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Patient‑derived ovarian cancer 
organoids capture the genomic 
profiles of primary tumours 
applicable for drug sensitivity 
and resistance testing
Yoshiko Nanki1,2, Tatsuyuki Chiyoda1,2*, Akira Hirasawa1,2,3*, Aki Ookubo4, Manabu Itoh4, 
Masaru Ueno4, Tomoko Akahane2,5, Kaori Kameyama6,7, Wataru Yamagami1, 
Fumio Kataoka1,8 & Daisuke Aoki1

The use of primary patient-derived organoids for drug sensitivity and resistance testing could play 
an important role in precision cancer medicine. We developed expandable ovarian cancer organoids 
in < 3 weeks; these organoids captured the characteristics of histological cancer subtypes and 
replicated the mutational landscape of the primary tumours. Seven pairs of organoids (3 high-grade 
serous, 1 clear cell, 3 endometrioid) and original tumours shared 59.5% (36.1–73.1%) of the variants 
identified. Copy number variations were also similar among organoids and primary tumours. The 
organoid that harboured the BRCA1 pathogenic variant (p.L63*) showed a higher sensitivity to 
PARP inhibitor, olaparib, as well as to platinum drugs compared to the other organoids, whereas an 
organoid derived from clear cell ovarian cancer was resistant to conventional drugs for ovarian cancer, 
namely platinum drugs, paclitaxel, and olaparib. The overall success rate of primary organoid culture, 
including those of various histological subtypes, was 80% (28/35). Our data show that patient-derived 
organoids are suitable physiological ex vivo cancer models that can be used to screen effective 
personalised ovarian cancer drugs.

Patient-derived tumour organoids have become important preclinical model systems in both cancer research 
and clinical settings1. In contrast to patient-derived xenograft (PDX) mouse models that need a large amount of 
surgical specimen and 4–8 months for development2, organoids can be cultured from patient materials and can be 
expanded with high efficiency in a relatively short period (typically < 1 month). Organoids from mouse intestine, 
as well as from various other mouse and human tissues, including the colon, stomach, liver, lung, prostate, and 
pancreas, have been established3,4. Patient-derived tumour organoids have also been generated from the colon, 
pancreas, prostate, breast, gastric, lung, oesophageal, bladder, ovarian, kidney, and liver tumour tissues1. Orga-
noids maintain the key genetic and phenotypic features of primary tumours, thereby, enabling their use in a broad 
range of applications, such drug development and identification of the best therapeutic regimen for each patient.

Ovarian cancer is a devastating disease, with 295,000 new patients and 185,000 deaths each year, worldwide5. 
The relative 5-year survival rate is 47% and has not apparently increased in the last 40 years. Debulking surgery 
with platinum-combination chemotherapy is usually administered to patients, irrespective of the histological 
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subtypes, namely high-grade serous (HGSC), endometrioid (EM), clear cell (CCC), and mucinous carcinoma. 
HGSC comprises 70–80% of all ovarian cancer cases and is characterised by TP53 mutation, with many chro-
mosomal aberrations6. EM and CCC are endometriosis-associated ovarian cancers that frequently harbour the 
ARID1A mutation. Mucinous ovarian cancer is a rare tumour that accounts for 3% of all ovarian cancers and har-
bours KRAS mutation, ERBB2 amplification, or TP53 mutation7. Anti-VEGF antibody, bevacizumab, and PARP 
inhibitors, olaparib, rucaparib, and niraparib, are the molecular targeted drugs used in the clinical treatment of 
ovarian cancer. PARP inhibitors are effective against tumours with homologous recombination deficiency (HRD) 
and are mainly used against HGSC. Mismatch repair-deficient tumours make up less than 2% of the epithelial 
ovarian cancer8, and the overall response rate of single-agent immune checkpoint blockade by pembrolizumab 
was reported to be 4.1% in ovarian cancer9. Therefore, there are still emergent needs in ovarian cancer treat-
ment for novel molecular targeted drugs and biomarkers for selecting the most effective therapeutic regimens.

