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Abstract

Background: Ovarian cancer remains the most fatal gynecological malignancy. Current therapeutic options are
limited due to late diagnosis in the majority of the cases, metastatic spread to the peritoneal cavity and the onset
of chemo-resistance. Thus, novel therapeutic approaches are required. Statins and amino-bisphosphonates are
inhibitors of the mevalonate pathway, which is a fundamental pathway of cellular metabolism, essential for
cholesterol production and posttranslational protein farnesylation and geranylgeranylation. While this pathway has
emerged as a promising treatment target in several human malignancies, its potential as a therapeutic approach in
ovarian cancer is still not fully understood.

Methods: Human ovarian cancer cell lines (IGROV-1, A2780, A2780cis) were treated with increasing concentrations
(0.5-100 uM) of statins (simvastatin, atorvastatin, rosuvastatin) and zoledronic acid. Effects on cell vitality and
apoptosis were assessed using Cell Titer Blue®, Caspase 3/7 Glo®, clonogenic assays as well as cleaved poly (ADP-
ribose) polymerase (cPARP) detection. The inhibition of the mevalonate pathway was confirmed using Western Blot
of unprenylated Ras and Rapla proteins. Quantitative real-time PCR and ELISA were used to analyze modulations
on several key regulators of ovarian cancer tumorigenesis.

Results: The treatment of IGROV-1 and A2780 cells with statins and zoledronic acid reduced vitality (by up to 80%;
p <0.001) and induced apoptosis by up to 8-folds (p < 0.001) in a dose-dependent fashion. Rescue experiments
using farnesyl pyrophosphate or geranylgeranyl pyrophosphate evidenced that blocked geranylgeranylation is the
major underlying mechanism of the pro-apoptotic effects. Gene expression of the tumor-promoting cytokines and
mediators, such as transforming growth factor (TGF)-31, vascular endothelial growth factor (VEGF), interleukin (IL)-8,
and IL-6 were significantly suppressed by statins and zoledronic acid by up to 90% (p < 0.001). For all readouts,
simvastatin was most potent of all agents used. Cisplatin-resistant A2780cis cells showed a relative resistance to
statins and zoledronic acid. However, similar to the effects in A2780 cells, simvastatin and zoledronic acid
significantly induced caspase 3/7 activation (6-folds; p < 0.001).
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Conclusion: Our in vitro findings point to promising anti-tumor effects of statins and zoledronic acid in ovarian
cancer and warrant additional validation in preclinical and clinical settings.
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Background

Ovarian cancer is the leading cause of death from
gynecological malignancies in women [1]. The survival
rate of affected patients is comparably poor, especially
due to the diagnosis at an advanced stage in the vast ma-
jority of the cases [2—4]. A consistent number of patients
present few clinical symptoms, which are also character-
istic of various gastrointestinal, abdominal and urinary
conditions [5, 6]. In many cases, the late diagnosis leads
to a clinical picture that includes intraperitoneal dissem-
ination of cancer cells [6]. Here, increased permeability
of the peritoneal membrane and its associated vascula-
ture leads to massive fluid accumulation (i.e. ascites)
within the peritoneal cavity [7, 8]. This process is sus-
tained and accelerated by inflammatory cytokines, che-
mokines and growth factors secreted by cancer cells and
additional cellular components of the tumor microenvir-
onment, such as lymphocytes and tumor-associated
macrophages (TAMs) [4, 8, 9]. The resulting pro-
inflammatory microenvironment supports the malignant
invasive growth of the tumor and drives morbidity and
mortality of affected patients [4]. Furthermore, ascites is
associated with chemoresistance, recurrence, and an
overall poor prognosis [4, 8]. Current therapeutic op-
tions in ovarian cancer management depend on the di-
agnosed stage and include radical cytoreductive surgery,
which improves remission rates and results in a longer
duration of tumor-free survival in over 90% of early-
diagnosed cases [10]. Adjuvant chemotherapy is more
commonly administered in advanced ovarian cancer
using carboplatinum and paclitaxel therapy which pre-
cedes and follows surgical cytoreduction [11, 12]. The
anti-angiogenic drug bevacizumab was recently approved
as an additional first-line therapy [13, 14]. Bevacizumab
is administered in combination with the platinum-based
chemotherapy and afterwards as maintenance mono-
therapy for a total of 15 months as used in the GOG-
0218 trial [13—15]). In addition, poly (ADP-ribose) poly-
merase (PARP) inhibitors have been approved in ovarian
cancer [16]. Here, olaparib is approved as maintenance
therapy after initial platinum-based chemotherapy for
BRCA1/2 mutation carriers [17]. In so-called platinum-
sensitive ovarian cancer relapse PARP inhibitors are ap-
proved as maintenance therapy after response to platinum-
based chemotherapy independent on the BRCA mutation
status [18-21]. Major challenges in the management of
ovarian malignancies are chemo-resistance to platinum-

based therapy, metastases and disease recurrence [22].
Although patients with resistant tumors eventually respond
to second-line therapies, a large proportion of them experi-
ence short disease-free survival [23]. Therefore, novel thera-
peutic options, especially for patients with chemo-resistant
ovarian cancer, are urgently needed.

