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Abstract 

Background:  Triple-negative breast cancer (TNBC) is widely concerning because of high malignancy and poor prog-
nosis. There is increasing evidence that alternative splicing (AS) plays an important role in the development of cancer 
and the formation of the tumour microenvironment. However, comprehensive analysis of AS signalling in TNBC is still 
lacking and urgently needed.

Methods:  Transcriptome and clinical data of 169 TNBC tissues and 15 normal tissues were obtained and integrated 
from the cancer genome atlas (TCGA), and an overview of AS events was downloaded from the SpliceSeq database. 
Then, differential comparative analysis was performed to obtain cancer-associated AS events (CAAS). Metascape was 
used to perform parent gene enrichment analysis based on CAAS. Unsupervised cluster analysis was performed to 
analyse the characteristics of immune infiltration in the microenvironment. A splicing network was established based 
on the correlation between CAAS events and splicing factors (SFs). We then constructed prediction models and 
assessed the accuracy of these models by receiver operating characteristic (ROC) curve and Kaplan–Meier survival 
analyses. Furthermore, a nomogram was adopted to predict the individualized survival rate of TNBC patients.

Results:  We identified 1194 cancer-associated AS events (CAAS) and evaluated the enrichment of 981 parent genes. 
The top 20 parent genes with significant differences were mostly related to cell adhesion, cell component connection 
and other pathways. Furthermore, immune-related pathways were also enriched. Unsupervised clustering analysis 
revealed the heterogeneity of the immune microenvironment in TNBC. The splicing network also suggested an obvi-
ous correlation between SFs expression and CAAS events in TNBC patients. Univariate and multivariate Cox regression 
analyses showed that the survival-related AS events were detected, including some significant participants in the 
carcinogenic process. A nomogram incorporating risk, AJCC and radiotherapy showed good calibration and moder-
ate discrimination.
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Introduction
Breast cancer is the most common cancer among women 
in the world, with the highest incidence, and is the sec-
ond leading cause of cancer-related death, which has 
strong impacts on national economic and social develop-
ment [1]. There are many kinds of breast cancers, among 
which triple negative breast cancer (TNBC) is a well-
known subtype with high invasion, a low survival rate 
and a lack of effective treatment, accounting for 15–20% 
of all breast cancers and becoming an intractable prob-
lem in the breast cancer field [2]. The clinical manifes-
tation of TNBC is an aggressive course, which is prone 
to local recurrence and distant metastasis. Once there 
is recurrence or metastasis, the median survival time is 
less than 1  year [3, 4]. The anti-programmed cell death 
(PD)-1 immunotherapy has taken on a favourable effect 
in TNBC according to the results of recent research, but 
the efficacy rate of these drugs is still low [5–7]. The poor 
prognosis of TNBC is closely related to its early high 
metastasis rate and recurrence rate [8–10], which sug-
gests the urgent need to develop new biomarkers with 
high accuracy to predict the prognosis of TNBC patients.

In recent years, research on cancer genomics has 
gradually opened a new chapter benefiting from the 
tremendous development of bioinformatics and high-
throughput technologies. A growing body of evidence 
shows that alternative splicing (AS) events play a pivotal 
role in the development of cancer and the formation of 
the tumour microenvironment [11, 12]. AS events have 
great influence in the process of mRNA precursor matu-
ration, bringing about the splicing of different mRNA 
isomers and the translation of protein variants, which is 
one of the key regulatory mechanisms for the diversity 
of the transcriptome and proteome [13, 14]. In normal 
physiological processes, more than 95% of human genes 
undergo AS and encode splicing mutations [15]. AS not 
only exerts an important influence in normal physiologi-
cal processes such as haematopoiesis and muscle [16, 
17] but also plays a crucial role in carcinogenic patho-
logical processes such as tumour proliferation, apoptosis, 
hypoxia, angiogenesis, immune escape and metastasis 
[18, 19]. Moreover, protein diversity leads to functional 
diversity, and quantitative change causes qualitative 
change. The production and accumulation of irregular 
AS events change the expression of some key splicing 

factors and promote the changes in the targeted AS par-
ent genes, which together provide an advantage for the 
growth or survival of cancer cells [20]. Therefore, increas-
ing amounts of attention have been paid to research on 
the effect of AS events on the cancer prognosis. The com-
prehensive analysis of AS events is expected to provide 
new potential biomarkers for the diagnosis and prognosis 
of cancer.

