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Abstract

Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across 

the life cycle of a product or service. This paper presents a conceptual framework to integrate 

human health impact assessment with risk screening approaches to extend LCA to include near-

field chemical sources (e.g., those originating from consumer products and building materials) that 

have traditionally been excluded from LCA. A new generation of rapid human exposure modeling 

and high-throughput toxicity testing is transforming chemical risk prioritization and provides an 

opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA 

and RA approach considers environmental impacts of products alongside risks to human health, 

which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A 

case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a 

consumer product. The case study demonstrates how these new risk screening tools can be used to 

inform toxicity impact estimates in LCA and highlights needs for future research. The framework 

provides a basis for developing tools and methods to support decision making on the use of 

chemicals in products
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Introduction

Life cycle assessment (LCA) is a multi-impact assessment tool that quantifies the potential 

environmental burdens and benefits of products and services to avoid making decisions that 

unknowingly shift the burdens from one life cycle stage to another, from one impact type to 

another, or, more recently, from one geographic location to another. Based on its 

comprehensive nature and utility for environmental sustainability, LCA accounts for 

potential human health impacts, including those resulting from chemical impacts associated 

with products, alongside other impacts such as energy use, climate change, ozone depletion, 

and water use.(1, 2) For the human toxicity impact category, practitioners have only recently 

started assessing the impacts of exposures from near-field (indoor, workplace) chemical 

sources,(3–14) with life cycle impact assessment (LCIA) methodology historically focusing 

on emissions to the far-field (or outdoor) environment.(3, 10, 15, 16) The omission of 

exposures from indoor and workplace sources may underestimate potential chemical impacts 

when exposures from near-field sources are larger than indirect exposures to far-field 

releases,(3, 17, 18) which may be the case for many chemicals in consumer products and 

building materials.(19)

For chemical emissions to outdoor media, impact characterization draws from risk 

assessment (RA) principles by accounting for a chemical’s release, transport, fate, human 

exposure, and toxicological effects when arriving at a potential impact metric.(20–24) 

Efforts to develop assessment methods for the impacts of exposures to indoor and workplace 

sources primarily focus on extending the human toxicity assessment approaches developed 

for far-field sources to include near-field media such as indoor air and other exposure routes 

such as dermal uptake.(3, 11, 16) However, these methods often do not address some of the 

choices made when the far-field methods were first developed. For example, background 

exposures were not included for practical reasons, one being insufficient data availability.

(22, 23, 25) Aggregate exposure (i.e., the combined exposure to a chemical originating from 

multiple sources), may be particularly relevant for chemicals with near-field sources, which 

can often dominate exposure,(3, 17, 18) and can originate from several different sources 

within the same near-field space (e.g., different products providing exposure to the same 
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chemical).(26, 27) Risk-based screening methods are increasingly addressing chemicals in 

the near field, resulting in the development of methods to rapidly estimate aggregate 

exposure to these chemicals.(17, 28–31) This type of risk-based exposure modeling provides 

an opportunity to include aggregate exposure from near-field chemical sources in LCA.

Although LCIA draws from RA principles, key methodological choices for LCIA differ 

from risk calculations and yield potential impact scores that are not absolute risks.(22, 23, 

32, 33) In the context of this manuscript, the term “risk” refers to an evaluation of the risk or 

probability of harm associated with exposure to a chemical(34, 35) and is differentiated from 

the LCA-based impacts of products. One key difference is the consideration of absolute 

exposures,(9, 36, 37) which leads to the differing product-centric perspective in LCA and 

chemical-centric perspective in RA. The inclusion of aggregate exposures in LCA would 

align with both recent chemical legislative actions in the United States indicating that risk 

estimates are needed in chemical assessments(38) and broader shifts in the environmental 

decision-making landscape calling for increasing integration of risk and sustainability 

metrics.(39, 40) Extending LCA to include near-field chemical sources for consumer 

products and building materials could also benefit from a combined LCA and RA approach 

where the comprehensive nature of LCA provides a foundation to integrate environmental 

sustainability metrics with the consideration of chemical risks to human health.

