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Abstract

Glucocorticoids are steroid hormones produced by the adrenal cortex in a circadian manner 

and they participate in many physiological and pathological processes. Synthetic glucocorticoids 

have been universally applied to treat inflammatory diseases and immune disorders. Due to 

their angiostatic property, glucocorticoids are often added to regimens for cancer treatment. In 

the current review, we summarize how glucocorticoids influence angiogenesis in common solid 

tumors based on literature from the last ten years. Usage of glucocorticoids can be a double-edged 

sword in the treatment of some malignancies. There are still unanswered questions about the role 

of glucocorticoids in the treatment regimens of some common cancers. Therefore, we suggest 

prudent and restricted administration of glucocorticoids to treat solid tumors.
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Glucocorticoids and the Glucocorticoid Receptor.

Glucocorticoids (GCs) are defined by their role in maintaining glucose homeostasis and 

natural GCs are a class of corticosteroids secreted by the adrenal cortex [1]. Cortisol is 

the most important natural GC in humans. Cellular cortisol levels are regulated by the tissue-

specific metabolic enzymes 11β-hydroxysteroid dehydrogenase 1 and 2 (11β-HSD 1 and 2); 

11β-HSD 1 converts inactive cortisone to active cortisol, while 11β-HSD 2 has the opposite 

function [2]. The relative activity of these enzymes is responsible for maintaining the 

balance of cortisol in vivo. The release of cortisol into the circulation is involved in a variety 

of systemic processes such as immune responses, metabolism, cell growth, development, 

and reproduction [3]. Additionally, due to the multi-functional features of GCs, more and 

more synthetic GCs, such as hydrocortisone, dexamethasone (DEX), prednisone (PRED), 

triamcinolone acetonide (TA) and budesonide (BUD) are being widely-prescribed in clinical 

settings [4,5].
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GCs trigger gene transcription by interacting with the glucocorticoid receptor (GR). GR 

is encoded by the gene NR3C1 and acts as a ligand-inducible transcription factor [6]. By 

specific alternative splicing, GR has several common isoforms, including GRα and GRβ. 

GRα is the classical GR isoform which has strong binding affinity for GCs, while the 

GRβ splice variant does not bind GCs, instead functioning as a natural inhibitor of the 

GRα isoform on many GC-responsive target genes [7]. Increased expression of GRβ has 

been associated with GC resistance, which may be due to competition for transcriptional 

co-regulators, or the formation of inactive GRα/GRβ heterodimers [2].

GC-GR signaling functions in two ways: via genomic effects and via non-genomic effects 

[8]. The former is the canonical manner which depends on GR-mediated transcription and 

protein synthesis. Once binding with GCs, GR rapidly translocates to the nucleus and 

subsequently regulates the transcription of its target genes through genomic mechanisms [9]. 

Unlike the genomic effect, which usually takes place in hours, the non-genomic effect of 

GC-GR signaling can arise within minutes because such an action is initiated at the cell 

surface via either membrane binding [10] or cytoplastic GR [11], rather than requiring GR to 

translocate to the nucleus. Due to different mechanisms between genomic and non-genomic 

effects of GC-GR signaling, GCs also exert distinct actions in different diseases.

Mechanisms of GC regulation of angiogenesis

GCs are angiostatic and are used to treat angiogenesis-related diseases, including diabetic 

retinopathy and solid tumors. Several studies illustrate how GCs regulate angiogenesis. 

As shown by Shikatani et al., corticosterone decreased the number of capillaries in rat 

skeletal muscle and inhibited proliferation, migration, and sprouting of skeletal muscle 

microvascular endothelial cells in vitro [12]. After treatment with corticosterone, endothelial 

cells showed diminished VEGF mRNA levels, as well as reduced production and activation 

of MMP-2, correlating with inhibition of cell sprouting within a 3D collagen matrix. 

The expression of Sp1, a transcriptional regulator of both VEGF and MMP-2, was also 

demonstrated to be down-regulated by corticosterone. In vitro, TA treatment decreased 

the protein expression of the cellular and soluble forms of VEGF and VEGFR-1 as well 

as vascular network forming capacity through the Akt/mTOR pathway in a time- and 

dose-dependent manner [13].