The prognostic value derived from AS events has been 
confirmed in a variety of cancer types, including liver 
cancer [21], head and neck tumours [22], kidney car-
cinoma [23], and pancreatic cancer [24]. However, to 
our knowledge, comprehensive analysis of AS signals 
in TNBC is lacking. Because of the severe prognosis of 
TNBC, it is urgent and necessary to carry out relevant 
research. In our study, we obtained and integrated tran-
scriptome and clinical data of 169 TNBC tissues and 15 
adjacent normal tissues from the cancer genome atlas 
(TCGA) and downloaded the data of AS events from 
the SpliceSeq database. Then, several bioinformatic and 
statistical methods were performed to analyse the func-
tion and prognostic value of AS events in TNBC patients, 
which filled in the blanks of TNBC in the aspect of AS 
events and laid a theoretical foundation for guiding clini-
cal work and evaluating patient prognosis.

Methods
Data collection based on TCGA​
We collected the transcriptome data and the clinical 
information of TNBC tissues and normal breast tissues 
from the TCGA data portal. We also downloaded data for 
AS events from the TCGA SpliceSeq database. There was 
a broad consensus that the goal of using Percent Spliced 
In (PSI) [25] ranging from 0 to 1 is to quantify events. We 
then set a strict set of screening conditions (sample per-
centage with a PSI value of 75 and an average PSI value 
of 0.05) to ensure the reliability of AS events included in 
subsequent analysis. Ultimately, 169 TNBC patients were 
included in our research.

Screen for cancer‑associated AS (CAAS) events 
between TNBC and normal tissues
To analyse the significantly differentially expressed AS 
events between tumour and normal samples, 169 TNBC 
and 15 normal tissues were used to perform differential 

Conclusion:  Our study revealed AS events related to tumorigenesis and the immune microenvironment, elaborated 
the potential correlation between SFs and CAAS, established a prognostic model based on survival-related AS events, 
and created a nomogram to better predict the individual survival rate of TNBC patients, which improved our under-
standing of the relationship between AS events and TNBC.
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analysis using the “limma” package. We took log FC (log 
twofold change) and false discovery rate (FDR) as the 
indexes to observe the expression differences, that is, 
associated adj.p values. We set the condition of | log2fc 
|≥ 1 and FDR/adjusted P < 0.05 to represent the upregula-
tion and downregulation of relevant events, respectively.

Functional enrichment analysis and exploration 
of the immune microenvironment
Based on the CAAS events, we further performed 
enrichment analysis of the corresponding parent genes. 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analyses were performed 
in metascape (www.metas​cape.org). The first 20 impor-
tant pathways, if possible, were shown in the KEGG and 
GO analyses. Additionally, the TCGA TNBC cohort 
was classified by hierarchical consensus clustering. We 
employed the ConsensusClusterPlus package for the 
sake of clustering in an unbiased and unsupervised man-
ner, and patients were classified into several clusters 
[26]. To obtain a robust classification, the optimal num-
bers of clusters were further validated according to the 
Elbow method and the Gap statistic. The differences in 
immune cells and the tumour immune microenviron-
ment between the three clusters were compared by K-W 
test or the Wilcoxon rank-sum test.

Building of potential SF–AS regulatory network
Studies have shown that splicing factor (SF) plays an 
indispensable role in regulating the development and 
progress of malignant tumors [27, 28].We downloaded 
SF data from the SpliceAid2 database (https​://www.intro​
ni.it/splic​ing.html).Pears​on correlation analysis was used 
to analyze the relationship between SFs expression and 
PSI values of CAAS events. Absolute value of correla-
tion coefficient > 0.5, P < 0.001 is considered to be cor-
related.The correlation plot was generated by Cytoscape 
(version3.7.2).

