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Abstract

Atrial fibrillation (AF) is a common heart rhythm disorder that leads to an increased risk for stroke 

and heart failure. AF is a complex disease with both environmental and genetic risk factors that 

contribute to the arrhythmia. Over the last decade, rapid progress has been made in identifying the 

genetic basis for this common condition. In this review we provide an overview of the primary 

types of genetic analyses performed for AF including linkage studies, genome-wide association 

studies (GWAS) and studies of rare coding variation. With these results in mind, we aim to 

highlighting the existing knowledge gaps and future directions for AF genetics research.
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Introduction and Background

Atrial fibrillation (AF) is a common heart rhythm disorder with an estimated 33 million 

people affected worldwide[1]. Reported risk factors for AF include advancing age, obesity, 

hypertension, diabetes, and cardiovascular diseases[2]. Studies have also shown an increased 

risk for men to develop AF, compared to women[3]. As discussed in the accompanying 

article in this Compendium (formal reference provided by the journal), AF can lead to a 

number of serious medical consequences including stroke, heart failure, cognitive 

impairment, and increased mortality.

The treatment of AF remains challenging. While there are effective medications for 

anticoagulation to reduce the risk of stroke, antiarrhythmic medications are limited by lack 

of efficacy to reduce symptoms and have potential side effects. Alternatively, catheter 

ablation procedures can be effective in reducing the burden of AF, but these procedures are 
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invasive, can be associated with complications and may require a repeat procedure for the 

long-term management of AF. Thus, there is a pressing need to develop new therapies for 

AF.

Similar to other common cardiovascular diseases such as hypertension and myocardial 

infarction, AF is a complex disease with shared environmental and genetic factors that 

contribute to disease pathogenesis. Over the last decade, multiple studies have observed 

familial aggregation of individuals with lone AF[4]. Similarly, the heritability of AF has 

been elegantly demonstrated in the Icelandic population[5]. Based on a study on 

monozygotic twins the heritability of AF has been estimated as high as 62%, indicating a 

strong genetic component[6]. In aggregate these studies have consistently observed an 

increased risk of AF particularly when a first-degree family member is affected, and among 

individuals with early-onset forms of the arrhythmia[7]. In more recent work, Weng and 

colleagues used genetic data to estimate that the heritability of AF based on common genetic 

variants in individuals of European ancestry is approximately 22%[8].

In the current review, we will provide an overview of multiple approaches used to examine 

the genetic basis of AF. We will present the most relevant results from these analyses and 

discuss emerging technological advances that could be leveraged to expand our 

understanding of the field. We discuss three broad genetic approaches applied to AF 

including: 1) linkage analysis using families with Mendelian forms of AF, 2) genome-wide 

association studies (GWAS) studies using genotyping array data, and 3) coding variation 

from genome sequence data (Figure 1). These approaches are not mutually exclusive but are 

helpful as a framework to consider when reviewing the genetic studies of AF published to 

date. We will subsequently describe the application of GWAS data to clinical risk prediction. 

Finally, we will discuss the knowledge gaps in the field of AF genetics and describe 

emerging technologies that may shape the future of the field.

Three Broad Genetic Approaches Applied to AF

Familial AF and Linkage Analysis

Linkage analysis is typically performed in families with many affected individuals and a 

clear hereditary pattern. The analytic approach leverages genetic linkage or the tendency for 

a genetic marker near a disease-causing gene to be inherited together. The earliest 

application of this approach used a few hundred highly informative markers scattered 

throughout the genome. By matching transmission of the genetic marker with disease status 

in the family, a disease-causing region or locus can be linked to a given marker. In turn, the 

genes in this region can be sequenced to identify mutations that associate with disease. This 

approach has been elegantly used to identify many of the early genes implicated in 

hypertrophic cardiomyopathy and long QT syndrome. As summarized in Figure 2, a number 

of causative mutations for AF have been identified in large families or populations. Specific 

examples include the ion channel KCNQ1, the cardiac peptide NPPA, the transcription 

factor TBX5, and a motor protein MYL4.

The first mutation linked to familial AF was found in the ion channel KCNQ1, a gene that 

encodes the alpha subunit of the IKs current. The AF related mutations result in a gain of 
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channel function and likely shortening of the atrial refractory period, a finding that would 

make it easier for reentry to continue and increase the susceptibility to AF[9]. In a distinct 

family, a mutation was identified in NPPA, the gene encoding the atrial natriuretic peptide 

(ANP), a protein that is highly expressed in the heart[10]. A frame-shift mutation was found 

to remove a stop codon and lead to an extended mutant protein that had appeared to be 

protected from degradation resulting in greater circulating levels and increased activity[11]. 

In vivo experiments from the same study have shown that mutations in NPPA lead to a 

shortening of the monophasic action potential duration as well as the effective refractory 

period. These changes on atrial electrophysiology could increase susceptibility to AF.