The mevalonate pathway is responsible for the biosyn-
thesis of sterol and non-sterol isoprenoids, thereby play-
ing a central role in cellular metabolism [24, 25].
Moreover, it is important for the post-translational mod-
ifications of proteins, specifically by providing farnesyl
pyrophosphate (FPP) or geranylgeranyl pyrophosphate
(GGPP) for farnesylation and geranylgeranylation, re-
ferred to as protein prenylation [26]. Due to their central
role in regulating cellular signaling processes, Rho-
GTPases such as the Ras superfamily are among the
best-studied prenylated proteins [27, 28]. The dysregula-
tion and involvement of mevalonate pathway enzymes
and products such as cholesterol in human malignancies
has been shown for several tumor entities including ovar-
ian cancer [25, 29-33]. Cholesterol can also be converted
to 27-hydroxycholesterol by cytochrome P450 oxidase
CYP27A1, which is expressed by both tumor cells and
TAMs. CYP27A1 expression and 27-hydroxycholesterol
promote tumor growth and are associated with reduced
progression-free survival in breast and ovarian cancer [34,
35]. In addition, Rho-GTPases are implicated in ovarian
cancer tumorigenesis and platinum resistance [36, 37].
Two major classes of drugs inhibit the mevalonate path-
way at different levels: statins and amino-bisphosphonates
(N-BP). Statins are inhibitors of the 3-hydroxy-3-methyl-
glutaryl-CoA reductase (HMGCR), the rate-limiting en-
zyme of the mevalonate pathway. They reduce cholesterol
production and mediate the increased uptake of extra-
cellular cholesterol by low density lipoprotein receptors
[38, 39]. Statins have evolved as a standard care for
treating high cholesterol levels in patients [39, 40]. N-
BP are inhibitors of the farnesyl diphosphate synthase and
induce apoptosis in bone-resorbing osteoclasts [41, 42].
Therefore, N-BP are clinically used in osteoporosis or
osteolytic bone metastases secondary to breast and prostate
cancer [41, 42]. Both classes of mevalonate pathway inhibi-
tors show a multitude of pleiotropic antitumor effects, ran-
ging from induction of apoptosis, inhibition of migration,
metastasis and invasion, as well as modulation of tumor-
promoting signaling molecules or the immune system [25,
43-46]. In this study, we aimed at investigating the in vitro
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anti-tumor effects of several statins and the N-BP zoledro-
nic acid in different human ovarian cancer cell lines.

Methods

Cancer cell lines and cell culture

Human ovarian cancer cell lines A2780 and A2780cis
were obtained from Sigma-Aldrich (Munich, Germany) in
2013 (catalogue numbers # 93112519 and #93112517).
The IGROV-1 cell line was a kind gift of Dr. Jean Benard
(Villejuif, France) in 2014. All cell lines have been authen-
ticated by STR profiling at the DSMZ (Braunschweig,
Germany) and tested for mycoplasma contamination by a
standard PCR test. IGROV-1, A2780, and A2780cis were
cultured in RPMI 1640 medium (Gibco®, Life Technolo-
gies, Darmstadt, Germany), supplemented with 10% fetal
calf serum (FCS; Biochrom, Berlin, Germany) and 1%
penicillin/streptomycin  (Biochrom, Berlin, Germany).
IGROV-1 cells are cisplatin-sensitive cells, derived from a
stage III ovarian carcinoma patient [47]. A2780cis cells
were originally established as a cisplatin-resistant subclone
of parental cisplatin-sensitive A2780 cells by chronic ex-
posure to increasing cisplatin concentrations [48]. All cell
lines were incubated in a humidified atmosphere at 37 °C
under 5% CO,. To maintain chemo-resistance, A2780cis
cells were supplemented with 1M cisplatin every 2-3
passages.

Reagents and antibodies

Cells were treated with simvastatin (SIM), rosuvastatin
calcium (ROSU), atorvastatin calcium salt trihydrate
(ATO), zoledronic acid (ZOL), farnesyl pyrophosphate
(FPP), and/or geranylgeranyl pyrophosphate (GGPP).
Stocks were prepared in dimethyl sulfoxide (DMSO),
ddH,O or were already delivered as solutions. All re-
agents were purchased from Sigma-Aldrich (Munich,
Germany), except for ROSU (SelleckChem, Munich,
Germany). Primary antibodies for Western Blot analyses
were: anti-RaplA (sc-1482; recognizes the ungeranylger-
anylated Rapla [49]), anti-Ras (#610001) from BD Bio-
sciences (Heidelberg, Germany), and anti-cleaved PARP
(#9541) from Cell Signaling Technology, Inc. (Beverly,
MA, USA). For GAPDH, the anti-GAPDH (sc-25,778)
from Santa Cruz (Heidelberg, Germany) and anti-GAPD
H (#5G4) from HyTest Ltd. (Turku, Finland) were used.
Secondary horseradish peroxidase (HRP)-conjugated
antibodies were anti-rabbit IgG (HAF008), anti-mouse
IgG (HAF007), and anti-goat IgG (HAF109) from R&D
Systems, Inc. (Minneapolis, MN, USA).

Vitality, apoptosis, and clonogenic assays of cancer cells

Cell viability was assessed using the CellTiterBlue® assay
(Promega, Mannheim, Germany) according to the man-
ufacturer’s protocol. A Caspase 3/7 Glo® assay (Promega)
and the detection of the cleaved fragment of poly (ADP-
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ribose) polymerase (PARP) were performed to detect
apoptosis. Caspase 3/7 Glo® and CellTiterBlue® measure-
ments were completed using the FluoStar Omega (BMG
labtech, Jena, Germany). For the clonogenic assay [50],
200 vital IGROV-1 cells were seeded in each cavity of 6-
well plates and treated with statins and zoledronic acid,
according to the indicated concentrations. Plates were
incubated at 37°C and 5% CO, for 9-10days, until a
sufficient number of colonies was reached, but before in-
dividual colonies started to fuse. A colony was defined
as containing at least 50 cells. Colonies were washed
with PBS, fixed with 10% paraformaldehyde for 30 min
and stained with 0.02% crystal violet in 2% ethanol at
room temperature (RT) for 15 min. Plates were washed
with tap water and dried at RT. Elution of the crystal
violet staining was done with 10% SDS and absorbance
was measured at 595 nm.