Recommendations for both the integration of RA and LCA and the integration of human 

health metrics into sustainability-based decisions have been well documented.(9, 39–53) An 

important commonality between LCA and RA is the use of screening level assessments.(22, 

34, 54–58) From the RA-based chemical perspective, screening RAs are being 

recommended to prioritize the large number of chemicals available in commerce for risks 

and needs for higher tier assessments.(38, 54, 55, 59) From the LCA-based product 

perspective, screening techniques are used to narrow multiple product options or to identify 

hotspots for product improvement. The human toxicity impact category in LCA was 

designed to provide screening-level assessments,(22, 23) and the recent emergence of high-

throughput (HT) methods for risk screening enables new opportunities for integrating these 

two approaches. For example, the U.S. EPA’s Toxicity Forecaster (ToxCast)(60, 61) and 

ExpoCast(56) programs support risk-based screening of thousands of chemicals that have 

previously lacked toxicity or exposure data,(54) which may increase the chemical coverage 

of LCA. This paper explores adapting HT methods to enhance LCA for sustainable product 

design by extending human toxicity impacts to account for near-field sources and more risk 

considerations, such as aggregate exposures, population group differences, and novel 

sources of toxicity data.(38, 39) To this end, the objectives of this paper are (i) to present a 

conceptual framework extending human toxicity LCIA to the near-field using new tools for 

rapid exposure and toxicity assessment; (ii) to evaluate the potential for integrating such 

tools using a demonstrative case study; and (iii) to identify future research needs for long-

term implementation.

Methods

The conceptual framework presents a method to extend LCIA to the near-field by 

augmenting traditional LCIA methods with RA. The approach calculates potential life cycle 
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impacts alongside a screening RA with aggregate exposures to yield more informative 

assessments (Figure 1). The framework draws from the parallel knowledge flow between 

both techniques from inventory (sources), transport, fate, exposure, and toxicological effects 

such that it can be applied to determine functional-unit-based characterization factors or to 

multiple chemical-use scenarios to determine aggregate exposures. The latter can be 

combined with effects to provide risk-based screening information to inform the impact 

scores. Figure 1 highlights where traditional LCIA methods would be extended to include 

the near-field and additional risk-based information from the screening step.

The existing impact assessment methods(1, 20) upon which the framework is built are first 

briefly described. The ultimate vision is for the source-to-receptor LCIA and RA 

calculations to be harmonized and streamlined, since both approaches follow the same 

knowledge flow (Figure 1). The framework is followed by a case study using currently 

available LCIA tools(62) and the U.S EPA SHEDS-HT (High-throughput Stochastic Human 

Exposure and Dose Simulation) model designed to support HT screening risk assessments 

for chemicals used in consumer products.(28) The case study demonstrates aspects of the 

framework and explores areas where the LCIA and risk screening approaches differ.

Human Toxicity Impact Modeling Overview

As with other impact categories, the impact score (IS) is a product of the life cycle inventory 

(LCI) describing the emission quantities and compartments (i.e., kg of chemical emitted to a 

compartment) for a given functional unit (FU) and the corresponding characterization factor 

(CF) (i.e., potential impact per kg of chemical emitted to a compartment).(1, 63) The FU 

specifies the product function or service and is the reference unit used to compare across 

alternatives.(64) The total impact score for a given chemical is the sum of its characterized 

impact for each compartmental release. The CF is the chemical-specific measure of the toxic 

impact due to a chemical emission and is expressed, for example, as a human toxicity 

potential.(1, 65) The CF calculation incorporates fate, transport, and human exposure factors 

via the intake fraction (iF) (kg intake per kg emitted)(66, 67) and hazard and dose–response 

via an effect factor (EF) (e.g., effect or disease cases per kg intake)(67, 68) (Figure 1). The 

iF can differentiate a media-specific CF because the EF is constant for a given chemical (but 

depends on exposure route, i.e. inhalation or ingestion, and effect). Figure 1 gives examples 

of outdoor media and exposure pathways included in current LCIA methods. These methods 

are also used to assess impacts of other substances, such as metals,(67) and are being 

evaluated for emerging compounds, such as nanomaterials.(14, 69) Additional details of 

human health impact assessment are available in the Supporting Information (SI).

Life Cycle Inventory

The inclusion of the near-field in LCIA for consumer products (e.g., personal care products 

(PCPs), cleaners, furniture) and building materials will require a typical LCI (e.g., far-field) 

to be extended to include near-field sources. The inventory may be in the form of an 

emission to indoor media (e.g., indoor air) or a mass of chemical contained within a product.

