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Abstract

A pressing need exists for antigen-specific immunotherapies (ASIT) that induce selective 

tolerance in autoimmune disease while avoiding deleterious global immunosuppression. 

Multivalent soluble antigen arrays (SAgAPLP:LABL), consisting of a hyaluronic acid (HA) linear 

polymer backbone co-grafted with multiple copies of autoantigen (PLP) and cell adhesion 

inhibitor (LABL) peptides, are designed to induce tolerance to a specific multiple sclerosis (MS) 

autoantigen. Previous studies established that hydrolyzable SAgAPLP:LABL, employing a 

degradable linker to codeliver PLP and LABL, was therapeutic in experimental autoimmune 

encephalomyelitis (EAE) in vivo and exhibited antigen-specific binding with B cells, targeted the 

B cell receptor (BCR), and dampened BCR-mediated signaling in vitro. Our results pointed to 

sustained BCR engagement as the SAgAPLP:LABL therapeutic mechanism, so we developed a new 

version of the SAgA molecule using non-hydrolyzable conjugation chemistry, hypothesizing it 
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would enhance and maintain the molecule’s action at the cell surface to improve efficacy. ‘Click 

SAgA’ (cSAgAPLP:LABL) uses hydrolytically stable covalent conjugation chemistry (Copper-

catalyzed Azide-Alkyne Cycloaddition (CuAAC)) rather than a hydrolyzable oxime bond to attach 

PLP and LABL to HA. We explored cSAgAPLP:LABL B cell engagement and modulation of BCR-

mediated signaling in vitro through flow cytometry binding and calcium flux signaling assays. 

Indeed, cSAgAPLP:LABL exhibited higher avidity B cell binding and greater dampening of BCR-

mediated signaling than hydrolyzable SAgAPLP:LABL. Furthermore, c SAgAPLP:LABL exhibited 

significantly enhanced in vivo efficacy compared to hydrolyzable SAgAPLP:LABL, achieving 

equivalent efficacy at one quarter of the dose. These results indicate that non-hydrolyzable 

conjugation increased the avidity of cSAgAPLP:LABL to drive in vivo efficacy through modulated 

BCR-mediated signaling.

Graphical Abstract

Keywords

antigen-specific immunotherapy; autoimmune; conjugation; multivalent; binding; signaling

INTRODUCTION

Autoimmune diseases such as multiple sclerosis (MS) are typified by a breakdown of 

healthy immune regulation and subsequent misrecognition of self for non-self.1–2 The 

autoimmune breakdown in MS is largely propagated by autoreactive T and/or B cell clonal 

expansion and attack against myelin sheath autoantigens, leading to demyelination and 

neurodegeneration.3–6 Activation of naïve T cells against autoantigen requires two signals 

from an antigen presenting cell (APC): (1) primary antigenic signal delivered through the 

major histocompatibility complex (MHC) on the APC to the T cell receptor (TCR) on the T 

cell, and (2) secondary costimulatory signal (i.e., CD80/CD86) delivered to the cognate 

receptor (i.e., CD28) on the T cell.7–15 B cells, as professional APCs that possess antigen 

specificity and immunological memory, play a particularly pivotal role in immune 

regulation.16–18 Indeed, loss of B cell tolerance has been implicated in numerous 

autoimmune diseases.19–21 Autoimmune therapies targeting B cells have been successful in 

treating MS (i.e., rituximab), but general B cell depletion or inactivation may induce global 

immunosuppression, trigger adverse side effects, and suffer from limited efficacy.22–24 

Development of an antigen-specific immunotherapy (ASIT) that targets and silences 

autoreactive B cells in a selective manner would address an important need for safer and 

more effective treatment.25–27
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Modulation of B cells in a direct, antigen-specific manner requires targeting of the B cell 

receptor (BCR).18 Antigen binding to the BCR can trigger receptor clustering and antigen-

specific B cell activation.28–32 However, continuous antigen binding and occupation of the 

BCR in the absence of secondary costimulatory signals results in B cell anergy, or a state of 

antigen unresponsiveness, that is marked by reduced calcium signaling27,33–35 Induction of 

B cell anergy can have a two-fold therapeutic effect by inducing (1) an effector B cell 

population that is not responsive to autoantigen and (2) B cells with reduced APC capacity 

due to downregulation of costimulatory signals CD80 and CD86.15, 25–26, 36 Thus, a 

promising avenue for modulating the immune response in an antigen-specific manner is to 

induce these B cell phenotypes through BCR engagement.

Multivalent linear polymers are especially adept at engaging cell surface receptors such as 

the BCR, where high avidity multivalent antigen is aided by the molecule’s conformational 

flexibility to allow for greater interaction with the cell surface to bind and cluster receptors.
28, 30, 37–43 For example, the spacing and orientation of ligands on a linear polymer may 

adapt to the contour and dynamic receptor spacing of the cell surface, whereas spherical or 

globular particles (i.e., dendrimers, nanoparticles, liposomes) are inherently more rigid with 

relatively fixed spacing and orientation of ligands. As such, multivalent linear polymers may 

be particularly suited for B cell and BCR targeted therapies. We previously reported on 

multivalent soluble antigen arrays (SAgAPLP:LABL) consisting of a linear hyaluronic acid 

(HA) polymer co-grafted with myelin autoantigen peptide (proteolipid protein peptide, 

PLP139–151) and intercellular adhesion molecule-1 (ICAM-1) inhibitor peptide (LABL) 

derived from leukocyte function associated antigen-1 (LFA-1).44–50 In this molecule, PLP 

acts as the primary antigenic signal to drive antigen-specific B cell binding, while LABL 

enhances cellular engagement by targeting ICAM-1, exploiting the ICAM-1/LFA-1 

interaction that promotes and sustains intercellular adhesion.44, 51–54 Our previous studies 

established that in vivo treatment with SAgAPLP:LABL significantly alleviated experimental 

autoimmune encephalomyelitis (EAE), a murine model of relapsing-remitting multiple 

sclerosis.46–50 Importantly, multivalent presentation of both PLP and LABL on a polymer 

carrier was necessary for therapeutic efficacy,45, 47, 49 and presentation on soluble linear HA 

was more effective than presentation on insoluble PLGA nanoparticles.48

The SAgAPLP:LABL molecule studied up to this point employed a degradable linker to 

codeliver PLP and LABL. ‘Hydrolyzable SAgAPLP:LABL exhibited antigen-specific binding 

with B cells by targeting the BCR, remained on the cell surface for an extended period of 

time, and dampened BCR-mediated signaling in vitro.44 Our results pointed to sustained 

BCR engagement as the molecule’s therapeutic mechanism, so we hypothesized that using 

non-hydrolyzable conjugation chemistry to develop a non-degradable SAgA would enhance 

and maintain the molecule’s action at the cell surface to improve efficacy. Here, we have 

developed a new version of the SAgA molecule, termed ‘click SAgA’ (cSAgAPLP:LABL), 

using a hydrolytically stable covalent conjugation chemistry rather than hydrolyzable 

grafting of multivalent PLP139–151 and LABL peptides to HA using a hydrolyzable oxime 

bond. We explored whether this non-hydrolyzable conjugation chemistry improved B cell 

engagement and modulation of BCR-mediated signaling, and if in vivo efficacy was 

correspondingly improved.