Construction of prognostic models and survival analysis
To further understand the prognostic value of AS events 
in TNBC patients, univariate Cox regression analysis was 
performed to determine survival-related DEAS events, 
including OS (overall survival)- and PFS (progression-
free survival)-related DEAS events. Meanwhile, the 
UpSetR package in R was performed to draw two UpSet 
diagrams to show the interactions between seven types 
of survival-related CAAS events [29, 30]. Next, the least 
absolute shrinkage and selection operator (LASSO) 
regression was applied to identify the final elimination 
of potential predictors with non-zero coefficients [31], 
which can avoid model overfitting to obtain a better-
fitting model. Furthermore, predictive models according 

to the results of LASSO Cox regression were constructed 
using multivariate Cox regression analysis. Based on PSI 
values and multivariate Cox analysis, we calculated the 
risk scores of each patient and obtained the correspond-
ing coefficients, respectively. Risk score can be obtained 
by the following formula: score =

∑
n

i=0
PSI × βi , where β 

is the regression coefficient.
A total of 169 TNBC patients were divided into high- 

and low-risk groups bounded by the median of risk score, 
and Kaplan–Meier survival analysis was performed to 
determine whether they had completely different prog-
noses. Furthermore, receiver operating characteristic 
(ROC) curves of 2, 3, and 4 years were generated to show 
the discrimination of predictive signatures.

Development of an AS‑clinic nomogram
A nomogram is an easy to use tool for clinical practice, 
especially in clinical oncology. Therefore, we utilized AS-
based risk scores and clinical variables to develop 2 nom-
ograms. First, we used univariate Cox analysis to screen 
corresponding variables related to survival, including OS 
and PFS. We utilized a forward stepwise variable selec-
tion with the Akaike information criterion (AIC) to fil-
ter the variables included in the final model nomogram. 
Finally, we created calibration curves to assess the pre-
dictive accuracy of the final nomogram and adopted the 
concordance index (C-index) as an index to quantify its 
discrimination capacity with the help of Hmisc package 
(version 4.1.1).

Statistical analysis
All statistical analyses were performed in R software, ver-
sion 3.6.1. All statistical tests with p < 0.05 (two-sided) 
were statistically significant.

Results
Identification of CAAS events
A flow chart summarizing the present work is shown in 
Fig. 1. We integrated the AS profiling of 169 TNBC tis-
sues and 15 normal tissues to determine whether there 
were significant differences in AS events between tumour 
tissues and corresponding paracancerous normal tissues. 
Finally, we screened and identified 1194 differentially 
expressed CAAS events using the conditions of | log2fc 
|≥ 1 and FDR/adjusted P < 0.05. Meanwhile, a heat map 
(Fig.  2a) and a volcano plot (Fig.  2b) were generated to 
visualize CAAS events.

Subsequently, enrichment analysis was performed, 
and the results are shown in Fig. 3. The top 20 results 
of enrichment pathways disclosed by biological pro-
cesses in GO analysis included “adherens junction”, 
“cell cortex”, and “cell adhesion molecule binding”, 
among which the molecular functions of the cellular 

http://www.metascape.org
https://www.introni.it/splicing.html).Pearson
https://www.introni.it/splicing.html).Pearson
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Fig. 1  Flowchart of the systematic profiling of cancer-associated alternative splicing in TNBC in the study design.TCGA, The Cancer Genome Atlas; 
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Fig. 2  Identification of cancer-associated alternative splicing events (CAASs) in TNBC. a Heatmap of the CAASs between 169 cases of TNBC tissues 
and 15 cases of paracancerous tissues. b Volcano plot of CAASs identified in TNBC. The red and green points in the plot represent upregulated and 
downregulated CAASs, respectively
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components (CC) accounted for the majority (Fig. 3a). 
The gene networks of the same top 20 results are dis-
played in Fig.  3b. Furthermore, it was suggested by 
KEGG enrichment analysis that some key pathways 
were relevant to the survival of TNBC patients, such 
as “MAPK signalling pathway”, “Cell cycle”, “Adher-
ens junction”, “Leukocyte transendothelial migration” 
and “Focal adhesion” (Fig.  3c), whose interrelations 
of various pathways are illustrated in Fig. 3d. In addi-
tion, some KEGG pathways related to TNBC tumo-
rigenesis and treatment difficulties were abundant, 
including “Viral carcinogenesis”, “Pathways in can-
cer”, “Autophagy” and “Platinum drug resistance”. 
Another interesting phenomenon was the enrich-
ment of immune-related pathways, such as “Leuko-
cyte transendothelial migration” and “PPAR signalling 
pathway”, which indicated that CAAS events in TNBC 
are also involved in immune microenvironment 
formation.