RNA isolation, reverse transcription, and quantitative real-
time polymerase chain reaction (qRT-PCR)

The analysis of gene expression was performed as previ-
ously described [51]. RNA isolation was performed using
the High Pure RNA Isolation Kit (Roche; Mannheim,
Germany), according to the manufacturer’s protocol.
RNA samples were quantified using Nanodrop (ND-
1000, Thermo Fisher Scientific, Erlangen, Germany). Re-
verse transcription of 500 ng RNA was performed using
SuperScript II reverse transcriptase and RNaseOUT™ Re-
combinant Ribonuclease inhibitor (all from Invitrogen,
Karlsruhe, Germany). The cDNA samples were analyzed
for gene expression by qRT-PCR, using a Power SYBR®
green-based PCR MasterMix (Applied Biosystems,
Darmstadt, Germany), according to a standard protocol
with the 7500 Fast Real-Time PCR System (Applied Bio-
systems, Carlsbad, CA, USA). The primer sequences
(Sigma-Aldrich, Hamburg, Germany) that were used are
listed in Table 1. The results were examined using the
AACT method and are shown as changes of gene ex-
pression relative to the GAPDH housekeeping gene.

Immunoblotting

Western blot analyses were performed as previously de-
scribed [52]. Total protein was isolated from treated cells
by using a sodium dodecyl sulfate (SDS)-based lysis buf-
fer (20 mM Tris/HCI pH 7.4; 1% SDS; protease inhibitor
cocktail (Roche)). Ten to 20 pg of protein were loaded
on a 10-12% SDS polyacrylamide gel electrophoresis
(SDS-PAGE). Proteins were blotted on nitrocellulose
membranes (0.2 um) and blocked using 5% bovine
serum albumin (BSA) or 5% nonfat dry milk in Tris-
buffered saline with 1% Tween-20 (TBS-T) at RT for at
least 1 h. After washing in 1x TBS-T, membranes were
incubated with primary antibody in blocking buffer at
4°C overnight. Subsequently, membranes were washed
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Table 1 Primers used in the study

Genes Sequences (5-3")
BCL-2 F: TGTGTGTGGAGAGCGTCAAC

R: GACAGCCAGGAGAAATCAAAC
GAPDH F: AGCCACATCGCTCAGACAC

R: GCCCAATACGACCAAATCC
IL6 F: TACCCCCAGGAGAAGATTCC

R: CTGCCAGTGCCTCTTT
IL-8 F: CTGGACCCCAAGGAAAACTG

R: TTCTCAGCCCTCTTCAAAAAC
sw F: GAACTGGCCCTTCTTGGAG

R: AAGTCTGGCTCGTTCTCAGTG
TGFB1 F: TGCTAATGGTGGAAACCCACAACG

R: TCTCGGAGCTCTGATGTGTTGAAG
TNFA F: CTCCTCACCCACACCATCAG

R: GGAAGACCCCTCCCAGATAG
VEGF F: GTGATGATTCTGCCCTCCTC

R: CCTTGCTGCTCTACCTCCAC

BCL-2 B-cell lymphoma 2, GAPDH glyceraldehyde 3-phosphate dehydrogenase,
IL6 interleukin 6, IL8 interleukin 8, SVV survivin, TGFB1 transforming growth
factor B1, TNFA tumor necrosis factor a, VEGF vascular endothelial growth factor

in 1x TBS-T and incubated with HRP-conjugated sec-
ondary antibodies at RT for 1h. The luminescent ECL
detection kit (Pierce, Thermo Fisher Scientific, Schwerte,
Germany) was used for visualization of the proteins.
Chemiluminescence was detected using MF-ChemiBIs
3.2 imager (Bio-Imaging Systems, Germany) and Gel-
Capture 7.0.18 software (DNR Bio-Imaging System Ltd.).
Original blots were cropped for the arrangement of the
final figures and are included in the supplementary
(Suppl. Figs. 5, 6, 7, 8).

Enzyme-linked immunosorbent assay (ELISA)

A human IL-6 ELISA kit (Peprotech, Hamburg,
Germany) was used to assess the secreted levels of IL-6
in the supernatants of IGROV-1 cells. Briefly, 96-well
ELISA plates (biomat srl, Rovereto, Italy) were coated
with capture antibody (1 pg/ml) against IL-6 and incu-
bated overnight at 4°C. Wells were washed (0.05%
Tween-20 in PBS) and blocked with 1% BSA in PBS.
After washing, ELISA plates were coated with superna-
tants of IGROV-1 cells (1:20 in 0.05% Tween-20 and
0.1% BSA in PBS) and incubated for 1 h at RT. To detect
cytokines bound to the capture antibody, ELISA plates
were washed again and subsequently coated with a de-
tection antibody (0.25 pg/ml) and Avidin-HRP-conjugate
(1:2000). The color development after adding ABTS sub-
strate (Sigma-Aldrich, Hamburg, Germany) was detected
using the FluoStar Omega (BMG labtech) at 405 nm,
with wavelength corrected at 650 nm.

Statistical analyses and software
Results are presented as means + standard error of the
mean (SEM), from experiments in technical duplicates
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repeated at least three times with biological replicates.
Outliers were determined via Grubb’s test. Group ana-
lyses were performed using one-way analysis of variance
(ANOVA) by GraphPad Prism 6.07 (GraphPad, La Jolla,
CA, USA). For direct comparisons between A2780 and
A2780cis cells, a two-way ANOVA with a Bonferroni
post-test was performed. P-values <0.05 were consid-
ered statistically significant.