Recently, established ovarian cancer organoids that capture the genomic features of primary tumours have 
been reported10–12. Here, we have effectively established ovarian cancer organoids from several histologic sub-
types of ovarian cancer that can be utilised for biomedical applications, including drug sensitivity and resistance 
testing (DSRT).

Results
Establishment of primary ovarian cancer organoids.  First, we established the protocol to culture 
and expand single cells dissociated from primary ovarian cancers. Culturing dissociated single tumour cells in 
Matrigel with a cocktail medium of niche factors (WNT-3A, R-Spondin, etc.) enabled us to develop ovarian can-
cer organoids from different histologic subtypes (HGSC, EM, CCC) of stage I–III ovarian cancer patients within 
1–3 weeks (Fig. 1A, Table 1). We studied the growth of ovarian cancer organoids using over 20 combinations of 
various niche factor culture cocktails. Here, we present the organoids cultured with the cocktail medium most 
effective for multi-tissue type culture. The overall success rate of the primary organoid culture was 80% (28/35) 
(Table 2). The established organoids captured the histological characteristics and p53 positivity of the primary 
tumours (Fig. 1B).

Capture of primary tumour genomic characteristics by organoids.  To compare the genomic 
characteristics of the parental tumours and derived organoids, we performed targeted capture sequencing of 
1,053 cancer-related genes in the seven pairs (3 HGSC, 1 CCC, 3 EM) of organoids and primary tumours. The 
median passage number of organoids for analysis was 4 (range: 2–5). The analysis revealed that the pairs shared 
pivotal DNA variants, such as BRCA1, BRCA2, MLH1, PIK3CA, and TP53 (Fig. 2A, Supplementary Table 1). 
HGSC-1 harboured a stop-gain mutation in BRCA1 (p.L63*, pathogenic); CCC-1 had a frameshift mutation in 
ARID1A (p.P1995Lfs*22, p.Q1098Rfs*16); EM-1 had a frameshift mutation (p.K1072Nfs*21) and a stop-gain 
mutation (p.R1276*) in ARID1A; and EM-2 had a missense mutation in ARID1A (p.P251A) in both organoids 
and tumours. EM-1 also possessed a stop-gain mutation of the MSH2 gene (p.G220*). In total, 59.5% (range: 
36.1–73.1%) of the variants were shared among organoids and primary tumours. A total of 26.7% (range: 11.7–
34.7%) of the variants were seen only in the tumour and 13.8% (range: 9.4–29.2%) were identified only in the 
organoid (Fig. 2B,C). EM-1 displayed a hypermutation pattern (145 gene variants). The variant allele frequency 
(VAF) was similar among organoids and primary tumours (Fig. 3, Supplementary Table 1). The VAF of 77.8% for 
BRCA1 variant (p.L63*) seen in the HGSC-1 tumour indicates a loss of heterozygosity (LOH) in the tumour or 
the presence of uniparental disomy with a germline mutation. The VAF of 92.4% for BRCA1 p.L63* in the orga-
noid indicates that epithelial cells were concentrated in the organoids. Following the results of BRCA1 variant 
analysis in the organoids, we performed genetic counselling of the patient. Genetic test revealed that the patient 
had a germline BRCA1 variant. The VAF of RB1 variant (p.E672Q) was 47.3% in HGSC-1 tumour and 92.2% in 
HGSC-1 organoid, which indicates that the RB1 wild type allele was lost during organoid development. HGSC-3 
organoid and parental tumour both showed a ClinVar pathogenic TP53 variant (p.R248Q) with LOH. During 
development of the HGSC-3 organoid, a KRTAP4-3 variant was acquired with LOH in the main clone. In CCC-
1, the VAF of ARID1A was 26.8% in the tumour and 27% in the organoid, which indicates that a subclone was 
maintained in the organoid culture. EM-1 displayed a hypermutation pattern, most of which was maintained in 
the organoid. EM-2 organoid gained a LOH of the TP53 variant (p.L130V), whereas the wild type allele of TP53 
was identified in the tumour.

