Skip to main content
. 2020 Jul 28;10:12555. doi: 10.1038/s41598-020-69345-9

Table 3.

Comparison of 1,000 pairs of prediction models for predicting pathological complete response.

Sensitivity 1-Specificity PPV NPV Accuracy AUROC
Training dataset (n = 165)
ANN 0.93 0.84 0.87 0.90 0.87 0.79
KNN 0.81 0.64 0.86 0.64 0.78 0.72
SVM 0.91 0.57 0.85 0.57 0.64 0.73
NBC 0.91 0.49 0.75 0.87 0.75 0.50
MLR 0.90 0.47 0.83 0.39 0.80 0.79
Testing dataset (n = 71)
ANN 0.94 0.87 0.89 0.88 0.86 0.81
KNN 0.89 0.49 0.87 0.46 0.84 0.72
SVM 0.90 0.82 0.85 0.71 0.85 0.74
NBC 0.90 0.85 0.82 0.75 0.78 0.51
MLR 0.84 0.61 0.88 0.69 0.85 0.77

ANN artificial neural network, KNN K nearest neighbor, SVM support vector machines, NBC Naive Bayes classifier, MLR multiple logistic regression, PPV positive predictive value, NPV negative predictive value, AUROC area under the receiver operating characteristic.