(16, 70–73) Any near-field LCIA method should be sufficiently flexible to use both 

emissions- and mass-based inventory approaches.
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To include aggregate exposure estimates, inventories based solely on the FU must be 

extended to include inventories that identify additional sources of the chemicals from all 

their anticipated uses. Emerging data sources for risk-based decision making, such as 

product composition databases,(74) may be leveraged for this purpose to minimize the effort 

required to build the near-field inventory. For example, the U.S. EPA, through its 

engagement in computational exposure science, has collected public data on chemical 

uses(26) and product composition to support estimation of product compositions for rapid 

exposure modeling.(30) A useful outcome of this work is the Consumer Product Chemical 

Profile database (CPCPdb),(74) which links chemicals to consumer products with 

consideration of concentration ranges. This database has been applied to estimate aggregate 

exposure to chemicals used in consumer products by the U.S. EPA’s SHEDS-HT model.(28)

Fate, Transport, and Exposure

Fate and transport models used in LCIA need to be extended to the indoor environment and 

its media, such as air, dust, carpet, furniture, and surfaces,(75, 76) while including human 

exposure estimates(71, 77, 78) accounting for routes and pathways such as dermal uptake 

and nondietary ingestion (e.g., dust, hand-to-mouth and object-to-mouth contact).(11, 70, 

79) While fate and transport models used for the far-field generally assume steady-state 

conditions,(67, 80) near-field modeling may benefit more from consideration of the time-

varying nature of exposure. Acknowledging the frequency and duration of product use will 

affect both the magnitude of exposure and the magnitude of outdoor releases for some 

product types, such as PCPs washed down the drain.(70, 81, 82)

Current LCIA exposure methods for the far-field assume average conditions for comparative 

purposes and do not account for population variability, often because of a lack of site 

specificity.(25, 63, 83) For chemicals that have exposures that are largely driven by near-

field pathways, variability in population exposures could be driven by differences in product 

use patterns or other indoor activity characteristics.(28, 84) Some population groups may be 

more sensitive to a specific exposure pathway (e.g., nondietary dust ingestion for 

children(85, 86)) for a product-chemical combination that if not considered could 

underestimate impacts when comparing across chemicals. This is why research supporting 

risk screening, where population variability is often a key consideration,(87) includes the 

development of models to address population differences.(28) For example, SHEDS-HT 

simulates population variability of individuals and their activity patterns to report a 

distribution of near-field exposures. Thus, incorporating this type of model into LCIA would 

also allow for traditional point estimates in LCA to be extended to include population 

variabilities and population group considerations.

Effects

LCIA is generally limited to in vivo data, which is not available for many chemicals.(54, 69) 

The use of HT screening in vitro assays and computational estimates could increase the 

number of chemicals that can be evaluated in LCIA. Thus, LCIA will likely need to evolve 

beyond in vivo toxicity data if it is to be applicable for decision support involving new and 

emerging chemicals.(38) The U.S. National Research Council (NRC)(88) has recommended 

a transition from in vivo animal testing to in vitro assays(89, 90) to address toxicity gaps on 
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the large numbers of chemicals in commerce. For example, data generated under the Tox21 

program (a collaboration between the U.S. National Institutes of Health and U.S. EPA) have 

resulted in information on the bioactivity of thousands of substances.(91) These data differ 

from traditional in vivo data because they represent in vitro concentrations rather than an 

external dose causing an adverse effect. Instead, in vitro toxicity concentrations can be 

linked to doses using dosimetry modeling to forward-calculate a resulting blood or target 

tissue concentration from a given exposure.(89, 92) Alternatively, reverse dosimetry can be 

used to convert a target tissue concentration to an equivalent absorbed dose, which can then 

be compared with an estimated exposure.(31, 55, 93–95) Other sources of toxicity data 

include computational (or in silico) models,(96) which do not necessarily require the use of 

dosimetry modeling and instead may be designed to predict effects based on exposures or 

absorbed doses.

Consideration of population differences in toxicity may also be needed to avoid 

underestimation of impacts for sensitive populations,(97, 98) and to better align with 

regulatory chemical management.(38) As the goal of LCIA is to be comparative, toxicity 

data used for effect factors are not derived from reference doses that have been adjusted for 

safety factors,(22, 63, 99) such as sensitive populations.(100) However, the incorporation of 

population sensitivity will likely be needed to reconcile LCIA with risk information.

Incorporating Risk Screening

The framework includes risk screening by calculating aggregate exposures in tandem to the 

LCIA calculations. The resulting information can help interpret implications of the dose–

response assumptions used in LCIA where a chemical is modeled in the absence of 

aggregate or cumulative exposure and generally assuming a linear dose–response function 

beginning at the origin.(22, 63, 101) In RA and risk screening approaches, dose–response 

may incorporate a dose limit (e.g., reference or threshold dose, or allowable daily limit) 

under which adverse effects are considered unlikely or unexpected to occur.(39, 102) A 

linear dose–response in RA traditionally applies to carcinogenic effects while a nonlinear, or 

threshold-based, dose–response has been traditionally employed for noncarcinogenic effects.