Association between CAAS events and the tumour 
microenvironment
These findings reminded us that the tumour-immune 
microenvironment turbulence in TNBC could be a prog-
nostic factor for patients. Therefore, we further per-
formed an unsupervised consensus analysis to assess the 
internal profile of the immune microenvironment based 
on CAAS events. We divided the patients into three clus-
ters (Fig.  4a), among which there were significance dif-
ferences in the expression levels of some immune cells, 
such as “Mast cell resting (P < 0.001)”, “T cell regulatory 
(P < 0.01)”, “Macrophages M1 (P < 0.01)”, “Eosinophils 
(P < 0.01)”, and “T cell CD4 memory resting (P < 0.01)” 
(Fig. 4b–d). The stimulation of immune cell infiltration in 
the C1 cluster was more than that in C2 cluster, which 
indicated that the generation of different immune states 
may have a great relationship with the classification of 
CASS clusters (Fig.  4d). Furthermore, the consensus 
matrix heatmap showed the difference of immune cell 

Fig. 3  Functional enrichment analyses of the parent genes corresponding to nearly 1000 significant cancer-associated alternative splicing events 
(CAASs) in TNBC, including GO and KEGG. a Bar graph showing the top 20 results from the GO enrichment analysis. b GO enrichment analysis 
showing the gene networks. c Bar graph showing the top 20 results from the KEGG enrichment analysis. d KEGG enrichment analysis showing 
the enrichment of various pathways. The contents of a row of coloured squares on the left of Figure b and Figure d correspond in parallel to the 
contents of the right of Figure a and Figure c. GO Gene Ontology, KEGG Kyoto Encyclopedia of Genes and Genomes
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Fig. 4  CAAS-based clusters significantly associated with immune microenvironment features (CIBERSORT P > 0.05). a Consensus clustering analysis 
identification of three clusters (samples, n = 165. The white (consensus value = 0, samples never clustered together) and blue (consensus value = 1, 
samples always clustered together) heatmap colours display sample consensus. b Heatmap of CAASs ordered by clusters showing differential 
expression of immune cells between patients. c Heatmap of CAASs ordered by clusters displaying the distribution of immune cells in each patient. 
The asterisk in the upper right corner of the immune cells indicates that the differential expression is significantly different. “*” represents P < 0.05; 
“**” represents P < 0.01; “***” represents P < 0.001. d A demonstration of the specific expression of differentially expressed immune cells in clusters 
according to Fig. 4b and c. e Immune score and stromal score between CAAS-based clusters
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expression among different clusters (Fig. 4b, c). Besides, 
there was no difference in T cell CD4 memory resting, 
Macrophages M1 and T cell regulatory (adaptive immu-
nity) between C1 and C3, but the difference was greatest 
in innate immune characteristics (Eosinophils and Mast 
cell resting) (Fig. 4d).

To further explore the underlying immunophenotypes 
among the three clusters, differences in the immune 
microenvironment among the CAAS-based clusters 
were further analyzed (Fig. 4E). The immune and stromal 

scores were calculated based on the ESTIMATE algo-
rithm to quantify the presence of stromal cells and the 
infiltration of immune cells in tumor samples. We found 
that the immune phenotypes of the three clusters had a 
certain degree of heterogeneity, and we also noticed that 
C3 always had a higher immune and stromal score, fol-
lowed by C1, and C2 was the lowest, which is similar to 
the situation of immune cell infiltration level (Fig. 4d).

Fig. 4  continued
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Regulatory network of CAAS events and SFs
It is well known that SF plays an important regula-
tory role in the change and formation of AS events. 
For the purpose of exploring their potential connec-
tions, we downloaded a total of 71 SFs data from the 
SpliceAid2 database. Then Pearson correlation analysis 

was performed to determine the correlation between the 
PSI value of CAAS events and SF expression. The sig-
nificant correlations (|r| ≥ 0.5, p < 0.001) were selected to 
construct the regulation network (Fig. 5). The regulation 
network consists of 53 CAAS events, of which 36 were 
adverse AS events (red dots) and 17 were favorable AS 

Fig. 5  Splicing correlation network in TNBC. Expression of fifteen SFsb (bule dots) were positively (red lines)/negatively (green lines) correlated with 
PSI values of CAAS events with favorable prognosis (green dots) or CAAS events with inferior prognosis (red dots)
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events (green dots), were significantly correlated with the 
15 SFs (blue dots). We can find that most of the SFs were 
correlated with multiple AS events and played opposite 
roles in regulating different AS events. Similarly, a part 
of the AS events could be regulated by different SFs. This 
phenomenon partly explained that the same transcript 
can produce multiple different splicing events. Interest-
ingly, the majority of the adverse AS events were posi-
tively correlated with SF expression (red lines), whereas 
the majority of favorable AS events were negatively cor-
related with SF expression (green lines).