Copy number variations of tumours and organoids.  Copy number variations (CNVs) of the seven 
pairs of ovarian organoids and primary tumours showed a similar pattern of amplifications and losses through-
out the chromosomes (Fig. 4). HGSC-1 and HGSC-3 had many amplifications and losses that may reflect HRD 
(HRD-like). HGSC-2 showed scarce CNVs (non-HRD like). Chromosome 8 amplification was seen in both the 
parental tumours and organoids of CCC-1, whereas amplification in the region of chromosome 11 was only seen 
in the primary tumour. Most of the changes in the copy number of chromosomes in the tumours were inherited 
in the organoids, and the organoids did not acquire major novel chromosomal aberrations.

Organoid usability for personalised DSRT.  Finally, we performed DSRT using 23 FDA-approved 
drugs. HGSC-1 and HGSC-3 (HRD-like) displayed a similar drug sensitivity pattern that was different from 
that of HGSC-2 (non-HRD like) (Fig. 5A,B, Supplementary Table 2). HGSC-2 showed resistance to most of the 
drugs, except trabectedin. CCC-1 was resistant to platinum drugs (cisplatin and carboplatin) and paclitaxel, 
the key drugs in ovarian cancer therapeutics (Fig. 5A,B, Supplementary Table 2). HGSC-1 that harbours the 
deleterious BRCA1 variant and loss of wild type allele showed higher sensitivity to the PARP inhibitor, olaparib 
(p < 0.01), compared to other organoids (Fig. 5A,B). HGSC-1 also showed a tendency of higher sensitivity to 
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cisplatin, although it was not significant (p = 0.14) (Fig. 5A,B). HGSC-1 was also sensitive to paclitaxel, docetaxel, 
topotecan, SN-38, gemcitabine, and trabectedin. Time interval to recurrence after completion of first-line plati-
num regimen was 18 months in HGSC-1, which was longer than that in HGSC-2 (9 months), showing concord-
ance with the results of DSRT (Table 1, Fig. 5A,B).

Discussion
Ovarian cancer is a heterogeneous disease that needs an appropriate tumour model for the development of novel 
therapeutics. We have developed patient-derived ovarian cancer organoids that capture the in vivo architecture, 
genetic signature, and heterogeneity of tumours. In accordance with studies carried out on ovarian cancer and 
other tumours, such as those of the colon, breast, and bladder, our ovarian cancer organoids retained both the 
histological and genetic features and intra-tumoural heterogeneity of the original tumours10,13–15. Our method 
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Figure 1.   Patient-derived primary ovarian cancer organoids maintain the histological architecture and 
p53 positivity of the tumour subtype from which they are derived. (A) Brightfield microscopy images of the 
organoid lines. Scale bars 100 µm. (B) Haematoxylin and eosin (H&E) staining and p53 immunohistochemistry 
of primary ovarian tumours and derived organoids. It is noteworthy that organoids recapture the histologic 
features of the primary tumours (clear cell ovarian cancer, high-grade serous ovarian cancer, and endometrioid 
ovarian cancer) and p53 staining pattern. Scale bar = 100 µm.
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enables the establishment of organoids from several histological subtypes of ovarian cancer, efficiently from a 
single cell, within 3 weeks. The established organoids recapitulated the CNVs of primary tumours. An organoid 
with BRCA1 variant (HGSC-1) displayed many chromosomal aberrations, which are characteristic of HGSC. A 
total of 59.1% of gene variants were shared among organoids and corresponding tumours in our study, which 
was lower than the percentage (98%) of shared variants reported previous12. The difference may be attributed 
to the fact that we performed DNA sequencing at median passage number of 4 (> 4 weeks) but in the previous 
study, it was done after a short period (7–10 days) of culture. The pivotal DNA variants for tumourigenesis were 
shared among organoids and tumours in our study and the shared variants were reported to be maintained even 
after prolonged culture10.