(39, 102–104) Thus, the treatment of noncarcinogenic effects in LCA differs from RA.(22) 

Based on these characteristics, current practice in LCA using a linear dose–response is 

commonly referred to as the “less is better” approach, while the traditional RA approach 

considering threshold doses(9, 51, 83, 101) has been referred to as an “only above 

threshold” approach.(36) This is one area where there is a clear difference between the 

information provided by RA and LCIA, and the framework proposes an integration of both 

approaches as a means to yield more informative assessments.(9, 25, 36)

The use of the linear dose–response in LCA was motivated by factors such as the 

nonspatially specific nature of inventory data and lack of background exposure data (i.e., 

exposures that the FU source adds to).(22, 25, 99) Additionally, its use can be advantageous 

as an “only above threshold” approach may not fully characterize the potential impact of a 

chemical, especially in the absence of information about the effects of chemical mixtures 

(i.e., cumulative exposure), future chemical sources or stressors contributing to backgrounds, 

or dose–response behavior at low doses.(39, 22, 63, 99, 101, 105) The linear dose–response 
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also allows for summation of impacts across a population in order to account for higher 

impacts when more people are exposed to a chemical. A disadvantage of the approach is that 

it may not adequately account for aggregate chemical exposures. For example, when 

comparing the impacts of two chemicals, the chemical with the smaller impact score could 

have an aggregate exposure above an RA-based dose limit, whereas the chemical with the 

larger impact score could have an aggregate exposure below a dose limit and actually pose a 

lower risk.

The incorporation of risk screening (Figure 1) draws from recent research using rapid 

exposure estimates and in vitro bioactivity data to prioritize and screen chemicals for risk.

(31, 54–56, 93, 95) The levels of risk can be evaluated by calculating a margin of exposure 

(i.e., ratio of bioactive dose to estimated dose(31, 34, 55, 106)) or by comparing 

probabilistic distributions of estimated or modeled aggregate exposures and bioactive doses 

to determine the degree of overlap.(34, 95, 107) However, the best way to use this additional 

information in LCIA modeling is not readily apparent without further analysis and 

hypothesis testing using case studies.

While there are a number of approaches that can be used to structure the risk-based 

information, one of the most significant choices may be deciding whether to include (a) all 

anticipated uses of a chemical or (b) all anticipated uses except for the product associated 

with the FU. Option (a) is similar to exposure estimates used in risk screening but does not 

give insight regarding the contribution of the product to the aggregated exposure. Option (b) 

provides an estimate of the background exposure to which the product functional use will 

contribute.

Option (a) could be used to provide additional screening information to LCIA by identifying 

chemicals with risks based on dose limits that do not have high CFs or impact scores using 

standard LCIA linear dose–response methods. Such screening may be useful for two 

reasons: (1) LCIs could be streamlined by prioritizing chemicals with higher risk or impacts 

for assessment, and (2) chemicals of higher risk that may typically be excluded from LCIs 

based on cutoff rules or low CF or impacts could be considered. This would be in alignment 

with the goals of the human toxicity impact category to screen chemicals for toxicological 

impacts.(22)

Another method would apply a scaling factor to the impact score as previously suggested by 

Potting et al.(36) Using option (b), a scaling factor could be applied to differentiate, for 

example, exposure regimes based on the contribution of the FU product to the aggregate 

exposure and the resulting proximity of the aggregate exposure to a dose limit. Such an 

approach would be consistent with the product-centric nature of LCA and is discussed 

further in the SI. Incorporating these risk-based estimates into LCA will allow not only 

consideration of the incremental exposures and effects from the use of a chemical in a 

product or service but also how such exposures may contribute to an individual’s total 

exposure and effects from a given chemical. The ultimate goal is to provide the practitioner 

with additional information on the likelihood of adverse effects.
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Case Study for LCIA with Risk-Based Screening

A simplified case study is used to gauge the feasibility of integrating selected pieces of the 

previously discussed tools and data to implement aspects of the conceptual framework. Both 

aggregate exposure and LCA impact scores were calculated to contrast the differences 

between FU-based and multisource exposure estimates. All calculations are demonstrative 

and rely on simplifying assumptions using default model parametrizations. Detailed 

information is provided in the SI.