Identification of survival‑related CAAS events in TNBC
By performing univariate Cox regression analysis, a total 
of 48 CAAS events were identified as OS-associated 
CAAS events, while 48 CAAS events were identified as 
PFS-associated CAAS events. Considering that a gene 
may have two or more AS events that are significantly 
related to the prognosis of TNBC, the UpSet plot maybe 
be the best choice to show the distribution of survival-
related AS events in the seven AS types and visualize the 
intersection set from two study endpoints of OS and PFS 
(Fig. 6a; the upper and lower parts are related to OS and 
PFS, respectively). Both figures agreed that AP (alternate 

promoter) is the most common event related to the prog-
nosis of TNBC.

Establishment and assessment of the prognostic signature 
for TNBC patients
After conducting univariate regression analysis, LASSO 
regression was performed to select the optimal survival-
related AS events to construct the prediction mod-
els to avoid model overfitting based on OS (Additional 
file  1) and PFS (Additional file  2), respectively (Fig.  6b, 
c). Meanwhile, the risk scores of each TNBC patient 
were calculated, and all patients were divided into low- 
and high-risk groups bounded by the median risk score 
(Fig.  7a; the columns on the left represent OS, whereas 
the columns on the right represent PFS). K-M curves 
and log-rank tests were plotted to explore the relation-
ship between risk score and survival status. The survival 
probability of low-risk patients was higher than that of 
high-risk patients; in other words, high-risk patients had 
a higher mortality rate, exactly as illustrated in Fig.  7b 
(P < 0.0001). We then applied ROC analysis to compare 
the predictive power of these prognostic models, which 
showed a robust and significantly improved perfor-
mance, whose AUCs of ROC in 2, 3, and 4 years were all 

Fig. 6  Selection of the optimal survival-related AS events in TNBC used for construction of the final prediction model by using Upset plot and 
LASSO Cox regression based on OS and PFS. a Upset plots of the intersections between the seven types of survival-related AS events. b LASSO 
coefficient profiles of the candidate survival-related AS events. A coefficient profile plot was produced against the logλ sequence. LASSO coefficient 
profiles of the candidate survival-related AS events. c Dotted vertical lines were drawn at the optimal values by using the minimum criteria. The 
upper parts and the bottom are related to OS and PFS, respectively. AS alternative splicing, TNBC triple negative breast cancer, LASSO least absolute 
shrinkage and selection operator, OS overall survival, PFS progression-free survival
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Fig. 7  Analysis of the AS multivariate prognostic model in TNBC from two aspects of OS and PFS. a Upper part shows the risk score curves for 
survival-AS events; the middle shows survival status and survival times of TNBC patients ranked by risk score. The black dotted line represents the 
optimum cut-off point dividing patients into low- and high-risk groups; the bottom shows the heat map of the PSI value of survival-AS events. 
Colours from red to blue indicate decreasing PSIs from high to low. b Upper part shows the Kaplan–Meier curves for the high- and low-risk groups; 
the middle shows the number of living patients variation with time in the high- and low-risk groups; the bottom shows the number of censoring 
variation with time in the high- and low-risk groups. Blue colour represents low-risk group data, whereas yellow colour represents high-risk group 
data. c The ROC curves of prognostic models at 2, 3 and 4 years. Blue colour represents 2 years, red colour represents 3 years, and green colour 
represents 4 years. The columns on the left represent OS, whereas the columns on the right represent PFS. PSI percent spliced in, ROC receiver 
operator characteristic, AUC​ area under the curve
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greater than 0.900 (Fig. 7c). Interestingly, we also found 
four overlapping AS events (AFMIDl94690lES, MCF2Ll-
26315lAP, EPB41l1411lES, ZNF219l26517lAP), with sig-
nificant differences found in the analysis of two different 
study endpoints, OS and PFS simultaneously, indicating 
that they are most likely independent prognostic factors 
(Fig. 7a).