The Wnt/β-catenin signaling pathway also appears to be critical in vascular endothelial cells 

and acts through a variety of regulators, including Bach1 [14], Rspo1 [15], Endostar [16], 

and ERG [17]. Once Wnt/β-catenin signaling is triggered, β-catenin binds to TCF in the 

nucleus, and alters the expression of key drivers and regulators of angiogenesis, such as 

VEGF, IL-8, Cyclin D1 and MMP-2 [18]. Using a ChIP-seq approach as well as a validate 

mouse model, we have recently shown that loss of endothelial GR results in the upregulation 

of Wnt signaling both in vitro and in vivo [19]. Therefore, we hypothesize that steroid 

microenvironments in endothelial cell networks have important implications for regulation 

of angiogenesis. The regulatory effects of GCs on angiogenesis are shown in Figure 1.

In general, GCs can regulate angiogenesis via two main approaches: (i) suppression 

of proliferation, migration and sprouting in endothelial cells and (ii) reduction of the 

Liu and Goodwin Page 2

J Cell Signal. Author manuscript; available in PMC 2020 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



secretion or expression of key cytokines and/or proteins responsible for the upregulation 

of angiogenesis.

Role of GCs in Cancer Treatment

Synthetic GCs have been globally applied for the treatment of inflammatory and immune 

disorders, including rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, 

and nephrotic syndrome [20]. In addition, owing to their ability to induce apoptosis in 

hematological cells, GCs are used as chemotherapeutic agents for the treatment of acute 

lymphoblastic leukemia (ALL), chronic lymphoblastic leukemia (CLL), multiple myeloma 

(MM), Hodgkin’s lymphoma (HL) and non-Hodgkin’s lymphoma (NHL) [21–25].

For non-hematologic malignancies, GCs can have either adjuvant or curative effects, 

depending on the subtype of tumor as well as the specific treatment protocols. For instance, 

due to their anti-emetic and anti-edemic properties, GC administration is nearly always 

added to surgery, radiotherapy or chemotherapy, where they can relieve symptoms of the 

primary disease, alleviate side effects of chemotherapy, and protect healthy tissues from 

cytotoxic effects induced by chemotherapeutic treatment [26–28].

In breast cancer, data from an animal model [29] demonstrated the treatment with TA 

decreased capsular thickness of the tumor, mild mononuclear inflammation, and negative 

or minimal angiogenesis in rabbits. However, according to Flaherty’s study, both in 66CL4 

breast cancer cells and the mouse breast cancer model, GCs can induce DNA damage 

through an inducible nitric oxide synthase (iNOS)- mediated pathway by increasing levels of 

nitric oxide (NO); increased NO further stimulated by GC signaling may serve to promote 

angiogenesis through VEGF in a chronic stress model [30].

In prostate cancer, Yano et al. revealed that GCs acted directly through GR and suppressed 

two major angiogenic factors, VEGF and IL-8, in the androgen-independent prostate cancer 

cell line DU145. Additionally, in a xenograft model, except for intratumor VEGF and IL-8 

gene expression, DEX treatment also inhibited angiogenesis and in vivo tumor growth [31]. 

Nevertheless, evidence exists that the GC signaling pathway can increase the diameter of 

blood vessels and vessel area in tumor tissues from prostate cancer patients [32].

In bladder cancer, Ishiguro et al. [33] showed that both DEX and PRED could repress 

the expression of MMP-9, VEGF, and IL-6 in UMUC3 and TCC-SUP human urothelial 

carcinoma cell lines. However, another study evaluated the effects of DEX on cell 

proliferation, apoptosis, and invasion in bladder cancer cells lines and found that, although 

DEX impeded cell invasion and the expression of angiogenesis-related genes (MMP-2/

MMP-9, IL-6, and VEGF), as well as induced mesenchymal-to-epithelial transition, it also 

correlated positively with cell proliferation in mouse xenograft models and resulted in a 

significant reduction in the curative effects of cisplatin [34].