Goal, Scope, and Functional Unit

The goal of the LCA was to assess the impact of near-field chemical exposure when 

considering the potential risk. The scope focused on exposure to one chemical of concern 

and included release of that chemical during use, manufacturing, and disposal. The selected 

product-chemical combination was 1,4-dichlorobenzene (p-DCB, CAS: 106–46-7) in a 

hanging air freshener. The FU was defined as one 160 g hanging air freshener used for 7 

weeks in a home.(108, 109) Aggregate exposure due to anticipated consumer uses was 

limited to p-DCB and did not include other chemicals associated with the product. Although 

the impacts of these other chemicals may be larger than those of the p-DCB releases (e.g., 

byproducts from manufacturing(110)), they were excluded because of the demonstrative 

nature of the case study.

Aggregate Exposure and Risk Screening

Total exposure aggregated across the considered sources was estimated by summing across 

exposure routes (inhalation, ingestion, dermal) and near- and far-field exposure pathways 

(Figure 2a). SHEDS-HT(28) was used to estimate population distributions of exposure 

(mg/kg/d) in the use-stage for p-DCB when considering all of its associated consumer 

products. The model uses input from the CPCPdb(74) and other sources(108, 111) to 

determine the product types in which the chemical is an ingredient and its composition in 

these products. The product form and usage determine how the chemical is released from the 

product and how various population groups are exposed via inhalation, dermal, and 

ingestion routes. Exposure to p-DCB released outdoors was estimated by combining 

individual intake fractions from USEtox v2.0(62) with the estimated manufacturing and out-

the-window releases. The total aggregate exposure estimate was compared to an oral 

equivalency dose (OED, mg/kg/d) derived from ToxCast(61)in vitro data,(95) consistent 

with risk screening approaches.(31, 55) The indoor inhalation exposure was also compared 

to a reference dose derived from in vivo data.(112)Figure 2a summarizes the steps, data 

sources, and models used to estimate the aggregate exposure to p-DCB.

Life Cycle Impact Assessment

Human health ISs were calculated for p-DCB using the USEtox v2.0 model,(62, 67) which 

includes CFs for p-DCB. USEtox recently incorporated an indoor inhalation iF model for 

indoor air emissions that is compatible with current LCIA methods(16) and includes intakes 

due to a chemical that has been vented outdoors, thereby coupling near-field and far-field 

exposure pathways into a single metric.(3, 11, 16)Figure 2b summarizes the steps, data 

sources, and models used to estimate impact scores for the FU.
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Results and Discussion

Case Study

For the aggregate exposure calculations, the estimated doses from the manufacturing and 

use-stage releases to the outdoors were 5 × 10–6 and 6 × 10–5 mg/kg/d, respectively. The 

mean estimated exposure via near-field exposure pathways in the use-stage was 0.03 (0.005–

0.1, 2.5th–97.5th percentiles) mg/kg/d (Table S5). The mean estimated exposure was 2 

orders of magnitude larger via the near-field as compared to the far-field pathways. 

Exposure to the FU product type (air freshener) contributed approximately 20% to the 

overall mean near-field exposure, meaning the aggregate exposure was dominated by the 

other consumer products containing p-DCB.

Risk-based screening approaches compare estimated exposures summed across intake routes 

(e.g., inhalation, dermal, and ingestion) to a bioactive dose (OED in this case). This is 

typically accomplished by calculating a margin of exposure (MOE), which is the ratio of a 

dose limit to the estimated dose.(31, 55, 95) The minimum OED for p-DCB from Wetmore 

et al.(95) is 3.2 mg/kg/d, yielding an estimated MOE of 110 (660–32) (mean, 2.5th–97.5th 

percentiles). This means the higher range of exposed individuals was estimated to be within 

an order of magnitude of the bioactive dose. An in vivo reference air concentration (RfC) of 

0.8 mg/m3, which has been adjusted to take sensitive populations and uncertainty into 

account, is also available for comparison to the estimated indoor air concentrations.(112) 

This yielded a mean MOE of 4 (14–1.4) and was within an order of magnitude for mean and 

high-end product user estimates. While the MOEs calculated in this case study were based 

on screening methods, they are consistent with other studies finding that p-DCB may pose a 

risk to some users.(113, 114)

LCA impact scores were calculated for each life cycle stage to better understand the 

exposure contributions (and summed over exposure routes and effects, for simplicity) from 

the near- and far-field. The near-field impact from the use-stage was 3–6 × 10–6 CTU 

(comparative toxicity units), which was the highest stage-based impact and approximately 

105–106 times larger than the corresponding far-field impacts from manufacturing (5 × 10–12 

CTU). The disposal-stage only contributed to impacts for the lower indoor emission scenario 

(2 × 10–8 CTU) and was 2 orders of magnitude smaller than the near-field impact. The 

difference in impact between the use and manufacturing stages was driven primarily by the 

large difference in inventory (Tables S7, S8), while the difference between the use and 

disposal stages was driven by the both the inventory and varying iFs (Tables S7, S8) given 

that the inventory to the disposal stage is a function of the indoor emissions. The impact 

scores were dependent on the length of use of the air freshener because it affected both the 

magnitude of release in the use-stage and the corresponding input to landfill.

