Skip to main content
. 2020 Jul 29;64:318–335. doi: 10.1016/j.inffus.2020.07.008

Table 2.

Experimental results of crowd anomaly detection algorithms using Deep Learning on UCSD datasets (Ped1 and Ped2).

UCSD PED1
UCSD PED2
FL AUC FL EER PL AUC PL EER TPR FL AUC FL EER PL AUC PL EER TPR
[45] 92.10 16.00 67.20 40.10 90.80 17.00
[47] 59.00 53.00 61.00 81.00
[7] 90.80 17.10 87.30 19.40
[57] 91.40 15.60 69.10 39.30 91.10 16.10
[8] 93.20 92.10
[58] 92.60 11.20
[49] 94.30 10.00 70.30 34.00
[6] 19.00 24.00
[60] 93.20 8.40 83.00 93.90 7.50 84.00
[62] 92.50 15.10 69.90 25.10
[64] 98.40 0.75 98.50 0.92
[65] 95.50 8.00 64.50 40.80 88.40 18.00
[66] 87.00 24.00 85.00 81.30 88.00 24.40 86.00 81.90
[67] 96.80 7.00 70.80 34.00 95.50 11.00