A gain-of-function mutation in the transcription factor, TBX5, was associated with familial 

AF in the setting of Holt-Oram syndrome[12], a developmental disorder that leads to heart 

and limb malformations[13]. In vitro studies demonstrated that the mutated TBX5 had 

enhanced binding to DNA and could lead to up-regulation of downstream targets such as 

NPPA and CX40[12,14]. In a large-scale study of Icelanders, autosomal recessive mutations 

in MYL4 were identified among individuals with early-onset AF[15]. This atrial-specific 

myosin light chain was found to have a mutation in an F-actin binding region, and modeling 

the mutation in zebrafish resulted in disruption of the sarcomere and atrial enlargement.

Thus, individual families with hereditary forms of AF can be incredibly helpful in informing 

disease biology. However, the mutations identified to date are by nature rare and therefore 

have a small impact on the overall scope of this common arrhythmia.

Genome-Wide Association Studies for AF

In contrast to studies in families, GWAS permit the analysis of entire populations by 

comparing individuals with and without AF at a large scale. Each individual is genetically 

“fingerprinted” using a low cost, high throughput genotyping array. These arrays are used to 

determine the status of hundreds of thousands of genetic variants or single nucleotide 

polymorphisms (SNPs) throughout the genome. While individual SNPs contain relatively 

little information, in aggregate, the use of hundreds of thousands of markers can capture the 

majority of the genetic diversity between individuals. In order to compare the data from one 

genotyping platform to another, the data is imputed or harmonized to a common reference 

panel consisting of millions of genetic markers[16]. Comparisons of all the genetic markers 

are then made between cases and controls to identify regions associated with disease (Figure 

1, middle). Importantly, unlike the analysis in families in which a single causative mutation 

is identified, in GWAS a region or locus is linked to disease. This region may or may not 

contain any genes. Many causative variants identified by GWAS are in non-coding regions 

of the genome and have an effect on the regulation of a nearby gene. In recent years, the cost 

of genotyping arrays has fallen to less than $50 per individual so it is now feasible undertake 

large-scale studies of common diseases and studies with more than 100,000 cases are 

increasingly common. Large sample sizes help to both ensure the validity of the results and 

to define the full extent of the genetic basis of the disease.

The first GWAS for AF was reported in 2007 and remarkably started with only a few 

hundred AF cases in the initial discovery[17]. The small number of individuals needed in 

this first report was a reflection of the strength of the genetic association which is 
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considerably greater than that observed for most other genome wide studies. Carrying a 

single variant at this 4q25 locus near the gene PITX2 conferred over a 60% increased risk of 

disease in the general population and an even greater risk in younger individuals. As with 

many disease-associated regions identified by GWAS, the association with AF at the PITX2 
locus is in a non-coding region of the genome. As reviewed in other manuscripts in this issue 

(formal reference to be provided by the journal), the AF risk variants modulate the 

expression of PITX2 and loss of this region or the PITX2 gene itself can results in 

AF[18,19].

In the ensuing years, many other GWAS for AF have been completed in predominantly 

European ancestry participants[20–24]. Initially novel loci were identified at 16q22 close to 

the gene ZFHX3 and 1q21 close to the KCNN3[25–27]. In two recent studies that both 

included over 60,000 cases[28,29] nearly 140 AF loci have been identified to date (Table 1). 

While rapid progress has been made in AF genetics, it is important to note that the vast 

majority of participants are of European descent (Figure 3). The two largest non-European 

GWAS were published in 2017 and report results from Korean[30] and Japanese[31] 

cohorts. At least three variants for AF show significant heterogeneity across different 

ancestries (rs2129977 at PITX2, rs11598047 at NEURL and rs2359171 at ZFHX3). 

Additionally, while a signal at the PITX2 locus can be found across ancestries, the top 

variant is not always the same nor strongly correlated[28]. Two AF loci from a GWAS in 

Japanese ancestry, at the genes NEBL and SH3PXD2A, do not replicate in European 

ancestry and may be ancestry specific[31].”

Identifying genes at AF loci—Genetic variants identified in GWAS studies are largely 

located in non-coding regions of the genome. These non-coding variants are presumed to 

alter the activity of a transcriptional regulatory element such as an enhancer or repressor that 

in turn results in modifying the transcription of a nearby gene. Importantly, for most GWAS 

variants there is usually no straightforward path from an association by GWAS to a gene and 

a disease mechanism. A recent study used STARR-seq to identify regulatory elements and 

their target genes at multiple GWAS loci for AF. Further, they found that the loss of a 

regulatory element at the HCN4 locus led to reduced gene expression[32]. A myriad of 

analyses can follow a large scale GWAS ranging from computational analyses to the 

derivation of polygenic risk scores for AF risk prediction and the incorporation of GWAS 

data into other analyses (Table 2). In the subsequent sections we will touch on a few helpful 

approaches with respect to AF, but for other potential directions please also see these recent 

reviews[33–35]. One straightforward application of GWAS data is to perform a pathway 

analysis to evaluate the collective effect of the genetic association on different biological 

functions. Globally the AF associated genes represent distinct functional groups including 

those underlying cardiac development, cellular electrophysiology, cardiomyocyte 

contractility and structure[24,28,29]. A similar approach was taken in a GWAS of the 

Japanese population and implicated suppression of the mTOR signaling pathway in AF[36].