AS‑clinic nomogram for predicting individual prognosis 
of TNBC patients
The results of univariate Cox analysis of clinic charac-
teristics, including OS and PFS, are displayed in Table 1, 
which showed that risk, AJCC, radiotherapy, and N stage 
were OS-related factors and that risk, AJCC, T stage, N 
stage, M stage, and radiotherapy were PFS-related vari-
ables. Then, with the forward stepwise selection on opti-
mizing AIC applied based on multivariate Cox analysis 
(Table  2), we finally chose three variables, including 
risk, AJCC and radiotherapy, for developing OS and PFS 
nomograms (Fig.  8a, Fig.  8e). There was good agree-
ment between the predicted value and the actual value, 
which was confirmed by the calibration curve of these 
nomograms for the probability of survival at 2, 3, or 
4  years (Fig.  8b–d, Fig.  8f–h), respectively. The C-index 
for the OS nomogram was 0.939 (95% CI, 0.900–0.978), 
whereas the C-index for the PFS nomogram was 0.867 
(95% CI, 0.777–0.957). These outcomes revealed that the 

nomogram had major clinical application value in pre-
dicting long-term survival probability.

Discussion
Recently, great breakthroughs have been made in the 
study of the potential significance of AS profiling in 
tumour biology with the enormous progress of high-
throughput sequencing technology. Although the prog-
nostic capacity of AS events has been widely confirmed 
in many cancers [21–24], the comprehensive profiling of 
AS events in TNBC patients is still lacking. In this study, 
we obtained and integrated clinical and AS events data 
from the cancer genome atlas (TCGA) and the SpliceSeq 
database to obtain 1194 CAAS events and identified 
the AS events related to survival. Moreover, two CAAS 
event-based signatures were generated. It was found that 
the prognosis of patients in the low-risk group was bet-
ter than that in the high-risk group. Additionally, CAAS-
based risk, AJCC and radiotherapy were identified as 
independent OS- and PFS-related variables, which were 
incorporated into nomograms, and the results indicated 
that the two nomograms can serve as effective tools for 
clinical practice with TNBC patients.

In the present study, two CAAS event-based signa-
tures were developed and showed a favourable predictive 
capacity. Interestingly, five overlapping AS events were 
identified among the splicing events, with significant dif-
ferences based on OS and PFS simultaneously, including 
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Fig. 7  continued
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AFMIDl94690lES, MCF2Ll26315lAP, EPB41l1411lES, 
ZNF219l26517lAP and PCNXL2|10324|AT, suggest-
ing that they are the most likely independent prognos-
tic factors. AFMID (arylformamidase) is located on 
chromosome 17q25.3 and encodes arylformamidase, 

a control enzyme in tryptophan metabolism. Consist-
ent with our findings, Krainer et al. also found that spe-
cific splicing events of the AFMID gene are significantly 
associated with survival in hepatocellular carcinoma 
(HCC) patients. The conversion of the AFMID subtype 

Table 1  Screening clinical variables related to prognosis by univariate analysis in TNBC cohort

HR hazard ratio, AJCC American Joint Committee on Cancer, NA not applicable

OS PFS

HR 95% CI P HR 95% CI P

Risk 24.311 3.264 181.084 0.002 20.068 4.771 84.404 0.000

Age 1.018 0.985 1.052 0.288 1.006 0.978 1.034 0.699

AJCC

 I-II 0.000 0.000

 III-IV 6.079 2.492 14.829 0.000 4.879 2.259 10.535 0.000

 NA 1.203 0.138 10.462 0.867 1.300 0.171 9.866 0.800

M

 0 0.323 0.001

 1 3.478 0.677 17.864 0.135 18.603 3.882 89.139 0.000

 NA 1.223 0.280 5.339 0.789 1.219 0.364 4.084 0.748

N 4.468 1.746 11.430 0.002 2.994 1.423 6.296 0.004

T

 1-2 0.190 0.131

 3-4 2.574 0.931 7.116 0.068 2.425 1.026 5.735 0.044

 NA 0.000 0.000 0.000 0.981 0.000 0.000 0.000 0.983

Radiotherapy

 No 0.000 0.001

 Yes 0.315 0.121 0.826 0.019 0.439 0.173 1.111 0.082

 NA 0.060 0.017 0.207 0.000 0.159 0.060 0.419 0.000

Race

 Asian 0.304 0.791

 White 0.192 0.023 1.571 0.124 0.363 0.046 2.834 0.334

 Black 0.361 0.044 2.973 0.344 0.435 0.054 3.521 0.435

 NA 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.980

Table 2  Detailed information of specific AS events involved in final prognostic model by multivariate analysis