Although impact scores were generated without introducing any new tools or concepts into 

the calculations, the case study allows for comparison of the LCA and risk-based 

perspectives, which can be meaningful for developing a more thorough interpretation of the 

impact scores. Both methods estimated that the use-stage had the highest human exposure 

potential and, therefore, the highest health impact or risk potential for p-DCB; results that 

have been previously demonstrated empirically.(115) The exposure screening step estimated 
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that some users of the air freshener, when considering all products containing p-DCB, may 

be exposed to p-DCB within an order of magnitude of screening toxicity doses. The 

traditional LCIA impact scores did not address background exposure, which was 

problematic in this example because the background exposure from other products 

contributed more to the estimated exposure than the FU product. This highlights how 

aggregate exposure estimates can provide more information if chemical toxicity is a 

criterion. For example, a product manufacturer may avoid a chemical in a product given the 

additional information that other sources of this chemical can lead to substantially higher 

exposures or those near dose limits. As some chemicals may have higher potential for 

impacts when exposure to all sources are taken into account, this additional information can 

be used to give a more complete picture of the risks associated with a chemical being 

assessed for use in a product. The addition of risk-based screening and aggregate exposure 

to LCA can be further applied to compare different air fresheners (or to other scenarios such 

as replacing the product with better cleaning(113)) to help determine which scenario is more 

favorable in terms of human toxicity while the sustainability of the alternatives can be 

captured through the other life cycle impacts (e.g., climate change, resource depletion, 

ecotoxicity, etc.).

While uncertainty was not addressed with the simplified calculations, risk-based screening 

can be performed with consideration of uncertainty and population variability. For example, 

SHEDS-HT estimates variability distributions of exposure in different population groups, 

and these distributions can be compared to distributions of dose limits.(34, 95) Ideally, 

exposure distributions would also take uncertainty into account alongside population 

variability. In the case of traditional CF development, probabilistic methods for intake 

fractions can be used to develop CF distributions based on uncertainty and variability, rather 

than point values. Uncertainty considerations are key inputs to interpretation of any 

screening-based approach. In the near-term there may be higher certainty associated with 

comparing or ranking chemicals rather than screening for absolute risk.

Isaacs et al.(28) provided detailed discussion about uncertainty and sensitivity of the 

SHEDS-HT model. They found the most sensitive parameters to estimated exposures were 

associated with the consumer product use variables, such as amount of product used, 

frequency of product use, and product composition, in addition to variables associated with 

hand-to-mouth exposures. Estimated exposures correlated well with biomonitoring data, and 

in most cases estimates were larger than biomonitoring values, which is generally favorable 

in screening methods in order to achieve conservative estimates. Isaacs et al.(28) noted that 

future research will be focused on improving quantification of the sensitive variables and 

quantifying and reducing uncertainty. Based on the sensitivity analysis of Isaacs et al.,(28) a 

major source of uncertainty in this case study was likely the consumer use scenarios of the 

products containing p-DCB. Thus, a better understanding of product ingredients(26) and 

product use patterns will ultimately lead to reductions in uncertainty in aggregate exposure 

estimates. Comparing differing methods to estimate aggregate exposure can also be used to 

better understand uncertainty by comparing differences in model outputs using different 

techniques and input data. Other methods to estimate aggregate exposure include using 

production volumes(31) and exposure heuristics.(29) Additionally, the results of SHEDS-HT 

and other mechanistic and statistical models are being incorporated into consensus model 
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predictions by EPA for use in risk-based chemical prioritization.(107) When jointly 

evaluated against exposures inferred from biomarker data using Bayesian approaches, both 

the predictive power of each model and the associated uncertainty in the predictions can be 

estimated. Within this evaluation framework, new or revised models can be evaluated for 

improved predictive ability and contribution to decreased uncertainty.