In the DSRT, organoid from clear cell ovarian cancer (CCC-1) showed resistance to paclitaxel, cisplatin, 
and carboplatin compared to the other organoids; this was consistent with the fact that clear cell ovarian can-
cer is resistant to platinum-based chemotherapy (response rate: clear cell 11.1%, serous 72.5%)16. CCC-1 has 
mutations in the SWItch/Sucrose Non-Fermentable (SWI/SNF) related genes, PBRM1 (p.P1460L) and ARID1A 
(p.P1995Lfs*22, p.Q1098Rfs*16), indicating that immune checkpoint blockade might be an effective treatment 
strategy for this tumour17,18. HGSC-1 and HGSC-3 patients have HRD like CNVs, whereas HGSC-2 has limited 
CNVs (Fig. 4). HGSC-1 and HGSC-3 showed sensitivity towards paclitaxel treatment; however, HGSC-2 was 
resistant to paclitaxel (Fig. 5A,B, Supplementary Table 2). HGSC-1 harbours a pathogenic BRCA1 variant and is 
sensitive to the PARP inhibitor, olaparib, and cisplatin compared to other organoids, which indicates that using 
organoid-based models is a reliable strategy for DSRT. In fact, HSGC1 and HGSC-2 were both from FIGO stage 
IIIC tumours. The disease-free period after platinum therapy was longer in HGSC-1 compared to that in HGSC-
2, which can be considered as a reflection of DSRT (Table 1, Fig. 5A,B). Kopper et al. also reported that in vitro 
drug sensitivity was recapitulated in vivo using xenotransplantation of ovarian cancer organoids10.

As drug responses are more diverse and correlate better with genomic alterations in the 3D culture than in 
the 2D culture19, organoids can be considered as an appropriate culture format for drug sensitivity assays in 
translational research and precision medicine. PDX of ovarian cancer also recapitulated the diversity of genomic 
alterations in tumours and can be used for drug testing20,21; however, organoids are considered a better 3D 
culture system than PDX in terms of (1) amount of tumour needed, (2) engraftment time, and (3) engraftment 
success rate2.

The limitations of organoid models include the absence of cancer stroma, such as fibroblasts, blood vessels, 
and immune cells. Recently, however, the air–liquid interface method that retains tumour immune microen-
vironment was reported22. A PDX mouse model can be efficiently created via engraftment of organoids, which 

Table 1.   Characteristics of organoid cases. NAC neoadjuvant chemotherapy, ddTC dose-dense paclitaxel 
carboplatin, Bev bevacizumab, M month, NED no evidence of disease, NA not applicable.

Case Age at diagnosis Stage NAC Debulking status Observation period Recurrence
Time to recurrence after platinum 
therapy Status

HGSC-1 47 IIIC None Optimal 26 M Yes 18 M Alive with disease

HGSC-2 74 IIIC ddTC + Bev Optimal 26 M Yes 9 M Alive with disease

HGSC-3 77 IA None Complete 25 M No NA NED

CCC-1 50 IA None Complete 26 M No NA NED

EM-1 46 IC1 None Complete 22 M No NA NED

EM-2 42 IC2 None Complete 23 M No NA NED

EM-3 41 IIIB None Complete 22 M No NA NED

Table 2.   Success rate of organoid culture and derived organoid lines from each histologic subtype of ovarian 
tumour. HGSC high-grade serous, EM endometrioid, CCC​ clear cell, MC mucinous, MBT mucinous borderline 
tumour Others include dysgerminoma, thecoma, serous cystadenofibroma, carcinosarcoma, and fibroma. 
Organoid line was defined as an organoid that could be made from a single cell culture and for which a serial 
passage was successful for four times.