Hartwell et al. Page 3

Biomacromolecules. Author manuscript; available in PMC 2020 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B cell binding, signaling, and therapeutic efficacy in EAE were compared between 

SAgAPLP:LABL (oxime conjugation chemistry) and cSAgAPLP:LABL (‘click’ conjugation 

chemistry) through a combination of in vitro and in vivo studies. Binding avidity was 

evaluated in immortalized human Raji B cells as a model APC system using flow cytometry 

binding assays developed previously.44 Modulation of BCR-mediated signaling was 

assessed using flow cytometry calcium flux assays. Engagement and organization of BCR 

on the cell surface was observed through real-time fluorescence microscopy. Lastly, in vivo 
efficacy was compared across various doses in the EAE model.

MATERIALS AND METHODS

Materials

Hyaluronic acid (HA) sodium salt (MW 16 kDa) was purchased from Lifecore Biomedical 

(Chaska, MN). 11 -azido-3,6,9-trioxaundecan-1-amine (NH2-PEG3-N3), N-

hydroxysuccinimide, N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride 

(EDC), 2-(N-morpholino)ethane-sulfonic acid sodium salt (MES), tris(3-

hydroxypropyltriazolylmethyl)amine, and sodium ascorbate (NaAsc) were purchased from 

Sigma-Aldrich (St. Louis, MO) and used as received without further purification. Copper(II) 

sulfate pentahydrate (CuSO4 · 5H2O) was purchased from Acros Organics (Geel, Belgium). 

Alkyne-functionalized peptides bearing an N-terminal 4-pentynoic acid (homopropargyl, hp) 

modification, hpPLP139–151 (hp-HSLGKWLGHPDKF-OH) and hpLABL (hp-

ITDGEATDSG-OH), were originally synthesized in our laboratory via solid phase peptide 

synthesis. Larger quantities of both hpPLP139–151 and hpLABL peptides were obtained from 

Biomatik USA, LLC (Wilmington, DE). Unmodified PLP (NH2-HSLGKWLGHPDKL-OH) 

peptide was purchased from PolyPeptide Laboratories (San Diego, CA). Incomplete 

Freund’s adjuvant (IFA) and killed Mycobacterium tuberculosis strain H37RA were 

purchased from Difco (Sparks, MD). Pertussis toxin was purchased from List Biological 

Laboratories (Campbell, CA). Fluo-4 AM calcium indicator were purchased from Thermo 

Fisher Scientific (Waltham, MA). Immortalized human Raji B cells were purchased from 

American Type Culture Collection (ATCC, Manassas, VA). AffiniPure F(ab’)2 fragment 

goat anti-human IgM and AlexaFluor® 647 AffiniPure F(ab’)2 fragment goat anti-human 

IgM were purchased from Jackson ImmunoResearch Laboratories (West Grove, PA). All 

other chemicals and reagents were analytical grade and used as received.

Synthesis and Labeling of Soluble Antigen Arrays

Soluble antigen arrays (SAgAs) and fluorescein isothiocyanate (FITC)-labeled SAgAs 

(fSAgAs) were synthesized and characterized as previously reported.44, 47 Aminooxy 

peptides AoPLP and/or AoLABL were grafted to HA using oxime conjugation chemistry to 

synthesize HAPLP (HA and AoPLP), HALABL (HA and AoLABL), and SAgAPLP:LABL 

(HA, AoPLP, and AoLABL). Peptide conjugation was determined through gradient reverse-

phase analytical high-performance liquid chromatography (RP-HPLC) following cleavage of 

peptides in 0.1N HCl. Relative FITC fluorescence of labeled samples was determined 

spectrofluorometrically.
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Synthesis of Penn Green-Alk (Scheme 1A)

Synthesis of 4-(2,7-difluoro-6-hydroxy-3-oxo-3H-xanthen-9-yl)-3-methyl-N-(prop-2-yn-1-

yl)benzamide (Penn Green-Alk) was adapted from Meng et al.55 To a mixture of 2,5-

dioxopyrrolidin-1-yl 4-(2,7-difluoro-6-hydroxy-3-oxo-3H-xanthen-9-y1)-3-methylbenzoate 

(55.3 μmol) in DMF (0.5 mL), propargylamine (61.2 μmol) in 0.5 mL H3BO3 buffer (pH = 

8.5, 50 mM) was added and stirred at room temperature for 6 hours. The reaction mixture 

was frozen and lyophilized to give the crude product as an orange liquid. The crude product 

was dissolved in DMSO and purified by preparative RP-HPLC (Waters XBridge C18, 5 μm, 

10×250 mm, linear gradient from 5–95% MeCN (+ 0.05% TFA) in H2O (+ 0.05% TFA) 

over 30 minutes, detection at 280 nm) to give the final product (22.5 mg, 84.7%) as an 

orange-yellow solid; 1H NMR (400 MHz, DMSO-d6) δ 7.99 (s, 1H), 7.93–7.87 (m, 1H), 

7.40 (d, J = 7.9 Hz, 1H), 6.85 (br s, 2H), 6.63 (d, J= 11.2 Hz, 2H), 4.11 (dd, J = 5.6, 2.5 Hz, 

2H), 3.17 (t, J = 2.5 Hz, 1H), 2.08 (s, 3H); HRMS (TOF ESI+) expected [M+Na]+: 

442.0867, found: 442.0870.

Synthesis of HA-N3 (Scheme 1C)

Synthesis of FLA-N3 was adapted from Hu et al and Di Meo et al.56–57 Sodium hyaluronate 

(93.9 μmol, 16 kDa average MW) was added to a 250 mL round bottom flask with stir bar, 

followed by 100 mL of 50 mM MES buffer (pH = 4.0). The mixture was stirred until in 

solution (~15 minutes) before EDC (23.1 mmol) was added neat, then N-
hydroxysuccinimide (18.8 mmol) added neat. The mixture was stirred for 5 minutes before 

H2N-PEG3-N3 (4.51 mmol) in 20 mL MES buffer was added. The solution was then stirred 

for 24 hours at room temperature before being dialyzed in 6–8 kDa cutoff dialysis tubing 

against 4.5 L of 1.0 M NaCl solution for 24 hours, then 4.5 L of deionized water (4 ×12 

hours). The volume in the bag was then transferred to vials, frozen, and lyophilized to yield 

a white powder (1.61 g, 95.0%).