HR hazard ratio, AJCC American Joint Committee on Cancer, NA not applicable

OS PFS

HR 95% CI P HR 95% CI P

Risk 32.503 2.105 501.818 0.013 0.040 0.005 0.301 0.002

AJCC

 I-II 0.000 0.000

 III-IV 16.561 4.728 58.007 0.000 6.939 2.786 17.282 0.000

 NA 0.273 0.026 2.876 0.280 11.715 0.674 203.462 0.091

Radiotherapy

 No 0.000 0.002

 Yes 0.318 0.102 0.995 0.049 0.543 0.198 1.490 0.236

 NA 0.023 0.005 0.113 0.000 0.164 0.053 0.504 0.002
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represents a new regulatory step in tryptophan/kynure-
nine metabolism, revealing the disruption of neonatal 
NAD + biosynthesis in hepatocytes in the early stages 
of tumour development [32]. In addition, NAD + is 
an important coenzyme in the energy metabolism of 
eukaryotic cells [33]. Previous studies have shown that 
NAD + supplementation can extend the life span of mice 
[34]. However, the ratio of NAD + /NADH in cancer cells 
is very low, and they maintain enough NAD + by convert-
ing pyruvate to lactate to achieve high-speed glycolysis 
while shutting down other sources of NAD + production 
[35]. In summary, repairing AFMID splices may lead to 
the augmentation of NAD + production and DNA repair. 
Therefore, it is expected that AFMID splicing could 
become a therapeutic target and a source of new cancer 
drugs after additional research.

Regarding PCNXL2 (pecanex-like 2), namely 
FLJ11383|KIAA0435, a previous report suggested that 
it might have a certain influence on the tumorigenesis 
of colorectal carcinomas with high microsatellite insta-
bility [36], which may be a new breakthrough point for 
immunotherapy with the progress of genomics research 
and the maturation of protein antibody preparation tech-
nology. Nevertheless, the main focuses of recent studies 
were established based on the correlation of PCNXL2 
as a novel susceptibility locus of thyroid cancer [37, 38], 
which was speculated to be related to the prognosis of 
thyroid cancer. In addition, there is a broad consensus 
that the emergence of chemotherapy resistance is also a 
major problem affecting the therapeutic effect. MC2L is 
one of the guanine nucleotide exchange factors, which 
may link the potential signalling pathway through RAC1, 
RHOA and CDC42, also named DBS/DBLs Big Sister, 
belonging to the DBL family [39]. Research has shown 
that MCF2L/DBS MCF2L may play an important role 
in gemcitabine resistance of primary pancreatic cancer 
patients [40], which may provide some explanations for 
the causes of TNBC chemotherapy resistance. It should 
be noted that the EPB41 gene encodes Erythrocyte Mem-
brane Protein Band 4.1, which belongs to the family of 
cytoskeletal proteins that play important roles in main-
taining normal cell morphology and cell adhesion, migra-
tion, division, and intercellular signalling [41–43]. Many 
studies have revealed the capacity of EPB41 to predict 
the prognosis of various cancers and its critical role in 
the development of tumours, such as breast cancer [44], 

meningiomas [45], prostate cancer [46], and hepatocel-
lular carcinoma [47]. Together, this evidence supports 
the biological relevance of EPB41 in tumour biology. Our 
findings are mostly consistent with the above results, but 
further research is still needed.

Moreover, we also found that the parent genes of 
CAAS events were significantly enriched in several func-
tions and pathways, revealing the potential molecular 
functions and signalling pathways associated with TNBC 
progression and treatment difficulties. In addition, some 
immune-related mechanisms were also identified, such 
as “Leukocyte transendothelial migration” and “PPAR 
signalling pathway”. Previous research had proven that 
PPARγ (peroxisome proliferator-activated receptors) is 
a key regulator of lipid and glucose metabolism in many 
cell types, with robust anti-inflammatory activity in 
immune cells [48, 49]. Moreover, PPARγHigh /RXRαS427F/Y 
interferes with CD8 + T cell infiltration and participates 
in immunotherapy resistance. Knockdown of PPARγ or 
RXRα and inhibition of PPAR can restore immune sur-
veillance and sensitivity to immunotherapy [50]. Inspired 
by these findings, we further investigated potential inter-
actions between CAAS events and the tumour micro-
environment. Unsupervised clustering analysis was 
adopted and found that the expression levels of some 
immune cells between clusters, such as “Mast cell resting 
(P < 0.001)”, “T cell regulatory (P < 0.01)”, “Macrophages 
M1 (P < 0.01)”, “Eosinophils (P < 0.01)”, and “T cell CD4 
memory resting (P < 0.01)”, were significantly different, 
demonstrating that differences in CAAS could lead to 
changes in the tumour immune microenvironment. Pre-
vious studies have shown that high infiltration of M1 [51] 
and CD4 T cells, E0 expression [52], mast cell expression 
[53], and low Treg expression [54] or other states are the 
best state of hot tumours, which can increase the efficacy 
of immunotherapy. What’s more, the main difference 
between the three clusters was the infiltration level of 
innate and acquired immune cells, which was verified by 
differential analysis of the underlying immunophenotype 
and immune microenvironment.In addition, we also dis-
covered the heterogeneity of the immune microenviron-
ment in TNBC based on the consensus matrix heatmap, 
which could to some extent explain the clinical phenom-
enon that PD-1 / PD-L1 immunotherapy had different 
effects on TNBC patients.