As noted above, a major challenge with GWAS is that the analyses usually identify a region 

of interest rather than a specific causative gene. Bridging the gap from variants to genes 

remains a major challenge in disease genetics, particularly for complex polygenic traits such 

as AF. One common and helpful approach is to use expression quantitative trait loci (eQTL) 
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mapping. An eQTL analysis links the genotype of a SNP at an AF locus to the expression of 

genes in the region. If an AF associated SNP is strongly linked to the expression of a single 

gene, that gene is likely to be the causative gene at the locus. While this approach is simple 

in theory, practically there are two primary limitations. First, eQTL analyses are often tissue 

specific. Although there are terrific publicly available resources such as GTEx or the 

Genotype-Tissue Expression project (https://gtexportal.org) that includes gene expression 

profiles from many tissues, unfortunately the cardiac analyses were limited to the left 

ventricle and right atrial appendage[10]. Recent work in the Cleveland Clinic Atrial Tissue 

Bank[22,37] and the Myocardial Applied Genomics Network[28] have addressed this 

limitation by investigating the gene expression profiles of left atrial tissue. A second 

limitation of using eQTLs is that it requires large sample sizes and this is not always 

possible when tissues are hard to obtain such as the left atrium or the pulmonary veins in the 

case of AF. Finally, while eQTLs are powerful, they only explain a fraction of the disease 

loci. For example, in the latest two GWAS of AF only 13% of the variants at AF loci could 

be linked to the expression of a single gene, and at 22% of AF loci the variants linked to one 

or more genes. These results are summarized in Table 1.

A complimentary approach to eQTL analyses is to use the three-dimensional architecture of 

the genome to identify causative AF genes. Since many AF SNPs are in non-coding regions 

of the genome, they are presumed to alter regulatory elements such as enhancers or 

repressors that in turn bind to the promoter of a nearby gene to regulate its expression. The 

contact points between AF associated regulatory elements and gene promoters can be 

assessed genome-wide using chromosome conformation capture technologies such as HiC. 

Similar to eQTL analyses, enhancer-promoter contacts can be tissue specific and a recent 

HiC study from the human heart roughly doubled the number of AF associated genes 

derived from GWAS data[38]. Other analyses of AF GWAS data such as the incorporation of 

multi-omic datasets[39] or epigenetic analyses including STARR-seq[40] are described in 

detail in the accompanying review by XX and colleagues (formal reference to be provided 

by the journal). Ultimately, though any gene implicated by these methods will require 

further validation in vitro and in vivo.

Assessing polygenic risk from GWAS—Since we now have very dense GWAS 

datasets for AF, it is natural to wonder whether this data could be used to in a clinical setting 

to identify high risk individuals, stratify screening efforts or look for differential treatment 

outcomes. The polygenic nature of AF as captured in GWAS can be transformed into a 

genetic risk score for each individual. An AF polygenic risk score (PRS) summarizes the 

cumulative genetic risk and can be computed using anywhere from just a few variants at the 

top loci or the data from millions of SNPs across the entire genome (Figure 4).

An initial AF PRS scores used the top 12 genome-wide significant genetic variants[41], 

while more contemporary iterations that incorporate over 6.6 million variants[42]. In the 

later approach, the top 1.5% individuals with a high PRS had a more than a 4-fold increased 

risk for AF. The variants and weights included in the latest AF PRS are publicly available 

(http://broadcvdi.org). In one interesting application of an AF PRS, Weng and colleagues 

found that individuals in the highest tertile of polygenic risk had a higher lifetime risk for 

AF (47%) compared to the individuals in the lowest tertile (26%)[43]. The combination of 
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clinical and genetic data permitted additional refinement of risk. For example, individuals 

with a low clinical risk but a high genetic risk had an overall lifetime risk for AF of 44%. A 

complementary review in this Compendium focuses on the potential clinical applications of 

AF genetics and polygenic risk scores (formal reference to be provided by the journal).

Exome and genome sequencing to identify AF genes

While GWAS has been deployed at great scale, a major limitation of the method is that it is 

only able to capture known variants in the genome. Yet many diseases arise from unique 

mutations in the coding region of genes that arise spontaneously in an individual of family. 