In the LCIA calculations, uncertainty was likely driven by the indoor intake fraction as this 

life cycle stage had the highest exposure potential. Uncertainty in the use-stage emission is 

likely lower as we calculated a range based on measured and modeled data. Uncertainty in 

CFs due to outdoor release from the USEtox model has been well characterized to be within 

a factor of 100–1000.(20) The uncertainty in the indoor iF may be lower than the outdoor iF, 

as a comparison of iFs estimated from three different indoor fate and exposure models(8, 75, 

77, 78) were within 1–2 orders of magnitude with each other.(31)

The case study identified potential obstacles for integrating LCA and aggregate exposure 

techniques. For example, the inventory modeling did not support development of full 

product near-field LCIs because of the lack of information regarding other chemical 

components in the product. Although several of the models, tools, data, and concepts needed 

for both screening and assessment are overlapping (Figure 2), their use was not harmonized 

or integrated here, leading to inconsistencies in their application. For example, SHEDS-HT 

estimates an indoor air concentration (see the SI) instead of using an iF approach where the 

iF is combined with an emission rate to yield an intake rate. While the SHEDS-HT and iF 

approaches estimate exposure based on mass-balance principles, they are applied in differing 

manners. As such, methods to automate and harmonize the use of these tools will be 

necessary to minimize resource needs for an integrated approach. In theory, the tools 

identified in this work can be integrated such that the same inventory data, models, and 

inputs will support them all. An advantage of the LCIA method is that the near- and far-field 

exposure pathways for release to indoor air are coupled, avoiding the need to calculate a 

separate inventory to the far-field during the use-stage.(11) This type of coupling can lead to 

improved aggregate exposure modeling methods that yield estimates of chemical fate and 

transport after a chemical has been released from a product.(11, 70)

Challenges and Recommendations

The case study presented here was an initial demonstration of the integration of high-

throughput aggregate exposure modeling techniques(28) into LCIA, specifically for near-

field sources. The framework presents several research opportunities and challenges to be 

addressed in order to achieve its long-term implementation.

Methodologically, the relationship between near- and far-field modeling in LCIA and the 

interpretation of these modeling approaches, should be carefully established. First, it is 

necessary to define the level of consistency that should be maintained regarding modeling 

choices for the two exposure categories. The near-field exposure models should be detailed 

enough to capture relevant exposure pathways associated with product-chemical 

combinations. As with any model development, there is a challenge to understand how to 

balance the desired level of detail within CFs with the appropriate level of uncertainty to 

support the intended decision. These issues should be explored further and may ultimately 
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yield chemical and product combinations for which simplifying assumptions may be valid 

and yield acceptable levels of uncertainty. It is likely that CFs will be developed using 

product archetypes, for example, there will be a different CF for a given chemical used in a 

household cleaner than when it is used in a personal care product or building material.(11) 

Additionally, near-field models used in LCIA should reconcile far- and near-field models to 

account for near-field releases that result in far-field exposure pathways,(3, 16, 70, 82, 116) 

and Fantke et al.(11) have recently proposed a modeling framework for this. The use of 

multisource or background ambient conditions should also be investigated and considered 

for far-field CF development. It is well-known that near- and far-field pathways for several 

persistent organic pollutants can both be important contributors to overall exposure.(85, 

117–121) This presents a challenge because it will require combining both types of 

exposures if taking multiple sources into account and will increase the data requirements for 

the accompanying risk screening step.

Regarding data needs, the estimation of inventory in both the near- and far-field will 

continue to be a challenge to both LCA and risk-based screening.(19, 39, 122, 123) For 

example, the collection and modeling of chemical composition of consumer products(30) 

and building materials will be a continuing need for incorporating near-field impacts in 

LCA. Although these challenges are generally recognized, it is worth emphasizing the need 

for continuously enhancing and extending methods for data collection and computationally 

based estimation if both approaches are to address the growing number of chemicals in 

commerce.(30, 124) Thus, a key research area will be to develop rapid techniques for near- 

and far-field inventory estimations. Furthermore, a key to developing the inventory will be 

ensuring the FU-based inventory and aggregate or multisource inventory are developed 

consistently.

Techniques to combine chemical usage, source, and inventory information for rapid 

aggregate exposure estimation(30) will be key inputs to incorporating risk-based screening 

into LCIA. Approaches to incorporate and interpret aggregate or background exposure with 

regard to calculating CFs and impact scores will require further evaluation. Regardless of the 

approach, the risk-based screening step will need to be performed periodically because the 

aggregate exposure will vary over time based on the activities of the exposed population and 

changes to source scenarios. Additionally, the incorporation of a risk-based screening step 

relying on exposure to a single chemical at a given point in time does not take effects of 

chemical mixtures (i.e., cumulative exposures) or future exposure scenarios into account.

(101) Ideally, LCA and risk assessment will be based on cumulative exposures.(39, 101, 

125) Research on this topic is ongoing,(125) for example by linking cumulative exposures to 

adverse outcome pathways,(126) and methods in LCA will need to be updated as advances 

are made.