Number of cases
Number of successful primary 
organoid culture

Success rate of primary organoid 
culture (%)

Number of derived organoid 
lines

HGSC 10 9 90 3

EM 5 3 60 3

CCC​ 10 10 100 9

MC 0 0 0 0

MBT 3 3 100 2

Others 7 3 43 1

Total 35 28 80 18
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also enables the assessment of cancer stroma interactions. Organoid methodology allowing for cancer stroma 
integration is a vital next step in this field.
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Figure 2.   Organoids preserve the genetic alterations of the original tumour. (A) A cancer-related set of variants 
found in organoids and primary tumours (full list is shown in Supplementary Table 1). The type of mutation 
is indicated in the legend. Corresponding gene variant of tumour and organoid side by side in a same patient 
indicates a same variant. T tumour, O organoid. (B) The stacked bar graphs showing the total number of 
mutations per patient sample identified in both tumour and derived organoid, tumour only, and organoid only. 
(C) The percentage of shared, tumour only, and organoid only variants are indicated. Primary tumours and 
organoids share 59.5% (36.1–73.1%) of the variants.
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Figure 3.   Prevalence of subclonal populations as revealed by the examination of variant allele frequency (VAF). 
Genes with a VAF of 40–60% identified both in tumour and organoid were excluded from the graph as these 
may be germline variants. Genes with a VAF of < 20% both in tumour and organoid were also excluded.
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The difference between our method and a previously reported one10 is that we did not use heregulinβ-1, 
nicotinamide, forskolin, hydrocortisone, and estradiol, but used gastrin and insulin-like growth factor. Fibroblast 
growth factor, WNT, noggin, and R-spondin1 were the common niche factors. The primary organoid could be 
efficiently established with our method with a success rate of 80% (Table 2), which is similar to the success rate 
reported previously11.

In conclusion, the ovarian cancer organoids that we describe here recaptured the histological and genomic 
features of primary tumours, and thereby, present a useful platform for drug screening. By making it possible to 
progress from establishment to drug testing in a short time, this ovarian cancer organoid platform may serve as 
a pivotal experimental model, making it possible to predict drug responses before its administration to patients.

Figure 4.   Copy number variation (CNV) profiles with correlations (Pearson’s r) of tumour tissue and 
organoid samples in the seven cases. CNV profiles of the tumour tissue and organoids were created using a 
comprehensive capture-based cancer panel of 1053 genes. The pileup file was generated from processed BAM 
file that were used for variant call using SAMtools v. 1.2 (https​://samto​ols.sourc​eforg​e.net/). The log-base-2 of 
the ratio of depth to average depth was calculated. CN was computed using the log-base-2 ratio and plotted. 
R script for these processes ran on R 3.4 (https​://www.R-proje​ct.org). Red allow, chromosomal region with 
amplification; Blue allow, chromosomal region with loss. T: tumour, O: organoid.

https://samtools.sourceforge.net/
https://www.R-project.org


8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:12581  | https://doi.org/10.1038/s41598-020-69488-9

www.nature.com/scientificreports/

A.

B.

(µM)

(µM)

(µM)

(µM)

Tamoxifen 

(µM) (µM)

(µM)

(µM) (µM) (µM)

 (µM) (µM) (µM) (µM)

(µM) (µM)

(µM) )Mµ()Mµ(

(µM) (µM)

(µM)

(µM)

Paclitaxel lexatecoDnitalpobraC

Doxorubicin

Topotecan

Gemcitabine

Pazopanib Sunitinib Everolimus

SN-38

Etoposide

Belinostat

Vinorelbine Eribulin

Trabectedin

Trametinib Gefitinib Lapatinib 

Cediranib

Vorinostat

Cisplatin

Olaparib

Drug Mode of Action HGSC-1 HGSC-2 HGSC-3 CCC-1 EM-1 EM-2 EM-3
Cisplatin DNA crosslink
Carboplatin DNA crosslink
Paclitaxel microtuble-stabilizing
Docetaxel microtuble-stabilizing
Vinorelbine microtuble-destabilizing
Eribulin microtuble-destabilizing
Topotecan topoisomerase  inhibitor