While these mutations can be identified using a targeted approach of a single or small 

number of genes, the availability of genome wide approaches has largely replaced these 

earlier studies. Currently, it is possible to sequence the entire protein-coding region of the 

genome for about $200 or the entire genome for less than $800, and prices are continuing to 

fall. These technological advancements and price reductions have started to enable the 

application of large scale sequencing studies for AF.

Once a population of cases and controls has been sequenced, common genetic variants are 

analyzed using the approach previously described for GWAS. In contrast, rare coding 

genetic markers, often defined as present in less than 1% of the population, are analyzed in 

gene-based tests. For a gene-based test, coding variants are analyzed jointly across a gene 

unit for an association with disease, as depicted in Figure 1. The most commonly used 

approach restricts the analysis to variants predicted to lead to a loss-of-function of the 

encoded protein. A considerable advantage of testing rare loss-of-function variants over 

GWAS is establishing a direct link from gene function to disease. In addition, this analysis 

provides a clear direction of effect between loss-of-function of the encoded protein and 

disease. While many sequencing analyses focus on loss-of-function variants, it is important 

to note that gain-of-function mutations such as those identified in families with TBX5 or 

KCNQ1 would not be identified with this approach.

In 2017 Thorolfsdottir and colleagues analyzed whole-genome sequencing data from the 

Icelandic population including 14,255 AF cases and 374,939 controls[44]. The Icelandic 

population provides a unique resource for genetic discovery, because it is a relatively 

homogeneous and genetically isolated population that is enriched with rare loss-of-function 

coding variants. The study identified a low-frequency missense mutation in the gene PLEC 
that encodes the cytoskeletal protein plectin. The missense mutation in PLEC is associated 

with increased risk for AF. Additionally, a missense mutation in the myosin gene MYH6 
was significantly associated with AF, a gene that has previously been associated with sick 

sinus syndrome[45].

Within the last two years, at least four studies have identified loss-of-function mutations in 

TTN among individuals with AF. Ahlberg and colleagues found an enrichment of loss-of-

function mutations in TTN among families and individuals in Denmark with early-onset 

AF[46]. Shortly thereafter, Choi and colleagues observed a similar finding among unrelated 

individuals with early-onset AF. Using nearly 2,800 AF cases and 5,000 controls, they found 

that TTN loss of function mutations were present in ~2% of individuals with an onset of AF 

before 65 years of age[47]. With younger ages of onset, the frequency of TTN mutations 
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rose to a high of over 7% of individuals younger than 30 years of age. As with dilated 

cardiomyopathy, the association between TTN and AF had a stronger effect when the 

analysis was restricted to TTN exons that were highly expressed in cardiac tissue.

While these studies pointed to an increased frequency of TTN mutations in individuals with 

early-onset AF, the question then arose whether TTN mutations were detectable in the 

general population with AF. To address this, Choi and colleagues used exome sequencing 

data in 1,400 AF cases and more than 40,000 controls from the UK Biobank. They observed 

a similar strong association between loss-of-function variation in TTN and AF[48]. Further, 

the penetrance of AF among TTN mutation carriers was markedly higher among individuals 

with an increased AF polygenic risk.

Future Directions in AF Genetics

While rapid progress has been made in our understanding of the genetic basis of AF over the 

last decade, it is important to realize that we are currently in the midst of an explosive 

growth in the scale of genetic data available worldwide. In the following sections we have 

sought to put these emerging resources in the context of future potential studies in AF 

genetic research (Figure 5). While there are many other potential avenues of exploration, 

hopefully this will serve as a broad framework for the reader.

Expanding genetic studies in non-Europeans

As poignantly illustrated in Figure 4, the vast majority of genetic analyses for AF have been 

performed in individuals of European descent. The historical tendency to focus on European 

populations has led to a non-representative distribution of ancestries in genetic studies 

compared to the real-world diversity. As we move forward it will be critical to expand our 

genetic resources throughout the world, not only for AF, but for all common diseases. 

Expanding beyond Europeans has two primary advantages. First, it is clear that there are 

unique lessons that can be learned about common diseases among different races and 

ethnicities. For example, in a large Japanese GWAS for AF, only 85% of the top hits 

overlapped with the results from individuals of European ancestry. Second, as we think 

about applying genetic risk scores to clinical care, it will be important that we don’t blindly 

apply a score developed in Europeans to other races and ethnicities. Such an approach may 

further exacerbate health care disparities[49].

Multiple programs in the United States are trying to address some of the disparity in genetic 

research including the NHLBI TOPMed Program (www.nhlbiwgs.org), Million Veteran 

Program (www.mvp.va.gov), and All of Us (www.allofus.nih.gov). The All of Us project is 

an ongoing longitudinal collection of over 1 million individuals and is being intentionally 

structured to ensure ethnic and racial diversity. The expansion of biobanks throughout the 

world including in China (www.ckbiobank.org), India[50] and Africa (https://h3africa.org) 

will also be essential to this effort.