The incorporation of population variability and population group considerations in exposure 

calculations should also be explored. As more emphasis is placed on topics like children’s 

health,(97) it will be important for LCA to provide this type of information. For LCA, this 

represents a shift from the traditional generic nature of the assessment to a more situation-

specific understanding of the impacts. Methods to adopt such concerns are already being 

developed through the introduction of spatial differentiation in far-field impact assessment.
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(127) However, these efforts may need to be extended to nonspatial determinants of 

exposure that integrate human choice and lifestyle differences into impact models.

The case study demonstrated that developing a viable framework to include near-field 

exposure modeling, HT exposure tools, and next-generation toxicology is challenging given 

the unique and overlapping data, models, and operational structures that present substantial 

complexity.(128) These conceptual differences present an operational challenge to the 

framework and will require harmonization across disciplines to properly identify linkages 

for integration, especially given the comprehensive nature of LCA and its need for data from 

several different disciplines. The interdisciplinary nature of the framework poses its own 

challenge because the roles of the associated research communities in supporting the 

framework will need to be clearly established. For example, it may not be practical for LCA 

practitioners to perform risk screening, requiring LCA, exposure, and toxicology researchers 

to collaborate on common “calculators” to be used across all fields.

The consideration and quantification of uncertainty in LCA(19, 129) and exposure/risk 

assessment(39, 130) poses the final and perhaps greatest challenge given its importance to 

decision making. Although it has been argued that uncertainty may not be a basis for 

exclusion of impacts in LCA studies,(131, 132) decision makers may be more confident 

applying LCA if the uncertainty has been properly characterized. Uncertainty in LCA can 

occur during the inventory; fate, transport and exposure modeling; and effects 

characterization(20, 39) and include both model and parameter/data uncertainty. For 

computationally based HT methods, there is an understanding that uncertainty will be larger 

than in higher tier methods because of the many required assumptions and data estimations.

(30, 31, 34) Fortunately, there are approaches to address uncertainty within each of these 

fields. Rosenbaum et al.(20) reported uncertainty for CFs based on differences across 

outputs of models used to develop the USEtox(62) model. This method could also be 

applied to the near-field.(31) HT aggregate exposure models are being developed and 

compared to biomonitoring data that provide a source for model evaluation and uncertainty 

quantification.(17, 28, 29) Uncertainty in hazard (e.g., toxicity) and dose–response 

relationships remains a challenge in both RA and LCA and is becoming more complex with 

the addition of novel data streams such as in vitro data.(20, 39) As progress is made in 

toxicology, especially given the growing amounts and reliability of in vitro(133) and in 

silico data, the framework should be updated with any resulting approaches. Ultimately, 

methods to quantify uncertainty should continue to be developed, given the continued 

uncertainties of exposure and toxicity models and data in the foreseeable future.

Although several challenges to the framework have been identified, the effort required to 

overcome these challenges should not outweigh the value of the framework. The framework 

provides a basis for the future development of software tools to combine LCA methods with 

near-field human exposure models and to allow for assessments across a wider range of 

chemicals and products, including emerging chemicals of interest. The assessments 

generated by these tools will allow for human toxicity impacts in LCA to be more consistent 

with typical regulatory decision making rooted in RA.(38, 39) Similarly this work will also 

support better consideration of life cycle stages(134, 135) and other chemical impacts in RA. 

Given the growing importance of sustainability, practitioners and decision-makers who 
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develop or apply LCA, chemical alternatives assessment,(35) and RA methodologies should 

find much value in the proposed framework.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Conceptual framework incorporating human exposures from use-stage near-field sources 

and high-throughput risk-based data into impact assessment. Black and magenta text 

indicates current practice and proposed inclusion in LCIA, respectively. Notes: *Exhaustive 

lists have not been included.
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Figure 2. 
Workflow used to calculate a) screening aggregate exposure to p-DCB and b) LCA impact 

scores for the functional unit (FU) using p-DCB. The diagram also details data sources and 

models used in the calculations. Blue shaded boxes indicate types of models or data needed 

for the calculations; red outlined boxes indicate actual data sources or models used, yellow 

shaded boxes indicate example data types used as input in the models. Gray outlined boxes 

indicate data streams that were not included in the case study but can be integrated in future 

work. Notes: The characterization factors and impact scores were aggregated across the 
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inhalation and ingestion exposure routes and cancer and noncancer effects. References: TRI 

(Toxics Release Inventory),(136) ToxCast,(61) Wetmore et al.,(95) IRIS (Integrated Risk 

Information System),(112) CDR (Chemical Data Reporting),(137) and CPCPdb.(74)
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