Synthesis and Labeling of Click Soluble Antigen Arrays (Scheme 1C)

HA-N3 (2 μmol) was added as a 50 μM solution in deionized H2O to a 250 mL round 

bottom flask with stir bar. Each component peptide (40 μmol) was then added as a ~3 mM 

solution in deionized H2O, followed by a premixed solution of THPTA (70 μmol) and 

CuSO4 · 5H2O (14 μmol) in deionized H2O. In the case with fluorescently-labeled variants, 

a 2.4 mM Penn Green-Alk solution in DMF (2.0 equivalents relative to HA-N3) was also 

added. The solution was allowed to stir for 1–2 minutes before a 100 μL aliquot was 

removed for HPLC analysis. NaAsc (300 μmol) was then added to the reaction mixture as a 

100 mM solution in deionized H2O. The reaction was allowed to proceed under varying 

conditions depending on the starting components and desired valency (cHAPLP: 18 hours at 

37°C; cHALABL and cSAgAPLP:LABL: 18 hours at 50°C; fcHA and fcHAPLP: 24 hours at 

37°C; fcHALABL and fcSAgAPLP:LABL: 24 hours at 50°C). Additional 100 μL aliquots were 

removed throughout the course of the reaction to determine the extent of conjugation. Once 

the target conjugation values were achieved, the reaction solution was transferred to 6–8 kDa 

dialysis tubing and dialyzed against 4.5 L of 1.0 M NaCl (3×8 hours), then 4.5 L of 

deionized H2O (5×8 hours). The volume in the bag was then transferred to vials, frozen, and 

lyophilized.

Hartwell et al. Page 5

Biomacromolecules. Author manuscript; available in PMC 2020 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Analytical Characterization of Click Soluble Antigen Arrays

FTIR spectra were collected on a Bruker Tensor 27 FTIR spectrometer equipped with an 

Attenuated Total Reflectance (ATR) cell, analyzing purified samples at ambient temperature 

in the solid state, and collecting a total of 32 scans per sample. NMR spectra were collected 

on a Bruker Avance AVIII 500 MHz: spectrometer equipped with a dual carbon/proton 

cryoprobe (unless otherwise noted), and all samples were dissolved in 650 μL of D2O for 

analysis. MestReNova 11.0 was used for NMR data analysis. The amide methyl resonance 

(δ ~ 1.90–2.05 ppm) of all 1H NMR spectra was normalized to an integration of 3.0, and the 

sum of all other signals in the range of δ ~ 1.0–4.0 ppm was used to ratiometrically 

determine the number of azide functionalization sites during FLA-N3 synthesis.

RP-HPLC and SEC analysis were conducted using a Waters Alliance HPLC system 

equipped with either a diode array detector or dual wavelength UV/Vis detector. For the 

quantitative determination of peptide conjugation by RP-HPLC, the following equation was 

used:

Ncon = npep
nHA

Vpre − Vsam
Vpre

1 − PAt
PAstart

Equation 1

where Ncon = number of conjugated peptides per backbone, npep = moles of peptide used in 

reaction, nHA = moles of HA-N3 used in reaction, Vpre = total reaction volume before 

NaAsc is added, Vsam = volume of “pre-NaAsc” sample removed from reaction mixture, PAt 

= measured peak area of peptide at time t, PAstart = measured peak area of free peptide 

before NaAsc is added to the reaction. General chromatographic conditions employed a 

Waters XBridge C4, 3.5 μm, 300 Å stationary phase under ion pairing (0.05% TFA in H2O 

and MeCN) mobile phase conditions, utilizing a linear elution gradient (5–60%) with 

detection at 214 nm.

Cell Culture

Raji B cells (human B lymphocytes, ATCC) were cultured in RPMI-1640 supplemented 

with L-glutamine, 10% fetal bovine serum (FBS), and 1% penicillin/streptomycin (P/S) at 

37°C and 5% CO2. Cell assays were consistently performed after cells reached confluency 

(~2 weeks) and following no more than 8–10 passages, per ATCC guidelines.

Flow Cytometry Binding Assay

Association binding studies were performed by flow cytometry (MoFlo XDP Cell Sorter, 

Beckman Coulter Inc., Brea, CA), as previously reported.44 Cell nuclei were stained with 

Hoechst and propidium iodide (PI) was used as a dead cell indicator; data acquisition was 

triggered off the Hoechst signal. Cell samples were warmed to 37°C for 2 minutes prior to 

the flow cytometry run. Fluorescence was excited using 488, 405, and 640 nm lasers and 

was collected using 529/28, 457/40, and 670/30 nm bandpass emission filters.

To observe maximum steady state binding, cells were mixed with the treatment to achieve a 

final concentration of 1×106 cells/mL immediately before injecting on the flow cytometer. 

Sample concentration was determined from preliminary saturation studies.44 Samples were 
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added at an equimolar PLP dose (353 μM PLP for fHAPLP and fSAgAPLP:LABL, or 353 μM 

LABL for fHALABL) and fHA was dosed at 39 μM (the HA molar equivalent to a 353 μM 

PLP dose of fSAgAPLP:LABL) to mimic the dosing scheme from in vivo studies. The sample 

was allowed to run for 5 minutes to ensure that maximum steady state was established, 

which occurs after approximately 3–4 minutes.

Flow cytometry binding data was first gated to remove doublets, dead cells, and debris using 

Kaluza Flow Analysis software (Beckman Coulter, Inc., Brea, CA) (Supplementary Figure 

1). Additional data processing was performed using KNIME software (Konstanz 

Information Miner, KNIME, Zurich, Switzerland). Nonlinear regression and additional 

statistical analysis was performed using GraphPad Prism (GraphPad Software, Inc., La Jolla, 

CA).

Calcium Flux Signaling Assay

Raji B cells were loaded with 5 μM Fluo-4 AM for 30 minutes at room temperature in PBS, 

then kept on ice in BBSS (Hanks Balanced Salt Solution) containing 1.3 mM Ca2+ and 0.9 

mM Mg2+ before analysis. Cells were run through a BD FACSFusion cytometer and 

fluorescence was monitored in the 530/30 nm channel. After baseline quantification for ~30 

seconds, crosslinking goat anti-human IgM (Jackson ImmunoResearch) was added at a final 

concentration of 20 μg/mL to stimulate the cells. This concentration was determined from a 

preliminary study where a range of anti-human IgM concentrations (5–40 μg/mL) was 

evaluated and 20 μg/mL achieved greatest stimulation of Raji B cells. Changes in Fluo-4 

fluorescence were measured for 1 minute to establish an anti-IgM stimulated baseline, 

followed by addition of (c)SAgA treatment (dosed at 353 μM PLP, same concentration used 

in binding studies) to determine the effect on IgM-stimulated signaling. Data was acquired 

for an additional 3 minutes until steady state was established. To measure inhibition of anti-

IgM stimulation, (c)SAgAPLP:LABL was added to cells prior to anti-IgM stimulation. 

KNIME was used to process and plot the kinetic data, while Kaluza and GraphPad Prism 

were used for the remaining analysis.