Sequencing, sequencing, and more sequencing

An exciting development in AF genetics has been the continued expansion of the availability 

of exome and genome sequencing. As discussed above, the major advantage of sequencing 
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over GWAS is that sequencing directly implicates the gene as causally related to AF. There 

are multiple international efforts that will coalesce to enhance our understanding of common 

disease genetics. These include ongoing work in the UK Biobank, deCODE, Estonia, 

Finland, Japanese Biobank, Million Veterans Program, the NHGRI CCDG and NHLBI 

TOPMed Programs among many others. As a result, within the next two years we can 

anticipate having datasets for AF consisting of more than 50,000 cases with either exome or 

genome sequencing. The power of such large datasets was nicely illustrated for autism 

where many additional disease-causing genes were identified with the enhanced power of 

these large-scale studies[51].

The utility in harnessing sequence data for AF can perhaps be exemplified best by the 

investigators at deCODE genetics[52]. The Icelandic population is relatively homogenous 

and can be traced back to a small set of common ancestors, making it one of the few 

bottleneck populations present in the current day world. The resulting enrichment for rare 

mutations can manifest in naturally occurring genetic knockouts in humans[53]. The 

uniqueness of the population structure combined with extensive whole genome sequencing 

has already led to the identification of multiple new AF genes. Similarly, in the coming 

years, sequencing of other bottleneck populations such as Finland[54] and Sardinia[55] will 

be a valuable resource for studying common diseases including AF.

Structural variation from whole-genome sequencing

Beyond gene-based tests, it is also clear that current whole-genome sequencing datasets have 

not been utilized to their fullest potential. Structural variants such as inversions, 

duplications, translocations as well as large deletions and insertions may be associated with 

AF. It has been estimated that structural variants can have a larger than expected impact on 

the genomic differences between individuals[56]. Identification of these structural 

modifications from the raw sequencing data is more challenging than identifying single 

variants, short insertions or short deletions. It requires data re-processing and the application 

of specialized algorithms to the sequencing data. To date, no single method can identify 

every type of structural variant with high confidence[57]. This suggests that a combination 

of methods may generate the highest yield. Structural variants can have a large impact on the 

function of genes and have been associated with diseases such as cancer[58], and complex 

diseases including Crohn’s disease, rheumatoid arthritis, diabetes[59]. We can anticipate that 

the systematic assessment of structural variation will identify novel genetic mechanisms for 

AF.

Expanding gene expression and epigenetic analyses to tissues relevant to AF

To move from associations to mechanisms for the AF GWAS loci, it will be essential to 

expand our repertoire of disease relevant eQTL and epigenetic datasets. Currently there are 

modestly sized transcriptional datasets from the human left atrium and very limited data 

from pulmonary venous tissues. Expanding these data from the 100–200 available samples 

by an order of magnitude will dramatically increase the availability of eQTLs that link AF 

disease variants to causative genes.
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It will also be essential to move beyond the analyses of bulk tissues and to focus on the 

analyses of single cells for transcriptional and epigenetic profiling[60], techniques which 

have only rarely been applied to AF to date. Recent work by Tucker and colleagues in which 

they performed single nucleus RNA sequencing of the healthy human heart provides an 

example of the benefit from this approach. In a study of nearly 280,000 single nuclei from 

the four chambers of the human heart, a number of findings emerged that are relevant to AF. 

They were able to identify at least 10 major cell types in the heart, chamber specific 

transcription in non-myocyte populations, and an cardiomyocyte enrichment of the genes at 

AF GWAS loci[61].

A logical extension of this work will be to compare the single cell transcriptional and 

epigenetic profiles of left atrial and pulmonary vein samples from AF cases versus controls. 

These results would also enable the discovery of changes of the cellular compositions, 

transcription and cell type specific eQTLs in AF versus healthy individuals.

Developing large scale functional screens for AF genes

Even with additional expression and epigenetic datasets, it will be critical to expand our 

throughput for the functional assessment of the genes at the AF GWAS loci. The current 

state of our AF GWAS results can illustrate the scope of the problem. At present there are 

close to 140 genetic loci for AF and within these loci there are more than 1000 genes or 

transcripts. Of these many loci, only a minority have a single gene that can be convincingly 

linked by eQTL or HiC analyses. This disconnect between our expansive knowledge of 

disease associated variants and limited understanding of the mechanisms, is not unique to 

AF, but is present for essentially all common diseases.