Results

Statins and zoledronic acid inhibit the mevalonate
pathway and suppress vitality in IGROV-1 and A2780 cells
IGROV-1 and A2780 ovarian cancer cell lines were
treated with increasing concentrations of atorvastatin,
simvastatin, rosuvastatin, or zoledronic acid. IGROV-1
cells were treated for 48 h while A2780 cells were treated
for 24'h due to a higher sensitivity. The effective inhibition
of the mevalonate pathway was verified by the accumula-
tion of ungeranylgeranylated Rapla and unfarnesylated Ras
(Fig. 1a). While unprenylated Rapla appeared upon treat-
ments as a single band, unprenylated Ras was distinguish-
able by a second smaller band above the prenylated protein.
At a concentration of 1pM, atorvastatin and simvastatin
were already sufficient to block the mevalonate pathway, in-
dicated by a strong accumulation of ungeranylgeranylated
Rapla (Fig. 1a). The vitality of IGROV-1 cells was reduced
in a dose-dependent fashion with a maximal loss of 60% at
a concentration of 25 uM simvastatin/atorvastatin (Fig. 1b;
p <0.001). IGROV-1 cells were insensitive to 1-10 pM
rosuvastatin/zoledronic acid, but a significant loss of vitality
was achieved by 25-100 uM (Fig. 1b; p <0.001). Interest-
ingly, the clonogenic potential of IGROV-1 cells was
already significantly suppressed by 0.5 uM simvastatin (-
55% number of colonies; Suppl. Fig. 1; p <0.001). Com-
pared to IGROV-1, A2780 cells responded with a higher
sensitivity to any of the substances, with a reduction of cell
vitality by up to 80% using the highest concentrations after
48 h (Fig. 1b; p <0.001). In both cell lines, simvastatin was
the most potent of the used statins, with a significant re-
duction of cell vitality at 2.5 uM (p < 0.001).

Inhibition of the mevalonate pathway induces apoptosis
in IGROV-1 and A2780 cells

Next, we assessed activation of caspases 3 and 7 after
treatment of IGROV-1 and A2780 cells for 48 h with the
same concentrations of statins and zoledronic acid. A
significant induction of caspases 3/7 activity, by up to 6-
folds and up to 8-folds, was observed with increasing
concentrations of any statin and zoledronic acid in
A2780 and IGROV-1, respectively (Fig. 2a; p <0.001).
Again, A2780 cells appeared to be more sensitive to
statins compared to IGROV-1 cells as a significant acti-
vation of caspases 3/7 was obtained using 1 uM simva-
statin or 10 uM rosuvastatin (p < 0.01). In both cell lines,
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Fig. 1 The inhibition of the mevalonate pathway suppresses cell vitality in human IGROV-1 and A2780 ovarian cancer cells. a IGROV-1 and A2780
cells were treated for 48 h and 24 h, respectively, with increasing concentrations of atorvastatin (ATO), simvastatin (SIM), rosuvastatin (ROSU) or
zoledronic acid (ZOL). The inhibition of the mevalonate pathway was assessed by detection of Ras-related protein 1 (Rap1a, ungeranylated form
is detected) and unfarnesylated Rat sarcoma (Ras; upper band) using Western blot. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
used as loading control. The figures show representative blots which were cropped from original images. Full-length blots are presented in Suppl.
Fig. 5. Images were detected using GelCapture 7.0.18 software. b IGROV-1 and A2780 cells were treated with increasing concentrations of ATO,
SIM, ROSU, or ZOL for 48 h. Cell vitality was assessed by CellTiterBlue® assay. Data are shown as mean + SEM of at least three individual
experiments. (*p < 0.05; **p < 0.01; **p <0.001)

simvastatin was the most potent of the tested statins and
induced a 3-folds increase of caspases activity in
IGROV-1 cells and a 4.5-folds increase in A2780 at the
lowest concentration of 1 uM (Fig. 2a). Higher concen-
trations of zoledronic acid (> 25 uM) were necessary to
achieve significant results. Apoptosis was confirmed by
assessment of cleaved (poly-ADP) ribose polymerase
(cPARP) in both cell lines (Fig. 2a). A2780 cells were

more sensitive to the treatments with a strong accumu-
lation of cPARP already 24 h after treatment. Notably,
the treatment of IGROV-1 cells also significantly sup-
pressed the gene expression of the two anti-apoptotic
genes B-cell lymphoma 2 (Bcl-2) and survivin (Swv).
Whereas this suppressive effect was more pronounced
on Svv using any statin (by up to — 90% gene expression;
Fig. 2b; p <0.001), zoledronic acid had a stronger effect
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Fig. 2 (See legend on next page.)
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Fig. 2 The inhibition of the mevalonate pathway induces apoptosis in human IGROV-1 and A2780 ovarian cancer cells. a Anti-tumor effects
mediated by atorvastatin (ATO), simvastatin (SIM), rosuvastatin (ROSU) or zoledronic acid (ZOL) were assessed by the Caspase 3/7 Glo® assay after
treatment of IGROV-1 and A2780 cells for 48 h. Induction of apoptosis was further confirmed using Western blot based detection of cleaved poly
(ADP-ribose) polymerase (CPARP) 48 h after treatment of IGROV-1 cells and 24 h after treatment of A2780 cells, respectively. The equal protein
loading is shown by detection of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The figures show representative blots which were
cropped from original images. Full-length blots are presented in Suppl. Fig. 6. Images were detected using GelCapture 7.0.18 software. b Analysis
of the expression of the anti-apoptotic genes survivin (SVV) and B-cell lymphoma 2 (BCL-2) by quantitative real-time-PCR 48 h after treatment of
IGROV-1 cells with ATO, SIM, ROSU and ZOL. Data are shown as mean + SEM of at least three individual experiments. (*p < 0.05; **p < 0.01; **p < 0.001)

on Bcl-2 expression (- 85% gene expression; Fig. 2b; p <
0.001). Rosuvastatin was not able to significantly reduce
Bcl-2 expression. Bcl-2 levels in A2780 cells were not af-
fected by any of the mevalonate pathway inhibitors
(Suppl. Fig. 2). By contrast, Svv expression was decreased
by all agents, with simvastatin being the most potent
one, which suppressed Svv gene expression by 50% at a
concentration of 2.5 uM (Suppl. Fig. 2; p < 0.01).