Fluorescence Microscopy

Live cell imaging of fcSAgA binding and surface IgM clustering was observed under 

fluorescence microscopy (Olympus IX81 Inverted Epifluorescence Microscope) using the 

same concentrations from flow cytometry association binding experiments. CellASIC ONIX 

M04S Microfluidics Switching Plates and Microfluidics Platform (EMD Millipore, 

Billerica, MA) were utilized for controlled perfusion of fluorescent samples and media with 

cells during real-time imaging. Raji B cells were stained with Hoechst and mixed with 

AlexaFluor® 647 goat anti-human IgM (Jackson ImmunoResearch) at 20 μg/mL to 

stimulate the cells and label surface IgM, then loaded into the imaging chamber. fcSAgA 

was perfused into the chamber for 10 minutes (3 psi for 5 minutes, 0.25 psi for 5 minutes) to 

allow binding with cells, followed by gentle media perfusion (0.25 psi for 5 minutes) to rinse 

unbound fcSAgA, followed by immediate image capture. Images were processed using 

Slidebook 5.5 (Intelligent Imaging Innovations, Inc., Denver, CO) and quantitative BCR 

clustering analysis was performed using ImageJ (Supplementary Figure 2). Otsu 

thresholding was applied to the IgM channel to identify IgM capping, where cells with a 
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single localized area of IgM fluorescence above a brightness threshold of 65 were 

considered positive for capping (Supplementary Figure 2B). This method was applied to 

100–250 IgM-positive stained cells per sample to determine % IgM capping. IgM pixel 

intensity was plotted for individual cells (n=10 per sample) as a function of diameter to 

generate profile plots relative to normalized diameter (d/D) and to determine the maximum 

IgM pixel intensity per cell (Supplementary Figure 2C).

Preclinical EAE Study in Mice

In vivo studies were carried out with 4–6 week old SJL/J (H-2) female mice purchased from 

Envigo Laboratories (Indianapolis, IN). Mice were housed under specified, pathogen-free 

conditions at the University of Kansas and all experiments were approved by the 

University’s Institutional Animal Care and Use Committee. Complete Freund’s adjuvant 

(CFA) was made by combining IFA and killed M. tuberculosis strain H37RA at a final 

concentration of 4 mg/mL. Animals were induced with experimental autoimmune 

encephalomyelitis (EAE), the PLP-specific mouse model of relapsing-remitting MS, on day 

0 of the study. Immunization was accomplished using a 0.2 mL emulsion containing 200 μg 

PLP139–151 peptide, plus equal volumes of PBS and CFA. The emulsion was administered 

subcutaneously (s.c.) as a total of four 50 μL injections, located above each shoulder and 

each hind flank. Pertussis toxin (100 ng in 100 μL) was injected intraperitoneally on day 0 

and day 2 post-immunization.

Treatments were administered on days 4, 7, and 10 as 100 μL subcutaneous injections at the 

nape of the neck (n=3–6 mice per treatment group), with the exception of one group in the 

dosing study that received treatments on days 4 and 7 only. Samples were administered at a 

dose equivalent to 50, 133, or 200 nmol PLP per 100 μL (0.5, 1.33, or 2 mM PLP, 

respectively). This three-day dosing schedule and dose of 200 nmol PLP were found to be 

efficacious in a previous SAgAPLP:LABL study.49 Disease progression was evaluated by a 

single observer using the following clinical score system: 0, no clinical disease symptoms; 1, 

weakness or limpness of the tail; 2, weakness or partial paralysis of one or two hind limbs 

(paraparesis); 3, full paralysis of both hind limbs (paraplegia); 4, paraplegia plus weakness 

or paralysis of forelimbs; 5, moribund (at which point mice were euthanized). In addition to 

animal scoring, body weight measurements were performed daily for the 26-day duration of 

the EAE study.

Statistical Analysis

GraphPad Prism was used to perform statistical analysis including sigmoidal nonlinear 

regression, ordinary one-way or two-way analysis of variance (ANOVA), and unpaired t-test. 

ANOVA was followed by Tukey’s or Sidak’s post-hoc test, where appropriate. The threshold 

for statistical significance was set to p<0.05.

RESULTS AND DISCUSSION

Structural Design of Click Soluble Antigen Arrays

Multivalent soluble antigen arrays (SAgAPLP:LABL) consist of a 16 kDa HA linear polymer 

conjugated with approximately 10 PLP and 10 LABL peptides. The molecule was rationally 
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designed based on studies by Dintzis et al that suggested multivalent linear polymers with a 

valency of 10–20 antigens and MW<100 kDa could induce a tolerogenic immune response,
42, 58–59 combined with studies by Siahaan et al that showed linking PLP and LABL 

peptides in a bifunctional molecule was therapeutic in EAE. 53–54, 60–64 Previous 

SAgAPLP:LABL molecules studied in our research group employed a hydrolyzable linker 

chemistry to conjugate both PLP139–151 and LABL peptides to HA, and have been shown to 

significantly suppress disease severity in EAE.44–50 This approach was built upon our earlier 

two-signal hypothesis that SAgAPLP:LABL inhibited autoimmune activation via the 

immunological synapse by promoting antigen processing without the necessary secondary 

signal, a mechanism that would necessitate antigen uptake, processing, and presentation. 

However, our recent in vitro studies instead pointed to a therapeutic mechanism in which 

SAgAPLP:LABL acted through sustained BCR engagement, targeting BCR signaling while 

exhibiting prolonged residence on the cell surface.44 Whereas our early hypothesis 

motivated a degradable SAgA molecule to allow for antigen uptake and processing, these 

results motivated the development of a non-degradable SAgA molecule to enhance and 

maintain the molecule’s surface activity. Thus, we synthesized ‘click’ cSAgA variants that 

exploit a non-cleavable linker chemistry to evaluate whether possible release of PLP139–151 

and LABL influenced the efficacy of the molecule. cSAgA multivalent arrays utilize the 

Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC) reaction as a stable attachment 

chemistry, which carries significant literature precedence with respect to application65–66 

and optimization67–68. The versatility of the CuAAC reaction was a major consideration in 

the implementation of an alternative conjugation chemistry, as the wide range of available 

reaction conditions can enable improved control over valency.

Analytical Characterization of Click Soluble Antigen Arrays

Characterization was completed using a variety of qualitative and quantitative analytical 

techniques. Initial azide-functionalization was confirmed by FTIR spectroscopy, showing the 

presence of a characteristic azide stretching band after synthesis of HA-N3, which 

disappeared following utilization of the azide moiety during conjugation (Figure 1A). 

Quantitation by 1H NMR proved challenging due to signal broadening of the increasingly 

heterogeneous polymeric systems, and the high molecular weight of the multivalent arrays 

led to decreasing sensitivity with increasing conjugation, eventually limited by sample 

solubility. For an analysis of azide functionalization, integration ranges were used to account 

for signal overlap between the polymer backbone resonances and those on the linker. To 

assess the validity of this approach, two additional batches of FLA-N3 were prepared using a 

reduced number of molar equivalents of linker relative to the starting HA, resulting in a 

reduced number of azide functionalized sites (Supplementary Table 1). It should be noted, 

however, that manual integration was required to perform this analysis, and coupled with the 

broad resonances observed from the polymeric system, this technique is considered to be a 

semi-quantitative approach to justify subsequent peptide conjugation. Additional NMR 

studies in the solid-state or observation of alternative nuclei may aid in the quantitative 

nature of the analytical methodology. 1H/13C Heteronuclear Single Quantum Coherence 

(HSQC) NMR spectroscopy was used qualitatively to confirm the existence of resonances 

present in both peptide samples, which carried over to the final dialyzed products (Figure 2). 