In glioblastoma multiforme (GBM), DEX treatment didn’t result in any changes either 

in total vessel area or average vessel size compared to vehicle treatment in a mouse 

model. Furthermore, clinical data implied that GCs might decrease the effectiveness of 

radiotherapy and chemotherapy as well as reduce overall survival in GBM patients [35]. 
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According to Llaguno-Munive’s study [36], mifepristone (Mife), which is considered 

an antiglucocorticoid, was used in combination with chemoradiotherapy (Rad) and 

Temozolomide (Tmz) to treat GBM in mice. After 25 days, the tumor volume of the Rad + 

Tmz + Mife group was significantly less than that of the Rad + Tmz group. Furthermore, the 

expression of VEGF also decreased in the Rad + Tmz + Mife group. Several other clinical 

studies also showed that a decrease in GC use could improve the prognosis of GBM [37,38].

In melanoma, a new class of cationic lipid-DEX conjugate containing a C-8 carbon 

chain analogue (DX8), was used to study the efficiency of GCs on tumor-bearing mice. 

After calculating the area stained by VEGFR2 in endothelial cells, DX8 decreased the 

level of VEGFR2 in tumor-endothelial cells, implying DX8’s anti-angiogenic role in 

melanoma [39]. As demonstrated in Licarete’s study [40], the administration of prednisolone 

disodium phosphate (PLP) could improve doxorubicin cytotoxicity on B16.F10 murine 

melanoma cells in vitro via the inhibition of the proangiogenic function of tumor-associated 

macrophages (TAMs). Another study [41] revealed that HYC16, a kind of cationic lipid 

modification of hydrocortisone, exhibited significantly less VEGFR2 expression and lower 

density of vascular endothelial cells in mice, indicating HYC16 had an evident anti-

angiogenic effect and substantiated its ability to inhibit tumor growth.

In HCT116 and HT29 colon cancer cell lines, DEX treatment inhibited HIF-1α protein 

levels and its downstream gene, VEGF mRNA levels. Also, the presence of DEX suppressed 

the mRNA levels of hypoxia-induced Snail, Slug, and Twist as well as hypoxia-induced 

integrin αVβ6 protein levels, which is a well-known EMT marker for colon cancer cells 

[42]. Based on Patras’s study [43], prednisolone-loaded long-circulating liposomes (LCL-

PLP) + LCL-5-FU combination therapy resulted in lower expression of M-CSF, MCP-t, 

eotaxin, leptin, G-CSF, IGF-II, IL-1α, IL-1β, IL-9, IL-12p40, FasL, bFGF, and VEGF in 

C26 colon carcinoma tissue, which implies antiinflammatory and anti-angiogenic effects of 

LCL-PLP.

In a rat liver cancer model, compared to a glucuronolactone alone group, tumor 

nodule number and micro vessel density in the glucuronolactone + hydrocortisone group 

were significantly lower at week 12. Additionally, significantly decreased levels of 

macrophages, TNF-α, p-p38, NF-κB, IL-10, HGF, TGF-β1, and VEGF were observed in 

the paraneoplastic tissue of the glucuronolactone + hydrocortisone group when compared 

with the glucuronolactone group. The results suggest that hydrocortisone treatment 

reduces macrophage polarization, inflammatory and antiinflammatory cytokines levels, and 

angiogenesis in paraneoplastic tissue [44]. Similar results were also obtained in a mice 

model as the tumor weight in the DEX treatment group was observed to be significantly 

lower than that in the control group. Both tumor blood vessel density and total blood vessel 

length in the DEX group were smaller than those in the control group. These results indicate 

that DEX has an inhibitive effect on tumor growth and angiogenesis in murine liver cancer 

in situ [45].

As reported in Geng’s study [46], Lewis lung carcinoma cells were inoculated in C57BL/6 

mice, and the mice were randomly divided into 3 groups: a control group, a cisplatin group, 

and a DEX group. The results demonstrated that tumor growth was suppressed in the both 
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cisplatin group and the DEX groups. In addition, tumor weights decreased in the cisplatin 

and DEX groups compared to the control group. The expression of HIF-1α and VEGF and 

the density of micro vessels were also significantly lower in the cisplatin and DEX groups 

than in the control group. However, these changes were not significantly different between 

the cisplatin group and DEX group, indicating DEX could effectively inhibit the growth and 

angiogenesis of Lewis lung carcinoma to the same extent as cisplatin, by suppressing the 

expression of HIF-1α and VEGF. Sun’s study also achieved a similar conclusion [47].