The anti-tumor effects of statins and zoledronic acid in
IGROV-1 and A2780 cells are mediated by an inhibited
geranylgeranylation

The mevalonate pathway is essential for farnesylation and
geranylgeranylation of proteins by the production of FPP
and GGPP. To distinguish between the role of one or the
other prenylation route in the anti-tumor effects of statins
and zoledronic acid in ovarian cancer, rescue experiments
were performed. IGROV-1 cells were supplemented with
FPP or GGPP to specifically rescue farnesylation or gera-
nylgeranylation during mevalonate pathway inhibition.
The individual efficacy of both supplements to recover far-
nesylation or geranylgeranylation upon mevalonate path-
way inhibition was proven for the treatments with
simvastatin or zoledronic acid (Suppl. Fig. 3a). Only GGPP
was able to recover suppressed cell vitality (Fig. 3a) or acti-
vation of caspases 3/7 (Fig. 3b) upon the treatments with
any statin and zoledronic acid (p <0.001). FPP only par-
tially rescued the observed effects. Similar observations
were made in A2780 cells, where loss of vitality by meva-
lonate pathway inhibition was almost fully rescued by
GGPP but not FPP supplementation (Suppl. Fig. 3b; p <
0.001). Hence, blocked geranylgeranylation appeared more
critical in mediating the anti-tumor effects by mevalonate
pathway inhibition in IGROV-1 cells.

Statins and zoledronic acid suppress pro-inflammatory
cytokines in IGROV-1 cells

Several mediators support the growth, progression, and me-
tastasis of human ovarian cancer cells. The pro-
inflammatory cytokines IL-6, IL-8 and TNF-a are com-
monly present in the ascites of ovarian cancer patients [53,
54]. Therefore, the expression of these tumor-promoting
genes was assessed in IGROV-1 cells 24 h after treatments.
All statins and zoledronic acid significantly suppressed gene

expression of TNFa and IL8 (Fig. 4a; p < 0.001). For TNFa,
a significant reduction was already achieved upon 1 pM of
simvastatin or atorvastatin, whereas 10-25 uM rosuvastatin
or zoledronic acid were necessary to obtain comparable re-
sults (Fig. 4a). In general, higher concentrations of all agents
were needed to significantly block IL8 expression. More-
over, statins and zoledronic acid dose-dependently and sig-
nificantly inhibited gene expression of IL6 (- 95%; Fig. 4b;
p <0.001). Again, a strong inhibitory effect was already seen
with 1 pM simvastatin. These results were reflected by IL-6
protein levels measured in the supernatants of IGROV-1
treated cells. Lower concentrations of atorvastatin and sim-
vastatin (5 uM) achieved a significant decrease of IL-6
protein by 80%, whereas only higher levels of rosuvas-
tatin and zoledronic acid (25uM) led to comparable
results (Fig. 4b; p <0.001).

Statins and zoledronic acid suppress tumor-promoting
regulators in IGROV-1 and A2780 cells

An inflammatory microenvironment in ovarian cancer
accelerates the dissemination of tumor cells and metastases.
These events are facilitated by an increased vasculature per-
meability and by epithelial-mesenchymal transition. In this
regard, the pro-angiogenic vascular endothelial growth fac-
tor (VEGF) and the pro-migratory transforming growth fac-
tor (TGF)-P1 are considered key elements contributing to
tumor progression [9, 55]. Expression of VEGF was mea-
sured when IGROV-1 and A2780 cells were treated for 24
h, whereas TGFS1 expression was analyzed after 48 h of
treatments in IGROV-1 cells, since mild or no effects were
observed after 24 h (data not shown). All statins signifi-
cantly reduced VEGF and TGFj1 gene expression in
IGROV-1 cells by up to 60% (Fig. 5a; p <0.001). Again,
simvastatin was the most effective statin, leading to a 40%
reduction of VEGF at 1M (p <0.001), and of TGFSI at
2.5uM (p < 0.01). The effects were not enhanced by higher
concentrations. Rosuvastatin proved to be effective in low-
ering VEGF expression when used at 10puM (p <0.001),
and mediated a significant TGFfI reduction only at the
highest concentrations (p <0.01). Zoledronic acid failed to
induce a significant response. VEGF expression was also
seen to be significantly decreased in A2780 cells upon sta-
tins, but not upon treatment with zoledronic acid (- 50%;
Fig. 5b; p < 0.001).
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Fig. 3 The anti-tumor effects by simvastatin (SIM), atorvastatin (ATO), rosuvastatin (ROSU) and zoledronic acid (ZOL) in IGROV-1 cells are mediated
by inhibited geranylgeranylation. IGROV-1 cells were treated with ATO (10 uM), SIM (10 uM), ROSU (50 uM) or ZOL (50 uM), and supplemented
with 10 uM of either farnesyl pyrophosphate (FPP) or geranylgeranyl pyrophosphate (GGPP) for 48 h. a Cell vitality was assessed by CellTiterBlue®
assay. b Apoptosis was measured by the Caspase 3/7 Glo® assay. Data are shown as mean + SEM of at least three individual experiments. (*p <
0.05; **p < 0.01; ***p < 0.001 vs. respective control (C) or vs. respective treatment (-))
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Simvastatin induces apoptosis in cisplatin-resistant
A2780cis cells