Importantly, these experiments also showed the disappearance of the terminal alkyne 
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resonance from the linker on each peptide along with the concomitant appearance of a 

broadened aromatic resonance not present in any individual component, corresponding to 

the new triazole ring.

Quantitative analysis of peptide conjugation efficiency was conducted via RP-HPLC by 

measuring the decrease in peak area of the free alkyne-containing peptide(s) throughout the 

course of the reaction. The CuAAC conjugation chemistry requires an active Cu1+ catalyst 

for the reaction to proceed, which is generated in situ through addition of the reducing agent 

NaAsc to an inactive Cu2+ in solution. Prior to this final NaAsc addition step, an aliquot of 

the reaction mixture was removed for HPLC analysis to establish a baseline response 

correlating to the molar excess of peptide used in the reaction. Subsequent to the addition of 

NaAsc, any decrease in peak area of free alkyne-containing peptide was attributed to 

conjugation (Figure 1B). Standard curves for both peptides were linear to 110% of the 

nominal concentrations used in the reaction mixture (0.81 mM for hpPLP139–151 and 0.71 

mM for hpLABL), exhibiting R2 values >0.99 upon linear regression analysis. Additional 

control experiments showed both hpPLP and hpLABL displayed <5% degradation (0.8% 

and 4.5%, respectively) at 37°C in H2O over 20 hours in the absence of all other reaction 

components, indicating a minimal impact of peptide degradation on the accuracy of the 

analytical methodology. Further, the final dialyzed products showed no evidence of peptide 

release after 18 hours at room temperature in either pH ~ 2.4, 5.0, or 7.0 buffers, confirming 

the basis behind the non-hydrolyzable linker design of the cSAgA molecular platform 

(Supplementary Figure 3). An abbreviated reaction optimization study showed that 

conjugation ratios could be significantly influenced by buffer, temperature, reactant 

concentrations, and molar excess of free peptide. From these observations, reaction 

conditions were identified that achieved a desired peptide valency. Quantitative peptide 

conjugation of representative test articles is provided in Table 1, showing that target 

conjugation efficiencies of approximately 25% per peptide (relative to theoretically available 

disaccharide monomers) were achieved in cHAPLP (10 PLP139–151), cHALABL (12 LABL), 

and cSAgAPLP:LABL (11 PLP139–151, 9 LABL).

Size exclusion chromatography (SEC) was primarily used to verify the success of dialysis, 

showing no evidence of free peptide or other reaction components in any purified cSAgA 

samples (Supplementary Figure 4). HA samples of varying molecular weight were used as 

standards to compare against purified reaction products. HA-N3 exhibited a slight decrease 

in retention time compared to 16 kDa HA, indicating an increase in molecular weight 

following azide functionalization. Retention time increased following peptide conjugation; 

however, this was likely a reflection of the molecule’s altered physicochemical properties 

and increased secondary interactions with the stationary phase rather than a reflection of 

molecular size. Given that hpPLP139–151 eluted after the retention time observed for salts, 

the increased retention of peptide-conjugated samples was likely due to secondary 

interactions between peptide in solution and the stationary phase overcoming the primary 

interactions that drive SEC separation. This secondary interaction was evident throughout 

method development regardless of mobile phase pH, salt concentration, and stationary phase 

composition.

Hartwell et al. Page 10

Biomacromolecules. Author manuscript; available in PMC 2020 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Analytical Characterization of Soluble Antigen Arrays

SAgAs and fSAgAs were analyzed by RP-HPLC to determine molecular weight and peptide 

conjugation, as described previously.47 Quantitative peptide conjugation of representative 

test articles is provided in Table 1, showing target conjugation efficiencies of approximately 

25% per peptide were achieved in HAPLP(9 PLP), HALABL (10 LABL), and SAgAPLP:LABL 

(10 PLP, 13 LABL).

Flow Cytometry Binding Assay

A flow cytometry binding assay was used to compare the relative binding avidities of 

hydrolyzable fSAgA and click-conjugated fcSAgA with Raji B cells. Binding kinetics were 

observed during association between the fluorescently labeled polymer arrays and Raji B 

cells until maximum steady state (max. SS) was reached, illustrated in Figure 4A. It was 

previously observed that fSAgAPLP:LABL, co-grafted with both PLP139–151 and LABL, 

exhibited greater binding with Raji B cells than the polymer alone (fHA) or the 

homopolymers grafted with only one signal (fHAPLP or fHALABL).44 A similar trend was 

observed with click-conjugated arrays: fcSAgAPLP:LABL exhibited the highest amount of 

binding, followed by fcHAPLP, while fcHA exhibited the lowest amount of binding (Figure 

3A). Comparison of the maximum SS indicated that fcSAgAPLP:LABL binding was 

significantly greater than that of fcHAPLP, fcHALABL, and fcHA, while fcHAPLP binding 

was significantly greater than that of fcHALABL and fcHA (Figure 3B). Thus, multivalent 

PLP139–151 and LABL appear to have a cooperative effect on avidity. We previously 

reported that SAgAPLP:LABL exhibited PLP-specific binding and BCR targeting, implying 

that PLP may enhance B cell avidity by providing specific affinity for the BCR.44 

Meanwhile, LABL, derived from LFA-1 and specific for ICAM-1, may enhance B cell 

avidity by promoting cell adhesion through the LFA-1/ICAM-1 interaction.7, 11–13, 51–54, 69 

[CAM-1 and LFA-1 expression are upregulated on B cells during surface BCR engagement 

to promote intercellular adhesion, as the ICAM-1/LFA-1 interaction is critical for B cell:T 

cell conjugate formation during signaling. 70 This may explain why multivalent LABL 

exerted a cooperative effect on binding avidity when presented alongside PLP in 

fcSAgAPLP:LABL but a minimal effect when presented alone in fcHALABL.

Comparison of click-conjugated versus hydrolyzable compound binding revealed that both 

fcSAgAPLP:LABL and fcHAPLP, exhibited significantly enhanced binding compared to their 

hydrolyzable counterparts, fSAgAPLP:LABL and fHAPLP, respectively (Figure 3C). 

Differences in kinetics and maximum SS binding between fcSAgAPLP:LABL, 

fSAgAPLP:LABL, and fHA illustrate how avidity was altered when multivalent peptide was 

conjugated to HA in a hydrolyzable versus non-hydrolyzable manner (Figure 4AB). While 

both methods of multivalent modification resulted in significantly increased binding 

compared to the polymer alone, click-conjugated fcSAgAPLP:LABL. exhibited significantly 

greater maximum SS binding (p<0.001) than hydrolyzable SAgAPLP:LABL. Thus, 

multivalent co-presentation of PLP and LABL through non-hydrolyzable modification 

increased the avidity of the polymer array more than hydrolyzable modification. This result 

is supportive of literature stating that multivalent antigens exhibit superior binding avidity, 

higher ‘effective concentration’, and an enhanced ability to engage cell receptors compared 

to monovalent (or in this case, hydrolyzable) antigen.27, 38–39, 41, 71
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Calcium Flux Signaling Flow Cytometry Assay

Flow cytometry calcium flux assays were used to compare the ability of SAgA and cSAgA 

molecules to modulate BCR-mediated signaling in Raji B cells. Signaling modulation was 

evaluated in Fluo-4 loaded Raji B cells prior to stimulation (Figure 4CD) and after 

stimulation (Figure 4EF) with crosslinking αIgM. The relative signal increase from resting 

baseline (Figure 4D) or reduction from stimulated baseline (Figure 4F) was determined 

using mean Fluo-4 fluorescence values at steady state.