SN-38 topoisomerase  inhibitor

Etoposide topoisomerase  inhibitor

Doxorubicin DNA crosslink, topoisomerase  inhibition

Gemcitabine nucleoside analog
Tamoxifen antiestrogen
Trabectedin DNA damaging, modifies transcription 
Olaparib PARP inhibitor
Vorinostat HDAC inhibitor
Belinostat HDAC inhibitor
Cediranib VEGFR tyrosine kinases inhibitor
Pazopanib multitargeted tyrosine kinase inhibitor
Sunitinib multitargeted tyrosine kinase inhibitor
Everolimus mTOR inhibitor
Trametinib MEK inhibitor
Gefitinib EGFR inhibitor
Lapatinib EGFR and HER2 tyrosine kinase inhibitor

Figure 5.   Ovarian cancer organoids as a platform for drug screening. (A) Dose–response curves of the organoid lines treated with 23 
FDA-approved compounds. Dots represent the mean of the technical duplicates. Error bars represent the SEM of technical duplicates. 
** < p = 0.01, N.S.: not significant (one-way ANOVA). Data analyses were performed using the GraphPad Prism 7.0b software. 
(B) Summary of the 23 FDA-approved compounds used in the drug sensitivity and resistance testing (DSRT) and the results. The 
corresponding colours for IC50 are depicted in the legend. HGSC-1 (BRCA1 pathogenic variant) showed higher sensitivity to cisplatin 
and olaparib compared to others. CCC-1 showed resistance to commonly used drugs for ovarian cancer; paclitaxel, carboplatin, and 
olaparib compared to other organoids. N = 3 distinct organoid lines. ND not determined.
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Methods
Sample collection and tissue processing.  The collection of patient data and ovarian cancer tissues was 
performed at the Keio University Hospital with the approval of the institutional ethics committee (Approval No. 
20070081). This study was performed in accordance with all relevant guidelines and regulations. All patients 
participating in this study signed informed consent forms. Ovarian cancer tissue was collected during surgery, 
and samples were stored in a sample storage solution at 4 °C during transportation to the laboratory. The sample 
storage solution consisted of Advanced DMEM/F12 (Thermo Fisher Scientific), 2 mM HEPES (Thermo Fisher 
Scientific), 1 × GlutaMAX-I (Thermo Fisher Scientific), and 200 U/mL penicillin/streptomycin (Thermo Fisher 
Scientific). The sample delivery time was 15–90 min. On arrival in the laboratory, the tissue samples were set on 
a sterile petri dish on crushed ice. Identifiable necrotic tissue and fat tissue were removed as much as possible 
and their size and weight were measured. An incision was made in the middle of the tissue to obtain a 5-mm slice 
for paraffin embedding of the primary tumour. Subsequently, the tumour was dissected to a 5 mm square under 
sterile conditions. A few pieces were stored at − 80 °C in 2 mL tubes with Recovery Cell culture freezing medium 
(Thermo Fisher Scientific) for later use. For organoid preparation, tissue samples were collected in 50 mL tubes 
containing HBSS 1 × (Thermo Fisher Scientific) and incubated on ice for 5 min. Thereafter, the supernatant was 
discarded. This wash step was repeated three times using HBSS 1 × . The cleaned tissue sample was placed on ice 
in a new petri dish, 100 µL of HBSS 1 × was added, and the sample was then minced into a paste. The minced 
tissue was collected in a new 50 mL tube and centrifuged at 300× g for 5 min at room temperature. The super-
natant was discarded, pellet was gently loosened, and an enzymatic degradation solution containing HBSS 1 × , 
collagenase I (FUJIFILM Wako Pure Chemical Corporation), dispase II (FUJIFILM Wako Pure Chemical Cor-
poration), Rock Inhibitor (FUJIFILM Wako Pure Chemical Corporation, CultureSure Y-27632), and DNase I 
(Roche) were added. The mixture was placed in a 50 mL tube in a water bath at 37 °C and shaken at 180–200 rpm 
for 30 min or up to 90 min. After the first 30 min, the dispersion status and live cells were checked every 15 min. 
The reaction was stopped when most of the cells had dispersed into single cells. The mixture was collected and 
dripped through a cell strainer on a new 50 mL tube to remove any residual tissue. The suspension was centri-
fuged at 300× g for 5 min at room temperature, the supernatant was removed, and the pellet was loosened. In 
case of a visible red pellet, erythrocytes were lysed in ACK Lysis buffer (Thermo Fisher Scientific) for 5–10 min 
at room temperature followed by two wash steps with 45 mL of HBSS 1X and centrifugation at 300× g for 5 min.