One of the most challenging limitations in treating hu-
man ovarian cancer is the resistance of cancer cells to
platinum [22]. Therefore, the anti-tumor effects medi-
ated by statins and zoledronic acid were analyzed in the

cisplatin-resistant cell line A2780cis, in direct compari-
son with the parental cisplatin-sensitive A2780 cell line.
The relative cisplatin resistance of A2780cis cells was
confirmed by showing that cisplatin affected vitality and
apoptosis at higher doses, whereas parental A2780 cell
vitality was already suppressed at low concentrations
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Fig. 5 Statins reduce the expression of vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-B1 in IGROV-1 and A2780
cells. IGROV-1 (a) and A2780 (b) cells were treated with increasing concentrations of atorvastatin (ATO), simvastatin (SIM), rosuvastatin (ROSU) or
zoledronic acid (ZOL). Expression of VEGF (24 h) and TGFS1 (48 h) was assessed by quantitative real-time-PCR. Data are shown as mean + SEM of
at least three individual experiments. (*p < 0.05; **p < 0.01; ***p < 0.001 vs. respective control (0 uM))

(Suppl. Fig. 4a). As previously demonstrated, the treat-
ment of A2780 cells with mevalonate pathway inhibitors
suppressed cell vitality (- 90%; Fig. 6a; p < 0.001) and in-

duced caspase 3/7

activation by up to 5-folds (Fig. 6b;

p <0.001). Simvastatin and atorvastatin were more

potent compared to rosuvastatin and zoledronic acid as
significant anti-tumor effects were achieved at low con-
centrations (1-2.5uM). A2780cis cells showed relative
resistance to low concentrations of simvastatin, atorva-
statin, and zoledronic acid (Fig. 6). Here, vitality was
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(See figure on previous page.)

Fig. 6 Cisplatin-resistant A2780cis cells show relative resistance to statins and zoledronic acid (ZOL) compared to parental A2780 cells. A2780 and
A2780cis cells were treated with increasing concentrations of atorvastatin (ATO), simvastatin (SIM), rosuvastatin (ROSU) or (ZOL) for 48 h. Cell
vitality (@) and apoptosis (b) were assessed by CellTiterBlue® and Caspase 3/7 Glo® assays. Statistics refers to A2780cis cells. Data are shown as
mean + SEM of at least three individual experiments. (*p < 0.05; **p < 0.01; **p < 0.001 vs. respective control (0 uM). #p < 0.05; #ip < 0.01; ###p <

0.001 vs. respective value of A2780 treated cells)

significantly decreased only at higher concentrations
from 10 to 100 uM (- 30-40%; Fig. 6a; p < 0.001). These
effects differed significantly from the loss of vitality
achieved in A2780 cells that was attained already at
lower concentrations (1-10 pM; p < 0.001). Rosuvastatin
failed to induce significant effects on cell vitality in
A2780cis cells. For caspase 3/7 activation, high concen-
trations of rosuvastatin and atorvastatin (25—-100 uM) in-
duced a 3-folds increase of apoptosis in A27080cis cells
(Fig. 6b; p <0.001). Notably, although higher concentra-
tions (10-25uM) were required, simvastatin induced a
similar induction of caspases 3/7 activity in A2780cis
cells compared to A2780 cells (6-folds; Fig. 6b; p < 0.01).
These observations were confirmed by detection of
cPARP showing a dose-dependent induction of apop-
tosis, which was accompanied by a significant suppres-
sion of Svv gene expression in A2780cis cells (- 80%;
Suppl. Fig. 4b; p <0.001). Here, simvastatin was able to
block the mevalonate pathway even at concentrations as
low as 1uM (Suppl. Fig. 4b). Moreover, the pattern of
caspase 3/7 activation upon treatment with zoledronic
acid was similar between cisplatin-resistant and parental
cells (6-folds; Fig. 6b; p <0.01). These results demon-
strate that cisplatin-resistant A2780cis cells show relative
resistance to mevalonate pathway inhibitors, but respond
with a similar induction of significant apoptosis com-
pared to cisplatin-sensitive A2780 cells upon treatment
with simvastatin and zoledronic acid.

Discussion
Among human gynecologic malignancies, ovarian cancer
is the most lethal one [56]. The vast majority of patients
are diagnosed at an advanced stage, when the long term
survival rates are found to be as low as 20-30% [5].
Current therapeutic options are limited, particularly for
advanced ovarian cancer, because of recurrence, metas-
tasis and chemo-resistance to primary treatments or sec-
ondarily acquired resistance [10]. Statins and N-BP as
inhibitors of the mevalonate pathway have been widely
studied for their pleiotropic anti-tumor properties [24].
The rationale for targeting the mevalonate pathway in
ovarian cancer is underpinned by the evidence of a role
of the mevalonate pathway in ovarian cancer tumorigen-
esis. The HMGCR enzyme is overexpressed in several
human ovarian cancer cell lines, including IGROV-1 and
A2780 [29]. Moreover, late-stage metastatic ovarian can-
cer cells show a marked molecular reprogramming with

upregulation of several mevalonate pathway genes in-
cluding HMGCR [57]. High levels of cholesterol have
been linked to an increased risk of developing ovarian
and other cancer entities [33]. A number of retrospective
and case-control studies have shown a significant associ-
ation between pre- and/or post-diagnostic use of statins
and a reduced overall as well as ovarian cancer-specific
mortality have been described [58, 59]. A reduced risk of
developing ovarian or endometrial cancers was seen in
patients prescribed with bisphosphonates for more than
1 year before the diagnosis [60].

In our study, we demonstrate that statins and the N-BP
zoledronic acid reduce cell vitality and induce apoptosis in
the ovarian cancer cell lines A2780 and IGROV-1. These
observations match with studies describing similar effects
in vitro and in vivo in a number of human malignancies
[57, 61-72]. In the present study, the lipophilic statins
atorvastatin and simvastatin were more potent than the
hydrophilic rosuvastatin which is in line with studies in
breast and additional ovarian cancer cell lines, including
Hey 1B and OVCAR-3 [52, 63, 73-75]. The differences in
the chemical structure, the transport into cells via passive
membrane diffusion or via transporters and the varying
potential to alter the sterol metabolism within tumor cells
may account for variances in the anti-tumor effects
exerted by different statins [41, 63].