To help address this challenge, the International Common Disease Alliance was founded in 

2019. This partnership between academia, governments, pharmaceutical and technology 

companies is a collaborative initiative with the goal to improve diagnosis, prevention and 

treatment of disease through accelerating research that focuses on translating genetic 

findings into disease biology. While a lofty goal, the implementation of high throughput 

functional studies to elucidate the missing link between non-coding genetic variants, causal 

gene and gene function was identified as one of the key priorities by this effort 

(www.icda.bio).

How could such functional screens be implemented for AF? It will clearly be impossible to 

characterize more than a small number of mouse or even zebrafish models and as a result, 

we will have to turn to cell-based models as an intermediate step. While cell-based models 

have many potential limitations, the scale of screening is the primary strength of this 

approach. Combining stem cell derived cardiomyocytes and CRISPR-Cas9 technology will 

facilitate high throughput gene knockout studies for cellular assays. Potential cell readouts 

could include electrophysiological measurements of calcium signaling or action potential 

duration[62,63], structural assessments of sarcomere assembly[64], contractility[65] and 

transcription[66,67]. Given that current AF GWAS loci represent a cross section of 

transcription factors, ion channels and sarcomeric proteins, cell-based screening will likely 

require multiple readouts.
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It will also be important that more consideration is given to the development of cell models 

that more fully recapitulate the diverse etiologies of AF. For example, there are at least 10 

major cell types in the human atria and the study of myocytes will not be helpful if an AF 

gene is predominantly expressed in another cell type such as fibroblasts[68] and in a cell 

subtype arising from the conduction system or pulmonary veins.

Implementing machine learning to identify endophenotypes of AF

The rapid evolution in machine learning methods has already started to transform the 

medical field. The availability of multi-dimensional datasets ranging from electronic health 

records, imaging data, clinical measurements and genetics is providing the basis for 

algorithm-based clinical research that has the power to improve risk prediction, response to 

treatment and clinical diagnostics for AF. Particularly exciting recent work has applied 

machine learning to the electrocardiogram to identify subclinical markers or 

endophenotypes that predict the future development of AF[69,70]. In the future it will be 

interesting to study the genetics of these AF endophenotypes and to use machine learning to 

enhance the prediction of loss-of function impact of coding variants[71]. Further, it is clear 

that novel computational approaches will be required to integrate the existing and emerging 

data sources in AF genetics. Predicting the most likely causal genes at an AF GWAS locus 

or identify gene networks relevant for AF will require the integration of large data sources. 

The combination of GWAS results with gene expression profiles, proteomics data, protein-

protein interaction networks, methylation data, regulatory regions and spatial organization of 

the DNA requires efficient computational solutions that can deal with multi-dimensional 

data. For a broader discussion on this topic please see the accompanying review in this 

Compendium (formal reference to be provided by the journal).

Conclusions

AF is a complex disease with a combination of both environmental and genetic factors that 

contribute to the pathogenesis of the arrhythmia. Rapid progress has been made in 

identifying many common variant loci in GWAS for AF, yet major challenges remain in 

moving from disease associations to specific mechanisms. Recent genome and exome-based 

sequencing studies have identified TTN as the gene most commonly associated with 

mutations in individuals with AF. Future studies will seek to explore the application of 

polygenic risk scores to clinical care, build out genetic studies in non-European populations, 

and further expand single cell sequencing and omic technologies in cells and tissues relevant 

to AF. Further refinement of the genetic basis of AF will ultimately facilitate the 

identification of new therapeutic targets and enable more precise risk stratification for this 

common arrhythmia.
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Non-standard Abbreviations and Acronyms

AF Atrial fibrillation

BRA Brazilian

eQTL Expression quantitative trait locus

EUR European

GWAS Genome-wide association study

HISP Hispanic

JAP Japanese

KOR Korean

LOF Loss-of-function

PRS Polygenic risk score

RNA Ribonucleic acid

SNP Single nucleotide polymorphism

STR Short tandem repeat
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Figure 1. Three primary types of genetic analyses for AF
Linkage analyses primarily focus on large families with hereditary forms of AF. The disease 

associated linked regions can include multiple candidate genes one of which will contain a 

disease causing mutation. GWAS analyses are based on genotype array data that consists 

largely of non-coding variants that are presumed to regulate genes in the region or locus. 

Analyses of coding variation are derived from whole-exome or whole-genome sequencing 

data. Rare coding or loss-of-function variants are grouped and jointly tested in AF cases 

versus controls to identify specific disease-causing genes. Please note that these approaches 

are not mutually exclusive and are often combined depending upon the study design.