Organoid culture and passaging.  The concentration of the cell suspension was normalised to 1.0 × 104 
cells/drop and the suspension was centrifuged at 300× g for 5  min at room temperature. The cell pellet was 
then suspended in Matrigel (Corning), and 25 μL drops of matrix cell suspension were allowed to solidify on 
a pre-warmed 48-well plate at 37 °C for 15 min. We then calculated the volume to be transferred from the cell 
suspension into a new tube. On stabilisation of the Matrigel, we added the organoid medium cocktail. Advanced 
DMEM/F12 (Thermo Fisher Scientific) was supplemented with 2  mM HEPES (Thermo Fisher Scientific), 
1 × GlutaMAX-I (Thermo Fisher Scientific), 1X B27 supplement (Thermo Fisher Scientific), 10 nM Leu15-Gas-
trin I (Sigma-Aldrich), 1 mM N-acetylcystein (Sigma-Aldrich), 100 ng/mL recombinant human IGF-1 (R&D 
Systems), 50 ng/mL recombinant human FGF-2 (PeproTech), 20% Afamin/Wnt3a CM (JSR Life Sciences), 1 µg/
mL humanR-spondin (R&D Systems), 100 ng/mL Noggin (PeproTech), 500 nM A-83-01 (Tocris Bioscience), 
200 U/mL penicillin/streptomycin (Thermo Fisher Scientific), and 10  µM Y-27632 (FUJIFILM Wako Pure 
Chemical Corporation). The medium was changed every 3–4 days, and the organoids were passaged at a 1:2–3 
dilution every 1–4 weeks. Images of the organoids were taken every 3–4 days using a microscope. Organoids 
were mechanically and enzymatically dissociated into small clusters for passaging and collected in a 10 mL tube 
and sheared with a 1000 µL pipet tip without a filter. Thereafter, 100 µL of TrypLE Express (Invitrogen) was 
added and the mixture was incubated for 5 min at 37 °C. Subsequently, the organoids were centrifuged at 400× g 
for 3 min, washed with PBS, and centrifuged again briefly. All the seven organoids were successfully passaged 
and grown into organoids even after being isolated into single cells. For preservation of a stock, organoids in a 
Matrigel drop were suspended with Recovery Cell Culture Freezing Medium (Thermo Fisher Scientific), col-
lected in a 2 mL tube, and then gradually frozen at − 80 °C using BICELL (Nihon Freezer).

HE staining and immunohistochemistry of original tumours and organoids.  Tissues and orga-
noids were processed for paraffin sectioning using standard protocols. Matrigel embedded organoids were sus-
pended in Cell Recovery Solution (Corning, 500 µL/well) and collected in a 15 mL tube. The organoid suspen-
sion was occasionally mixed with gentle pipetting for 30 min on ice to completely solubilise the Matrigel. The 
tube was then placed on ice to precipitate the organoids. The supernatant was removed, and organoids were 
washed with a small amount of cold PBS. Organoids were solidified using iPgell (NIPPON Genetics), and orga-
noid blocks were fixed with 4% paraformaldehyde (PFA) for 20 min at room temperature, before embedding in 
paraffin. Fresh cancer tissue was embedded in paraffin after formalin fixation. After deparaffinisation, 5 μm sec-
tions were stained with haematoxylin–eosin (H&E) and tumour protein p53 (DO-7, Dako). The organoids and 
primary tumour sections were evaluated for morphological and immunostaining similarity by the pathologist.