Not only did the individual effects among the used sta-
tins differ, but also the sensitivity of the used cell lines,
which is a known phenomenon in human cancer cell
lines [52, 76, 77]. This could be due to differences in the
molecular profile of A2780 and IGROV-1 cells. Al-
though both of them are estrogen receptor negative,
A2780 cells carry few mutations, whereas IGROV-1 are
considered as hyper-mutated and carry both familial and
sporadic mutations [78]. Moreover, simvastatin exerted
significant effects on apoptosis in cisplatin-resistant
A2780cis cells, although higher concentrations com-
pared to parental A2780 cells were necessary, indicating
a relative cross-resistance. Future studies might also in-
vestigate potential statin resistance mechanisms and bio-
markers of statin or N-BP sensitivity and whether these
may cross-interfere with mechanisms of cisplatin resist-
ance. We and others have demonstrated a restorative
feedback loop by induction of the statin targeting en-
zyme, the HMGCR, as a mediator of statin resistance in
human breast and prostate cancer as well as multiple
myeloma cells [52, 79, 80]. Similar mechanisms might
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occur in ovarian cancer cells, especially as cisplatin and
simvastatin induce a strong accumulation of HMGCR in
ovarian cancer cells [81, 82]. In times of personalized
medicine, it would be greatly relevant to identify patients
with those molecular subtypes, that would mostly benefit
from a statin or N-BP therapy, individually or in com-
bination with chemotherapy, as well as to define the op-
timal therapeutic window.

We demonstrated that the cytotoxic effects by statins
and zoledronic acid in IGROV-1 and A2780 cells were
mediated by an inhibited geranylgeranylation, rather
than by an inhibited farnesylation. These observations
were made in breast cancer cells using the same agents
[51]. In mice bearing Ovcar-4 ovarian cancer xenografts,
geranylgeraniol limits the anti-tumor effects of pitavasta-
tin [29]. The underlying mechanisms are potentially me-
diated by a disrupted function of geranylgeranylated Rho
proteins. Alendronate inhibits ovarian cancer cell migra-
tion through an inhibited geranylgeranylation and Rho
protein activation [83]. In addition, pitavastatin alters
the subcellular localization of RhoA, CDC42 and Ras in
several ovarian cancer cell lines [77].

The treatments with statins and zoledronic acid also
significantly reduced the expression of the anti-apoptotic
genes Bcl-2 and Swv, even in chemo-resistant A2780cis
cells, which is in line with studies in breast, colorectal,
and prostate cancer [84—87]. Bcl-2 as well as Svv have
been shown to be overexpressed in ovarian carcinomas
and are associated with chemo-resistance and a worse
prognosis [88-92]. The suppression of both genes by
statins and zoledronic acid offers a potential strategy to
overcome such resistance. Platinum resistance is a major
problem in the treatment of ovarian cancer, for which
different mechanisms account such as increased drug ef-
flux and inactivation, the ability to repair platinum-DNA
adducts, or overexpression of anti-apoptotic regulators
[93]. Additional studies might investigate, as to whether
or not statins and N-BP modulate anti-apoptotic genes
in these cells and if a concomitant treatment with plat-
inum would re-sensitize the cells and induce cytotoxicity
as seen in cisplatin-resistant SKOV3 cells [94]. The po-
tential advantage of such a combinatory approach is the
reduction of individual concentrations without the loss
or even with the increase of therapeutic effects and re-
duced side effects such as nephro- and neurotoxicity by
cisplatin [11].

Our study also demonstrates, that especially statins
significantly suppressed TNF-a, TFG-S1 IL-6, IL-8 and
VEGF in IGROV-1 and A2780 cells. These factors play
central roles in the accumulation of peritoneal fluid, in-
flammation, and angiogenesis, as well as in supporting
tumor promotion and metastases [54, 95-101]. More-
over, all of them are overexpressed and associated with
chemo-resistance and a poor prognosis in affected
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patients with ovarian cancer [54, 95-101]. The constitu-
tive expression of /L6 by ovarian cancer cells stimulates
TAMs of the tumor microenvironment thereby promoting
tumor growth [102]. IL-6 also promotes the production of
pro-angiogenic factors, like VEGF and IL-8 [96] and the
latter itself drives cell motility [103]. Constitutive secretion
of TNF-a leads to the further release of IL-6, VEGF, and
other factors that concomitantly sustain the vicious cycle
of malignant ascites [9, 54]. Targeting these tumor-
promoting soluble factors offers a therapeutic strategy in
ovarian cancer and might modulate the response of
chemo-resistant tumor cells to chemotherapy. VEGF sup-
pression was seen to reduce tumor burden and ascites for-
mation in several preclinical studies [104]. Successful
translation of these findings has led to the development
and evaluation of the VEGF targeting antibody bevacizu-
mab in clinical trials and its approval for the use in pa-
tients with ovarian cancer [13, 14]. Pharmacological
inhibition of IL-6 has also been positively evaluated in pre-
clinical and clinical studies [105]. The knockdown of IL-6
and IL-8 was shown to sensitize the tumor cells to cis-
platin treatment in lung and ovarian cancer, respectively
[106, 107]. Additional in vivo models using chemo-
sensitive and -resistant ovarian cancer cell lines are neces-
sary to evaluate the effects of statins and zoledronic acid,
individually and in combination with chemotherapy, on
these pro-tumorigenic factors.