We reported previously that SAgAPLP:LABL was capable of both inhibiting and reducing 

IgM-stimulated signaling.44 Here, pre-treatment with SAgAPLP:LABL prior to addition of 

αIgM significantly inhibited IgM-stimulated calcium signaling compared to the vehicle 

(p<0.05) (Figure 4CD). However, pre-treatment with cSAgAPLP:LABL significantly inhibited 

IgM-stimulated calcium signaling to a greater extent (p<0.01), largely preventing even the 

initial spike in calcium flux observed with SAgAPLP:LABL after αIgM addition. Similarly, 

addition of cSAgAPLP:LABL after αIgM stimulation caused a greater reduction in calcium 

signaling than SAgAPLP:LABL (p<0.01) (Figure 4EF). cSAgAPLP:LABL reduced signaling by 

~60% while SAgAPLP:LABL reduced signaling by ~40% relative to the vehicle control. 

These results indicated that click-conjugated cSAgAPLP:LABL was significantly more 

effective at dampening BCR-mediated signaling – both through inhibition and reduction – 

compared to its hydrolyzable counterpart.

Previously, we reported a significant reduction in signaling from addition of SAgAPLP:LABL, 

HAPLP, and HALABL, but negligible change in signaling from addition of vehicle (HBSS) or 

HA44 The click conjugates exhibited a similar trend: cSAgAPLP:LABL caused the greatest 

reduction in signaling while cHA caused the smallest reduction (p<0.05) (Figure 5A). 

However, while cSAgAPLP:LABL caused a greater reduction than hydrolyzable 

SAgAPLP:LABL, there was not a significant difference between cHAPLP vs. HAPLP and 

cHALABL vs. HALABL (Figure 5B). It is also interesting to note that cHA (HA-N3) caused a 

greater reduction than unmodified HA, which may be due to the presence of azide groups on 

the HA backbone leading to a greater degree of nonspecific binding.

Fluorescence Microscopy

Fluorescence microscopy was performed using a microfluidics platform that enabled real 

time observation of binding and BCR clustering on the cell surface. Previously, we observed 

that fSAgAPLP:LABL binding induced mature receptor clustering in Raji B cells while the 

polymer alone did not, and concluded that LABL may contribute to the SAgAPLP:LABL 

molecule’s ability to cluster receptors.44 Here, we observed receptor clustering following 

binding and also labeled IgM to monitor BCR organization on the cell surface. Negative 

control cells treated with media exhibited diffuse BCR staining (Figure 6A), while cells 

treated with fcHALABL (Figure 6C), fcHAPLP (Figure 6D), and fcSAgAPLP:LABL (Figure 

6E) exhibited BCR capping. BCR capping occurs when BCR clusters coalesce to form a 

single aggregate (i.e., one area of high intensity IgM fluorescence).72 In contrast, cells 

treated with unmodified fcHA polymer exhibited BCR microclustering, which occurs when 

BCR clusters fail to coalesce into a single aggregate (i.e., multiple areas of moderate 

intensity IgM fluorescence) (Figure 6B). BCR capping on individual cells was quantified by 
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plotting IgM pixel intensity relative to normalized cell diameter (Figure 7A), revealing that 

fcHALABL, fcHAPLP, and fcSAgAPLP:LABL induced clusters with significantly higher IgM 

intensity than the vehicle or fcHA (Figure 7B). Additionally, fcHALABL, fcHAPLP, and 

fcSAgAPLP:LABL induced IgM capping in a significantly higher fraction of cells than the 

vehicle or fcHA (Figure 7C). fcHALABL and fcSAgAPLP:LABL appeared particularly adept at 

inducing a high degree of IgM capping in a large fraction of cells. These trends echoed our 

previous observations that polymer modified with multivalent PLP139–151 and LABL, but 

not unmodified HA, induced mature receptor clustering.44 PLP may promote clustering due 

to its antigen-specific affinity for BCR. LABL may promote clustering due to its affinity for 

ICAM-1, which (along with LFA-1) plays an integral role in the organization of 

supramolecular activation clusters (SMACs) during BCR signaling by forming a peripheral 

ring (pSMAC) around the central BCR cluster (cSMAC). 7, 52, 73–74

It has been suggested that quantitative differences in the degree of BCR clustering and 

crosslinking may drive qualitative differences in BCR signaling. 75 In general, our 

observations of BCR clustering corroborated our calcium flux results, as cHAPLP, 

cHALABL, and in particular cSAgAPLP:LABL reduced BCR-mediated signaling to a greater 

extent than cHA. Combined with previous evidence supporting BCR as a target for 

SAgAPLP:LABL binding,44 these results suggested that cSAgAPLP:LABL engagement and 

subsequent clustering of the BCR may dampen signaling. Our observations are consistent 

with reports that continuous BCR engagement and clustering are a mechanism for inducing 

B cell anergy that is accompanied by reduced calcium flux signaling.34–35

Preclinical EAE Studies

Therapeutic efficacy of SAgAPLP:LABL and cSAgAPLP:LABL was evaluated in EAE mice 

induced with PLP139–151 to model the relapsing-remitting form of MS. Disease symptoms 

emerged on day 10–12 with peak of disease occurring on day 13–15 before progressing to 

remission around day 20–25. Efficacy was measured by clinical score, weight change, and 

clinical score area under the curve (AUC) relative to the PBS control. AUC representation of 

clinical data has been reported as an informative secondary measure for overall extent of 

disease because it provides a cumulative measure not weighted by the scaling or time course 

of disease.76 Disease incidence and mortality rate are provided as supplemental information 

(Supplementary Figure 5). Statistical differences were determined by comparing treated 

groups with the negative PBS control.