Overall, the anti-angiogenic mechanisms of GCs in cancer treatment can be summarized as 

follows: either (a) direct effects on tumor-derived vasculature and other cellular populations 

from the tumor microenvironment and (b) indirect effects via affecting cancer cell-derived 

factors [4]. In different subtypes of cancer, GCs regulate angiogenesis in diverse manners, 

including upregulation and downregulation (Table 1).

Outstanding Questions

Though the role of GCs in the anti-angiogenic treatment of particular types of solid tumors 

is clear, there are other tumors for which GC treatment remains unclear. For example, in 

gastrointestinal cancer Busada et al. removed circulating GCs in mice by adrenalectomy, 

and showed the rapid onset of spontaneous gastric inflammation, oxyntic atrophy, and 

spasmolytic polypeptide-expressing metaplasia (SPEM), a putative precursor of gastric 

cancer [48]. Therefore, the authors hypothesized that endogenous glucocorticoid signaling 

was essential in preventing spontaneous gastric inflammation and metaplasia as well as 

gastric cancer development.

In renal cancer, an in vitro study investigated the relationship between Mife and apoptosis. 

Human renal carcinoma cell (RCC) lines, Caki, A498, ACHN, HT29, and SK-Hept were 

treated with Mife and the results revealed Mife enhanced the sensitivity of RCCs to 

tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through 

induction of DR5 expression and reduction of Bcl-2 and c-FLIP(L) expression [49]. 

However, the effect of Mife on TRAIL sensitization was independent of GR signaling.

In ovarian cancer, a study in 2006 demonstrated premedication with DEX prior to 

cisplatin or gemcitabine abrogated the growth-inhibitory or apoptotic response of the 

chemotherapeutic agents in the ovarian carcinoma cell lines, SKOV3, OAW-42, OVM, and 

M130 [50]. Furthermore, xenograft tumors in mice treated with DEX and cisplatin grew 

as fast in vivo as untreated controls, which indicated that the presence of GCs reduced 

the efficiency of chemotherapy. Additionally, another in vitro study [51] demonstrated 

that cytotoxic cisplatin and/or paclitaxel treatment decreased cellular attachment by 51% 

and resulted in significant cell death as compared to controls. But when simultaneously 

administered with cisplatin and/or paclitaxel treatment, DEX increased cell survival and 

adhesion in parallel and in a dose-dependent manner, implying DEX completely blocked 

apoptosis induction by cytotoxic treatment. Therefore, the use of GCs in the treatment of 

ovarian cancer is currently discouraged.

Liu and Goodwin Page 5

J Cell Signal. Author manuscript; available in PMC 2020 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusions

Due to the anti-angiogenic feature of GCs, they are now regarded as an effective treatment 

for solid tumors. However, our review of the literature from the last ten years, reveals that 

the administration of GCs can be a double-edged sword in cancer therapy. Especially for 

breast cancer and prostate cancer, the introduction of GCs might promote angiogenesis 

under certain conditions. For the treatment of bladder cancer and GBM, the administration 

of GCs might decrease the effectiveness of radiotherapy and chemotherapy. But in 

melanoma, colon cancer and liver cancer, the angiostatic effect of GCs seems evident and 

straightforward. These discrepancies highlight the pleiotropic effects of GCs in different 

tumor environments. Therefore, considering the established adverse effect profile of GCs, 

we strongly suggest a prudent and individualized use of GCs in the treatment of solid 

tumors.
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Abbreviations

ALL Acute Lymphoblastic Leukemia

BUD Budesonide

CLL Chronic Lymphoblastic Leukemia

DEX Dexamethasone

GBM Glioblastoma Multiforme

GC Glucocorticoid

GR Glucocorticoid Receptor

HL Hodgkin’s Lymphoma

iNOS inducible Nitric Oxide Synthase

LCL Long-Circulating Liposome

Mife Mifepristone

MM Multiple Myeloma

NHL Non-Hodgkin’s Lymphoma

NO Nitric Oxide

PLP Pyridoxal Phosphate

PRED Prednisone
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Rad Radiotherapy

RCC Renal Carcinoma Cell

SPEM Spasmolytic Polypeptide-Expressing Metaplasia

TA Triamcinolone Acetonide

Tmz Temozolomide

11β HSD 1, 2

11β Hydroxysteroid Dehydrogenase 1, 2
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Figure 1: 
The regulatory effects of GCs on angiogenesis
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