Our study has several limitations, including the use of
in vitro cell models which do not fully reflect the
heterogenous pattern of molecular subtypes of human
ovarian cancer. Moreover, the levels of statins that are
reached in the serum of patients range between 0.002
and 0.1 pM [108] and the maximum concentration of
zoledronic acid administered to patients is 2 uM [109].
Hence, the clinically achievable concentrations of these
agents within tumor tissues and ascites might be too low
for direct antitumor effects. However, the clonogenic
assay revealed that even low concentrations of simva-
statin significantly impaired the number of newly formed
IGROV-1 colonies as a marker of the clonogenic potential.
These findings might translate into effective anti-tumor
effects of statins or even N-BP at low levels in the stage of
single tumor cell dissemination to secondary sites and
needs to be comprehensively analyzed in additional stud-
ies. In breast cancer, disseminated tumor cells can be
eliminated with N-BP therapy and this is associated with
an improved survival [110, 111]. For ovarian cancer, no
trials exist that investigated adjuvant N-BP therapy in the
context of single tumor cell dissemination.

Conclusions

In conclusion, our study demonstrates pleiotropic anti-
tumor effects in ovarian cancer cells in vitro, ranging
from loss of vitality, induction of apoptosis and
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suppression of mediators implicated in tumor cell sur-
vival, migration, angiogenesis, and metastasis. Additional
preclinical and clinical studies to evaluate the full anti-
tumor potential of statins and zoledronic acid are highly
warranted.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512885-020-07164-x.

Additional file 1: Suppl. Fig. 1. The colony-forming ability of IGROV1
cells is significantly impaired by simvastatin (SIM). IGROV1 cells were
seeded in 6-well plates (200 cells/cavity) and treated with atorvastatin
(ATO), SIM, rosuvastatin (ROSU) or zoledronic acid (ZOL) for 9-10 days.
The resulting colonies were stained with a crystal violet solution. a. The
crystal violet staining was eluted with 10% SDS and the absorbance was
measured at 595 nm. b. Counting of the colonies (absolute numbers). c.
Representative pictures of the colonies. Data are shown as mean + SEM
of at least three individual experiments. *p < 0.05 vs. respective control
©.

Additional file 2: Suppl. Fig. 2. Statins and zoledronic acid (ZOL) do
not modulate the expression of B-cell lymphoma 2 (BCL-2), but
downregulate survivin (SW) in A2780 cells. A2780 cells were treated with
increasing concentrations of atorvastatin (ATO), simvastatin (SIM),
rosuvastatin (ROSU) or ZOL for 24 h. Expression of BCL-2 and SVV was
assessed by real-time-PCR. Data are shown as mean + SEM of at least
three individual experiments. *p < 0.05; **p < 0.01; ***p < 0.001 vs. re-
spective control (0 pM).

Additional file 3: Suppl. Fig. 3. Farnesyl pyrophosphate (FPP) and
geranylgeranyl pyrophosphate (GGPP) specifically rescue farnesylation or
geranylgeranylation and vitality upon mevalonate pathway inhibition in
IGROV1T and A2780 cells. a. IGROV1 cells were treated with simvastatin
(SIM; 10 uM) or zoledronic acid (ZOL; 50 puM), and supplemented with
either FPP (50 pM) or GGPP (50 pM). Farnesylation of Ras,
geranylgeranylation of Rap1A and cleavage of poly (ADP-ribose)
polymerase (CPARP) were assessed by western blotting. Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was used as loading control. The
figures show representative blots which were cropped from original im-
ages. Full-length blots are presented in Suppl. Fig. 7. Images were de-
tected using GelCapture 7.0.18 software. b. A2780 cells were treated with
atorvastatin (ATO), SIM, rosuvastatin (ROSU) or ZOL and supplemented
with 10 uM of either FPP or GGPP for 48 h. Cell vitality was assessed by
CellTiterBlue® assay. Data are shown as mean + SEM of at least three indi-
vidual experiments. *p < 0.05; **p < 0.01; ***p < 0.001 vs. respective con-
trol (C). #p < 0.05; ##p < 0.01; ###p < 0.001 vs. respective treatment (-).

Additional file 4: Suppl. Fig. 4. A2780CIS are relative resistant to
cisplatin and undergo apoptosis upon mevalonate pathway inhibition
with simvastatin (SIM). a. A2780 and A2780CIS cells were treated with
increasing concentrations of cisplatin. Cell vitality was assessed by
CellTiterBlue® assay (left axis), whereas apoptosis was assessed by Caspase
3/7 Glo® assay (right axis). Data are shown as mean + standard deviation
of at least three individual experiments. b. A2780CIS cells were treated
with increasing concentrations of SIM for 48 h. Farnesylation of Ras,
geranylgeranylation of Rap1a, and cleavage of poly (ADP-ribose)
polymerase (cCPARP) were assessed by western blotting. Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was used as loading control. The
figures show representative blots which were cropped from original im-
ages. Full-length blots are presented in Suppl. Fig. 8. Images were de-
tected using GelCapture 7.0.18 software. Expression of SVV was assessed
by real-time-PCR. Data are shown as mean + SEM of at least three indi-
vidual experiments. **p < 0.01; ***p < 0.001 vs. respective control (0 uM).

Additional file 5: Suppl. Fig. 5. Uncropped Western Blots for Fig. 1a.
The figure shows all original uncropped blots. As some membranes were
used to simultaneously detect Ras and cleaved PARP (after cutting), the
pictures here also include the cleaved PARP original blots used for Fig. 2a
to keep the originality. All original blots for GAPDH are also included.
Representative cropped GAPDH images are shown in Fig. 1a.
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Additional file 6: Suppl. Fig. 6. Uncropped Western Blots for Fig. 2a.
The figure shows all original uncropped blots. As some membranes were
used to simultaneously detect Ras and cleaved PARP (after cutting), the
pictures here also include the Ras original blots used for Fig. Ta to keep
the originality. All original blots for GAPDH are also included.
Representative cropped GAPDH images are shown in Fig. 2a.

Additional file 7: Suppl. Fig. 7. Uncropped Western Blots for
Supplementary Figure 3a.

Additional file 8: Suppl. Fig. 8. Uncropped Western Blots for
Supplementary Figure 4b.
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