A three-day dosing schedule with a dose equivalent to 200 nmol PLP139–151 administered on 

days 4, 7, and 10 was found to be efficacious in previous SAgAPLP:LABL studies.45–50 This 

dose and schedule were mirrored in a preliminary in vivo study with cSAgAPLP:LABL. It is 

important to note that shortly after the third administration on day 10, five out of six mice 

that received cSAgAPLP:LABL died from apparent anaphylaxis. This result may be due to a 

greater effective concentration of PLP antigen being delivered to immune cells with the 

click-conjugated platform over the acid-labile platform. As is the case with allergen 

tolerization therapy, where an offending allergen is administered in gradually increasing 

doses over time to desensitize the allergic immune response, care must be taken to achieve 

an effective cumulative dose that induces tolerance without activating a severe 
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hypersensitive response.77–79 Our observation reflects the greater potency of 

cSAgAPLP:LABL compared to SAgAPLP:LABL, such that a lower dose was required to tip the 

immune response towards severe hypersensitivity. Therefore, a combination of lower doses 

was investigated in a small-scale dosing study (Figure 8). To determine whether the total 

cumulative dose or the number of injections caused the negative response, a group was 

included with the same dose per injection (200 nmol PLP139–151) but only administered on 

two days (days 4, 7). In another group, an equivalent cumulative dose was administered over 

three days (133 nmol PLP139–151 on days 4, 7, 10). A final group was included with a low 

dose of 50 nmol PLP139–151, administered on all three days. All dosing groups significantly 

alleviated disease compared to the PBS control according to clinical disease score (Figure 

8A) and clinical score AUC (Figure 8C). The cSAgAPLP:LABL dose of 50 nmol PLP139–151 

caused a significant reduction in clinical score on the greatest number of days (days 12–18) 

and exhibited the greatest reduction in clinical score AUC compared to PBS (p<0.001). 

Therefore, a cSAgAPLP:LABL dose of 50 nmol PLP139–151 was selected for studies going 

forward.

Next, in vivo efficacy of click-conjugated cSAgAPLP:LABL was compared to hydrolyzable 

SAgAPLP:LABL (Figure 9). At the original therapeutic dose equivalent to 200 nmol 

PLP139–151, SAgAPLP:LABL significantly reduced clinical score on days 11–20 (Figure 9A) 

and significantly reduced total disease score AUC compared to PBS (p<0.0001) (Figure 9E). 

At only a quarter of the dose, cSAgAPLP:LABL (50 nmol PLP139–151) significantly reduced 

total clinical score AUC to an equivalent extent as SAgAPLP:LABL at 200 nmol PLP139–151 

(Figure 9E). Furthermore, cSAgAPLP:LABL (50 nmol PLP139–151) significantly reduced 

clinical score on days 10–17 to a greater extent than SAgAPLP:LABL at the 200 nmol dose 

(Figure 9B). In contrast, the 50 nmol dose of SAgAPLP:LABL significantly reduced clinical 

score only on days 11 and 14 (Figure 9B), and reduced clinical score AUC to a significantly 

lesser extent (p<0.001) than cSAgAPLP:LABL (50 nmol PLP139–151) (Figure 9E). While 

SAgAPLP:LABL (200 nmol PLP139–151) significantly alleviated weight loss on days 11–22 

(Figure 9C), cSAgAPLP:LABL (50 nmol PLP139–151) significantly alleviated weight loss over 

a larger portion of the study, on days 11–25 (Figure 9D). In contrast, SAgAPLP:LABL (50 

nmol PLP139–151) did not alleviate weight loss on any day of the study (Figure 9D).

Lastly, cSAgAPLP:LABL (50 nmol PLP139–151) reduced incidence of disease to a greater 

extent than SAgAPLP:LABL at either dose (Supplementary Figure 5). During peak of disease, 

100% of the mice treated with PBS or SAgAPLP:LABL (50 nmol PLP139–151) and over 75% 

of the mice treated with SAgAPLP:LABL (200 nmol PLP139–151) exhibited disease symptoms. 

In contrast, less than 25% of the mice treated with cSAgAPLP:LABL (50 nmol PLP139–151) 

exhibited disease symptoms during peak of disease. Therefore, when considering multiple 

measures of efficacy, cSAgAPLP:LABL achieved equivalent or greater in vivo efficacy as 

SAgAPLP:LABL at one quarter of the antigen dose. We conclude that non-hydrolyzable click 

conjugation rendered greater therapeutic efficacy than hydrolyzable modification.

CONCLUSIONS

Click-conjugated multivalent soluble antigen arrays were developed and evaluated in vitro 
and in vivo as therapeutic agents in a murine model of MS. Hydrolyzable SAgAPLP:LABL 
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which we have studied extensively and shown to significantly suppress EAE,44–50 employed 

a degradable linker to co-deliver antigen (PLP) and cell adhesion inhibitor (LABL) peptides. 

This approach was built upon our earlier two-signal hypothesis that SAgAPLP:LABL inhibited 

autoimmune activation via the immunological synapse, a mechanism that would necessitate 

antigen uptake, processing, and presentation and motivated the design of a degradable SAgA 

molecule. Recent in vitro studies, however, pointed instead to a therapeutic mechanism 

whereby SAgAPLP:LABL acted through sustained BCR engagement, targeting BCR signaling 

while exhibiting prolonged residence on the cell surface.44 These results motivated the 

development of a non-degradable SAgA molecule to enhance and maintain the molecule’s 

surface activity, which we hypothesized would improve therapeutic efficacy. 

cSAgAPLP:LABL was developed as a modified version of the SAgAPLP:LABL molecule with 

multiple PLP139–151 and LABL peptides conjugated to HA using non-hydrolyzable linker 

chemistry (Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC)).

Building upon previous work, these studies sought to establish therapeutic efficacy of 

cSAgAPLP:LABL in vivo while identifying a potential therapeutic mechanism by evaluating 

binding avidity and signaling modulation in vitro. Click-conjugated cSAgAPLP:LABL 

exhibited greatly enhanced binding in B cells compared to hydrolyzable SAgAPLP:LABL, 

indicating that non-hydrolyzable multivalent ligand increased the avidity of the molecule. 

Furthermore, cSAgAPLP:LABL exhibited greater capacity for reducing and inhibiting BCR-

mediated signaling as compared to SAgAPLP:LABL Imaging revealed that c SAgAPLP:LABL 

binding caused BCR clustering, another marker indicative of BCR engagement and 

signaling modulation. Our in vitro observations pointed to B cell anergy, induced by 

continuous BCR engagement and clustering and accompanied by reduced calcium flux 

signaling, as a likely cSAgAPLP:LABL therapeutic cellular mechanism. Lastly, 

cSAgAPLP:LABL exhibited enhanced in vivo efficacy against EAE, achieving equivalent 

therapeutic efficacy as SAgAPLP:LABL at one quarter of the dose. Taken together, these 

results indicated that non-hydrolyzable conjugation increased the avidity of 

cSAgAPLP:LABL, driving in vivo efficacy through modulated BCR-mediated signaling. The 

click-conjugated c SAgAPLP:LABL molecule shows promising potential for ASIT for the 

improved treatment of autoimmune disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Analytical characterization data for cSAgA compounds: (A) FTIR spectra collected after 

functionalization and conjugation. (B) Representative HPLC chromatograms used to 

quantify the number of conjugated peptides as a function of reaction temperature.
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Figure 2. 
Qualitative confirmation of conjugation by 2D HSQC NMR where a 1H spectrum is shown 

on the x-axis and a 1H-decoupled 13C spectrum is shown on the y-axis.
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Figure 3. 
Binding of fcHA, fcHALABL, fcHAPLP, and fcSAgAPLP:LABL with Raji B cells determined 

by flow cytometry: (A) Binding kinetics showing association through steady state. (B) 
Relative binding at maximum steady state (max. SS). (C) Comparison of max. SS binding 

with hydrolyzable versus click-conjugated arrays. Statistical significance determined by 