DNA targeted analysis of original tumour and organoids.  DNA was isolated from 6–8 wells of cul-
tured organoids with the QIAamp DNA Mini Kit (QIAGEN) according to the manufacturer’s instructions. Orig-
inal tumour DNA was isolated from formalin-fixed, paraffin-embedded samples with the QIAamp DNA Mini 
Kit (QIAGEN). DNA purity and concentration were examined using the NanoDrop2000 spectrophotometer 
and Qubit 2.0 Fluorometer, respectively. The qualified genomic DNA sample was randomly fragmented with a 
Covaris ultrasonicator and adapters were ligated to both ends of the resulting fragments. The extracted DNA was 
then amplified via ligation-mediated PCR (LM-PCR), purified, and hybridised to the Roche NimbleGen SeqCap 
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EZ Exome probe. Non-hybridised fragments were then washed off. Both the non-captured and captured LM-
PCR products were subjected to quantitative PCR to estimate the magnitude of enrichment. Target enrichment 
was performed with a cancer panel that targeted 1,053 cancer-related genes (Beijing Genomics Institute). Each 
captured library was then loaded on an Illumina Hiseq sequencing platform, and high-throughput sequencing 
was performed independently for each captured library to ensure that each sample met the desired average fold-
coverage. Raw image files were processed with Illumina base calling Software 1.7 with default parameters and 
the sequences of each individual were generated as 90/100 bp paired-end reads23,24.

Genomic analysis.  After removing the adaptor reads, the clean reads were mapped to the reference genome 
(hg19) using Burrows–Wheeler Alignment with maximal exact matches (BWA-MEM), v. 0.7.1225. Read map-
ping was followed by indel-realignment by the assembly based realigner (ABRA), v. 0.9726. Duplicate reads were 
marked for removal. SNVs and indels were called using VarScan, v. 2.4.227. The functional effect of the SNVs 
and indels were predicted using SnpEff v. 4.228. CNV was detected using an in-house algorithm of Mitsubishi 
Space Software. To determine the clinical actionability, all the variants were mapped to three clinical anno-
tation databases, ClinVar (downloaded on 2017–02)29, COSMIC v. 8130, and CIViC (downloaded on 2016–
02)31. Common variants were detected using the following criteria: allele frequency of more than 0.01 in any 
of the public database, Exome Aggregation Consortium database (ExAC) (https​://exac.broa-dinst​itute​.org/)32, 
Human Genetic Variation Database (HGVD) (https​://www.genom​e.med.kyoto​-u.ac.jp/)33, and Tohoku Medical 
Megabank Organization 2KJPN data (ToMMo 2KJPN) (https​://jmorp​.megab​ank.tohok​u.ac.jp/)34. HGVD and 
ToMMo 2KJPN were used as a reference for the Japanese controls.

DSRT on organoids.  Organoids were collected 4–5 days after passage and filtered through a 100 μm cell 
strainer to remove any large clumps. Values for each drug concentration point were averages of the values for 
the triplicate wells. Drugs were added 2 days after embedding. We selected 23 FDA-approved drugs including 
those covered by health insurance in Japan for ovarian cancer and endometrial cancer. Depending on the prop-
erties of the individual drugs, the concentrations ranged from 10 μmol/L to 128 pmol/L or from 100 μmol/L to 
1.28 nmol. Cell viability was assayed using CellTiter-Glo 3D (Promega) on day 6. Data analyses were performed 
using the GraphPad Prism 7.0b software to calculate IC50

23.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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