(See figure on next page.)
Fig. 8  AS-clinic nomograms for predicting the individualized survival rates of TNBC patients for two aspects of OS and PFS. a, e Construction of 
AS-clinic nomograms for TNBC patients to predict 2, 3, and 4 year OS (a) and PFS (e), which were incorporated with 3 variables, including risk, AJCC 
and radiotherapy. b–d, f–h Calibration plots of the AS-clinic nomograms in terms of agreement between nomogram-predicted and observed 2, 
3, and 4 year outcomes of the TNBC cohort, including OS (b–d) and PFS (f–h). The 45º dashed line represents the ideal performance. The actual 
performances of the model are represented by the red lines, and the figures from left to right show the 2, 3, and 4 year results
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Additionally, the potential involvement of splicing fac-
tors was also considered in our analysis. Splicing correla-
tion network revealed that the relationship between SFs 
and AS was not a one-to-one correspondence, but had 
multiple interactions, which partly explained the diver-
sity of AS events. And the other thing that was interesting 
was that the majority of the adverse AS events were posi-
tively correlated with SF expression, whereas the major-
ity of favorable AS events were negatively correlated with 
SF expression, which may provide a way to elucidate the 
potential mechanism of splicing pathways involved in 
patient survival. However, due to the limited number 
of acquired SFs, we were unable to screen out survival-
related data for study. Therefore, the survival regulation 
mechanism of the SF‐AS network was not yet clear and 
in-depth functional investigation was necessary.

Our study was the first to analyse the AS profile in 
TNBC from multiple perspectives, selected the most rel-
evant prognostic factors, established a prognostic model 
with high accuracy, and further accurately predicted 
the individual survival rate of TNBC patients. Moreo-
ver, the immune microenvironment turbulence in the 
TNBC population was revealed from the perspective of 
immunology. However, it is inevitable that our research 
still has several limitations that we should consider. First, 
the TNBC-related data we obtained through the TCGA 
database included only 169 cases, the sample size was not 
large enough, and our results were only verified by the 
TCGA dataset without additional external datasets. Sec-
ond, adjacent normal tissues do not necessarily represent 
the origin of tumour cells, whose changes in expression 
may not be a requirement for splicing variants to func-
tion [55]. In addition, our study is based on pure bioin-
formatics analysis and lacks clinical validation. Therefore, 
further studies of the biological role and molecular mech-
anism of AS events in TNBC tumorigenesis are needed.

In summary, this study has enriched AS profiling 
research on breast cancer, simultaneously and for the first 
time unveiling the characteristics of AS events in TNBC. 
In addition, we established a powerful prognostic model 
to accurately predict the prognosis of TNBC patients. 
More importantly, this comprehensive analysis based 
on differentially expressed AS events has enhanced our 
understanding of AS events promoting tumorigenesis 
and development, which are more likely to be potential 
clinical biomarkers and therapeutic targets and provide 
guiding significance for future basic research and clinical 
work.

Conclusion
Based on the comprehensive bioinformatics analy-
sis, our study was the first to showed that AS events 
were closely linked to tumorigenesis and the immune 

microenvironment in TNBC. Further, we established the 
prediction model with good performance in basis of sur-
vival-related AS events. Besides, we identified five inde-
pendent prognostic factors, including AFMIDl94690lES, 
MCF2Ll26315lAP, EPB41l1411lES, ZNF219l26517lAP 
and PCNXL2|10324|AT, each worthy of further investi-
gation.These findings provided insight into the connec-
tion between AS events and TNBC.
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