Skip to main content
. 2020 May 27;20(2):727–735. doi: 10.3892/etm.2020.8797

Table III.

Performance evaluation of the current literature and the proposed transfer learning model in terms of binary (COVID vs. pnemonia), ternary (normal, COVID, pnemonia), quaternary (normal, COVID, bacterial pnemonia, viral pnemonia) classification.a

Type % ACC SEN SPC AUC
Binary
     Proposed 100±1.0 99±2.0 100±0.0 100±0.0
     Zhang et al (14) - up to 96 70.6 95.1
     Narin et al (15) 98.0 96.0 100.0 -
     Afshar et al (17) 98.3 80.0 98.6 -
     Khalifa et al (19) 98.7 98.7 98.7 -
     Apostolopoulos et al (22) 96.7 98.6 96.46 -
     Chowdhury et al (37) 98.3 96.7 100.0 99.8
Ternary
     Proposed 85±7.0 94±6 92.7±7.6 96±2.0
     Wang et al (16) 92.6 91.3 - -
     Abbas et al (18) 95.1 97.9 91.8 -
     Ucar et al (21) 98.2 - 99.1 -
     Apostolopoulos et al (22) 94.7 - - -
     Chowdhury et al (37) 98.3 96.7 99.0 99.0
Quaternary
     Proposed 76±8.0 93±9 91.8±7.6 93±3.0

aThe metrics are presented in mean ± standard deviation format, regarding the COVID-19 class for each case. The best performance is presented in bold. ACC, accuracy; SEN, sensitivity; SPC, specificity; AUC, area under the curve.