Abbreviations: AF, atrial fibrillation; GWAS, genome-wide association study; LOF, loss-of-

function; SNP, single-nucleotide polymorphism; STR, short tandem repeat.
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Figure 2. Major AF-associated genes and lines of evidence
The figure illustrates AF-associated genes that were discovered through family based or 

gene-based studies. For each gene the lines of evidence are listed. The table includes the 

evidence from familial AF genetic analysis, whether coding variants in the gene are 

associated with AF, if the gene lies within an AF GWAS locus, whether loss-of-function 

variation is associated with AF, and functional evidence that has been reported for the gene 

in the context of AF.

Abbreviations: AF, atrial fibrillation; GWAS, genome-wide association study.
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Figure 3. Ancestry of the cases in genome-wide association studies for AF
European ancestry sample is plotted towards the left in white and non-European ancestry is 

plotted towards the right highlighted in different colors. Plotted is the number of cases 

included in each published AF GWAS study or meta-analysis. 10 out of 12 studies include 

predominantly European ancestry samples, shown in white. Two studies are Japanese only 

and Korean only. Within the multi-ancestry meta-analyses Roselli et al.[28] included the 

largest proportion of non-European cases including Japanese, Brazilian, African American 

and Hispanic samples.

Abbreviations: AF, atrial fibrillation, AFR, African-American, BRA, Brazilian, EUR, 

European, HISP, Hispanic, JAP, Japanese, KOR, Korean.
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Figure 4. Overview of polygenic risk scores (PRS) for AF
A polygenic risk score is calculated for each individual as a sum of the product of genetic 

dosage and a weight. The weights are derived from the effect estimates of a genome-wide 

association study. The PRS of individuals in a population follows a Gaussian distribution. 

Individuals in the highest percentile of the distributions show an increased risk for AF versus 

the remaining population. Potential applications of an AF PRS can include improving risk 

prediction, prioritizing high risk individuals for screening, and examining differential 

outcomes of AF.

Abbreviations: AF, atrial fibrillation, PRS, polygenic risk score.
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Figure 5: Future directions in AF genetics
Overview of emerging technologies and analyses that could shape the field of AF genetics 

for the next decade. Large-scale rare coding sequence data: With dropping sequencing costs 

large-scale exome sequencing data sets will become available and accelerate the detection of 

rare and ultra rare coding variation that associate with AF. Structural genetic variation: 

whole-genome sequencing data allows the detection of structural variation such as 

inversions, translocations and large insertions and deletions. Methods to detect structural 

variation are improving and could lead to uncovering novel structural variant contributions 

to AF. Polygenic risk for diverse ethnicities: Increasing the contribution of non-European 

samples in AF GWAS will improve the polygenic risk prediction for diverse ethnicities. 

Functional cellular knockout assays: Gene knockout studies in relevant cell types, such as 

atrial cardiomyocytes, will enable the evaluation of AF candidate genes from GWAS loci in 

the context of functionally relevant readouts. Single cell RNA-sequencing: Next generation 

sequencing technologies such as the transcriptional profiling of individual cells from cardiac 

tissue will transform AF genetics and increase the resolution of gene expression profiles to a 

cell type specific level. Cell type specific expression quantitative trait loci could resolve the 

causal gene at AF GWAS loci. Machine learning on big data: Machine learning can facilitate 

the integration of big data sources such as gene expression profiles, proteomics data, protein-

protein interaction networks, methylation data, regulatory regions and spatial organization of 

the DNA. Machine learning algorithms will support the goal to identify causal genes for AF, 

resolve regulatory mechanisms at AF GWAS loci and uncover patterns that imply disease 

mechanisms of AF.

Abbreviations: AF, atrial fibrillation, LOF, loss-of-function, RNA, ribonucleic acid.
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Table 1.

To date there are at least 138 AF loci identified in single variant testing with P-value < 5 × 10−8. The table 

below includes the most significant variant at each locus from the latest AF GWAS publications by Roselli et 

al.[28] or Nielsen et al.[29]. The listed genes are either the nearest gene(s) or the eGene. The eGene is defined 

as a gene with an eQTL to the variant at an AF GWAS locus and is highlighted in bold. The eGene is listed 

when it is the only eGene at that locus. Notably, only 18 out of 138 variants are associated with only one 

eGene.

Rsid Nearest Gene(s) or eGene Rsid Nearest Gene(s) or eGene Rsid Nearest Gene(s) or eGene