ANOVA followed by Tukey’s (B) or Sidak’s (C) post hoc test with p<0.05 and n=3 

(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). Robust curve fitting in (A) was 

performed using sigmoidal nonlinear regression.
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Figure 4. 
Comparing SAgAPLP:LABL and cSAgAPLP:LABL binding and IgM-stimulated (BCR-

mediated) calcium flux signaling in Raji B cells through flow cytometry assays: (A) Binding 

kinetics and (B) maximum steady state (max. SS) binding with fSAgAPLP:LABL, 

fcSAgAPLP:LABL, and fcHA. (C) Calcium flux inhibition: Fluo-4 loaded cells were first 

pretreated with vehicle (HBSS), SAgAPLP:LABL, or cSAgAPLP:LABL, then stimulated with 

anti-IgM (αIgM, black arrow) to evaluate signaling inhibition. (D) Relative IgM signaling 

stimulation following pretreatment; baseline-adjusted values determined from mean steady 
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state values. (E) Calcium flux reduction: Fluo-4 loaded cells were first stimulated with 

αIgM at ~30 s (black arrow), then treated with vehicle (HBSS), SAgAPLP:LABL, or 

cSAgAPLP:LABL after ~60 s (black arrow) to evaluate signaling reduction. (F) Percent 

reduction from IgM-stimulated baseline following sample addition, determined from mean 

steady state values. Statistical significance was determined by ANOVA followed by Tukey’s 

post hoc test with p<0.05 and n=3 (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). 

Calcium flux kinetics in (C) and (D) show median Fluo-4 fluorescence values. Robust curve 

fitting in (A) was performed using sigmoidal nonlinear regression. Calcium flux data was 

pooled from three independent experiments.
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Figure 5. 
Reduction in IgM-stimulated (BCR-mediated) calcium flux signaling in Fluo-4 loaded Raji 

B cells determined by flow cytometry: (A) Percent reduction from αIgM-stimulated baseline 

following addition of cHA, cHALABL, cHAPLP, or cSAgAPLP:LABL, determined from mean 

steady state values. (B) Comparison of reduction in αIgM-stimulated signaling from 

hydrolyzable versus click-conjugated arrays. Data was pooled from three independent 

experiments. Statistical significance was determined by ANOVA followed by Tukey’s post 

hoc test (A) or unpaired t-test (B) with p<0.05 and n=3 (*p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001).
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Figure 6. 
Fluorescence microscopy showing binding and BCR clustering in Raji B cells following 

perfusion of (A) vehicle, (B) fcHA, (C) fcHALABL, (D) fcHAPLP, and (E) fcSAgAPLP:LABL 

Cell nuclei were stained with Hoechst (violet – Panel 1) and surface IgM was stained with 

AlexaFluor® 647-conjugated αIgM (blue – Panel 3). Penn Green-labeled polymer arrays are 

shown binding to the cell surface (green – Panel 2). In contrast to the diffuse IgM 

fluorescence in (A), highly localized punctate IgM fluorescence in (C), (D), and (E) 

indicates BCR clustering and capping in cells treated with fcHALABL, fcHAPLP, and 
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fcSAgAPLP:LABL. Capping occurs when BCR clusters coalesce to form a single aggregate 

(i.e., one area of high intensity IgM fluorescence). Captured using the M04S plate and 

CellASIC Onyx Microfluidics platform on an Olympus IX81 inverted Epifluorescence 

microscope. Magnification: 60X air. Scale bar equals 10 μm.
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Figure 7. 
Quantification of BCR clustering in Raji B cells following perfusion of vehicle, fcHA, 

fcHALABL, cHAPLP, or fcSAgAPLP:LABL in the microfluidics plate. (A) Representative cell 

profile plots of IgM pixel intensity relative to normalized cell diameter, d/D. (B) Maximum 

IgM pixel intensity per cell determined from profile plots of individual cells (n=40). (C) 
Percent of cells positive for IgM capping (fully coalesced IgM clustering) determined using 

otsu thresholding (n=100–250 cells per sample). Statistical significance was determined by 

ANOVA followed by Tukey’s post hoc test with p<0.05 (*p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001). Mean+ SD shown. Images were captured using the M04S plate and 

CellASIC Onyx Microfluidics platform on an Olympus IX81 inverted Epifluorescence 

microscope and analyzed in ImageJ.
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Figure 8. 
Clinical EAE dosing study with cSAgAPLP:LABL: cSAgAPLP:LABL was administered on 

days 4 and 7 at a dose equivalent to 200 nmol PLP and on days 4, 7, and 10 at a dose 

equivalent to 50 or 133 nmol PLP. Therapeutic efficacy evaluated by comparing (A) clinical 

disease score, (B) percent weight change, and (C) clinical score area under the curve (AUC). 

Statistical significance (compared to the negative PBS control) was determined by ANOVA 

followed by Tukey’s post hoc test with p<0.05 and n=3 (*p<0.05, **p<0.01, #/***p<0.001, 

##/****p<0.0001).
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Figure 9. 
Comparing SAgAPLP:LABL and cSAgAPLP:LABL therapeutic efficacy in EAE: (A) 
SAgAPLP:LABL (200 nmol PLP dose) clinical scores (n=6), (B) cSAgAPLP:LABL versus 

SAgAPLP:LABL (50 nmol PLP dose) clinical scores (n=5), (C) SAgAPLP:LABL (200 nmol 

PLP dose) weight change, (D) cSAgAPLP:LABL versus SAgAPLP:LABL (50 nmol PLP dose) 

weight change, and (E) clinical score area under the curve (AUC) relative to PBS. Statistical 

significance was determined by ANOVA followed by Dunnet’s (A-D) or Tukey’s (E) post 

hoc test with p<0.05 (*p<0.05, **p<0.01, #/***p<0.001, ##/****p<0.0001).
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Scheme 1. 
Synthesis of cSAgA components and molecules: (A) Alkyne-functionalized Pennsylvania 

Green. (B) Structures of homopropargyl-modified peptides. (C) ‘Click’ soluble antigen array 

(cSAgA).
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Table 1.

Peptide molar conjugation of hydrolyzable and click conjugates, as determined by RP-HPLC.
a

Sample Approx. MW (kDa)
b Average Molar Ratio per Polymer

c % Molar Conjugation

PLP:HA LABL:HA PLP LABL

30.4 9 0 21 0

26.0 0 10 0 24

46.3 10 13 24 31

41.2 10 0 24 0

37.2 0 12 0 28

52.1 11 9 26 21

a
Results are an average of triplicate injections from a single batch preparation. In the molecule schematics, dotted lines represent hydrolyzable 

oxime linker chemistry while solid lines represent non-hydrolyzable ‘click’ linker chemistry.

b
Calculated from RP-HPLC data. MW, molecular weight.

c
HA, hyaluronic acid; PLP, proteolipid protein peptide; LABL, inhibitor peptide derived from leukocyte function associated antigen-1
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