline,
namely crowd anomaly detection, by performing a thorough review
of the works that tackle this stage using Deep Learning. We have
particularly highlighted the need of considering emotional aspects
when studying anomalies in crowds, because sudden changes in crowd
emotions are usually a precursor of abnormal situations.

We have also discussed the need of improving the current avail-
able material for research, specially in terms of datasets. Currently
available data is often created artificially, and thus most of the shown
behaviours are unrealistic. Moreover, the density of individuals is quite
low compared to real scenarios, which makes research results hardly
transferable into real solutions.

Finally, some opportunities for the fusion of crowd behaviour anal-
ysis solutions into existing video analytics systems have been out-
lined. New research areas have been identified, specially related to the
pandemic the whole world is suffering nowadays.

As a main conclusion, we would like to remark the relevance of
the topic at this moment and how important is its fast and adequate
development. Both public and private sectors are demanding accurate
solutions to monitor the behaviour of crowds, and there is still a large
room for improvement as we have demonstrated in this work.
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