rs187585530 UBE4B rs716845 KCNN2 rs1822273 NAV2

rs880315 CASZ1 rs2012809 FBN2, SLC27A6 rs949078 SORL1, MIR100HG

rs7529220 HSPG2, CELA3B rs34750263 WNT8A, NME5 rs76097649 KCNJ5

rs2885697 SCMH1 rs174048 ARHGAP26, NR3C1 rs6490029 CUX2

rs11590635 AGBL4 rs12188351 SLIT3 rs10842383 LINC00477, BCAT1

rs56202902 FAF1 rs6882776 NKX2–5 rs113819537 SSPN

rs146518726 C1orf185 rs73366713 ATXN1 rs12809354 PKP2

rs12044963 KCND3 rs34969716 KDM1B rs7978685 NACA

rs4484922 CASQ2 rs1307274 C6orf1, NUDT3 rs35349325 BEST3

rs79187193 GJA5 rs3176326 CDKN1A rs11180703 KRR1, PHLDA1

rs11264280 KCNN3, PMVK rs6907805 CGA, ZNF292 rs883079 TBX5

rs72700114 METTL11B, LINC01142 rs210632 GOPC rs12810346 TBX5-AS1, TBX3

rs608930 GORAB, PRRX1 rs17079881 SLC35F1 rs10773657 HIP1R

rs10753933 PPFIA4 rs13191450 GJA1, HSF2 rs12298484 DNAH10

rs4951261 NUCKS1 rs12208899 LINC00326, EYA4 rs6560886 FBRSL1

rs6546620 KIF3C rs117984853 UST rs9580438 LINC00540, BASP1P1

rs6742276 XPO1 rs11768850 SUN1 rs35569628 CUL4A

rs2540949 CEP68 rs55734480 DGKB rs28631169 MYH7

rs10165883 SNRNP27 rs6462078 CREB5 rs2145587 AKAP6

rs72926475 REEP1, KDM3A rs74910854 PMS2P2 rs73241997 SNX6,CFL2

rs28387148 GYPC rs11773884 CDK6 rs2738413 SYNE2

rs67969609 TEX41 rs62483627 COG5 rs74884082 DPF3

rs12992412 MBD5 rs11773845 CAV1 rs10873299 LRRC74, IRF2BPL

rs56181519 WIPF1 rs55985730 OPN1SW rs147301839 MYZAP

rs35504893 FKBP7 rs7789146 KCNH2 rs62011291 USP3

rs295114 SPATS2L rs35620480 LINC00208, GATA4 rs12591736 TLE3, UACA

rs35544454 ERBB4 rs7508 ASAH1 rs74022964 HCN4, REC114

rs6810325 MKRN2 rs7846485 XPO7 rs12908004 LINC00927, ARNT2

rs73032363 THRB rs62521286 FBXO32 rs12908437 IGF1R

rs6790396 SCN10A rs35006907 MTSS1, LINC00964 rs2286466 RPL3L

rs2306272 SLC25A26 rs7460121 MIR30B rs2359171 ZFHX3

rs17005647 FRMD4B rs6993266 PTK2 rs7225165 YWHAE, CRK
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Rsid Nearest Gene(s) or eGene Rsid Nearest Gene(s) or eGene Rsid Nearest Gene(s) or eGene

rs7632427 EPHA3 rs4977397 SLC24A2, MLLT3 rs8073937 POLR2A, TNFSF12

rs17490701 PHLDB2 rs4385527 C9orf3 rs72811294 MYOCD

rs1278493 PPP2R3A rs4743034 ZNF462 rs11658278 ZPBP2

rs4855075 GNB4 rs10760361 PSMB7 rs242557 MAPT

rs60902112 XXYLT1 rs2274115 LHX3 rs76774446 GOSR2

rs9872035 PAK2 rs2296610 NEBL rs7219869 KCNJ2, CASC17

rs3822259 WDR1 rs7919685 NRBF2 rs12604076 CYTH1

rs1458038 PRDM8, FGF5 rs7096385 SIRT1 rs9953366 SMAD7

rs3960788 UBE2D3 rs60212594 SYNPO2L rs8088085 MEX3C

rs2129977 PITX2, C4orf32 rs11001667 C10orf11 rs2145274 CASC20, BMP2

rs55754224 CAMK2D rs1044258 C10orf76 rs7269123 C20orf166

rs10213171 ARHGAP10 rs11598047 NEURL rs2834618 LOC100506385

rs10520260 HAND2-AS1 rs2047036 SH3PXD2A rs465276 TUBA8

rs6596717 LOC102467213, EFNA5 rs10749053 RBM20 rs133902 MYO18B
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Table 2.

Overview of studies that integrated AF GWAS data with other clinical, epigenetic or genetic datasets.

Study type Description and reference

Mendelian Randomization

Obesity [72]

Thyroid Function [73]

Serum albumin [74]

Body mass index/body composition and cardiovascular conditions including AF [75]

Body composition [76]

Methylation
Genome-wide DNA methylation analysis [77]

Methylome-wide Association Study [78]

Heritability Heritability of AF [8]

Ancestry specific analyses European ancestry as a risk factor for AF [79]

AF recurrence after ablation Common variants predict AF recurrence [80]

Genetic Interaction
Gene-gene interactions [81]

Genetic interactions with risk factors [82]

Associations with Mitochondrial DNA Mitochondrial DNA and Incident AF [83]
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