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Abstract

The nociceptive transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal 

receptor for multiple painful stimuli, hence actively pursued as a target for analgesic drugs. We 

identified a small peptide toxin RhTx2 from the Chinese red-headed centipede that strongly 

modulates TRPV1 activities. RhTx2, a 31-amino-acid peptide, is similar to a TRPV1-activating 

toxin RhTx we have previously discovered but with four extra amino acids at the N terminus. We 

observed that, like RhTx, RhTx2 activated TRPV1, but RhTx2 rapidly desensitized the channel 

upon prolonged exposure. Desensitization was achieved by reducing both the open probability and 
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the single-channel conductance. RhTx2 is not only a tool to study the desensitization mechanism 

of TRPV1, but also a promising starting molecule for developing novel analgesics.
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1. Introduction

TRPV1 ion channel is a non-selective cation channel highly expressed in dorsal root 

ganglion nociceptive neurons (Caterina et al., 1997). It has been shown that, when TRPV1 

was inhibited by antagonists or genetically knocked out, pain sensation was largely 

attenuated in animal models, validating TRPV1 as a potential target for analgesic drugs 

(Caterina et al., 2000). As a polymodal receptor, TRPV1 is activated by a plethora of 

physical and chemical stimuli such as noxious heat above 40 °C, capsaicin in chili peppers, 

extracellular acidification and divalent cations, as well as peptide toxins (Tominaga et al., 

1998; Zheng, 2013; Yang et al., 2010; Yang et al., 2015; Yang and Zheng, 2017; Yang et al., 

2018; Cao et al., 2014; Yang et al., 2014). In particular, the sting or bite by venomous 

animals such as scorpions and centipedes elicits excruciating pain due to TRPV1-activating 

toxins in their venoms (Siemens et al., 2006; Yang et al., 2015; Yang et al., 2017). 

Previously we have identified a peptide toxin, RhTx, from the venom of Chinese red-headed 

centipede that strongly activates TRPV1 (Yang et al., 2015). RhTx is a 27-amino-acid short 

peptide containing two pairs of disulfide bonds. Its activation of TRPV1 can explain the 

burning pain caused by centipede bites.

Peptide toxins have been valuable tools for the study of ion channels (Zheng and Trudeau, 

2015). For example, scorpion toxins like CTX were used to probe the pore of potassium 

channels (Hidalgo and MacKinnon, 1995). For structural study of ion channels, spider toxin 

DkTx was employed to stabilize and acquire the open state structure of TRPV1 channel 

(Cao et al., 2013; Bohlen et al., 2010). ProTx II and HwTx IV assisted the structure 

determination of voltage-gated sodium channels (Shen et al., 2018). Using RhTx, we have 

previously demonstrated that the outer pore domain of TRPV1 is critically involved in its 

heat activation process. We also observed that the channel desensitization induced by RhTx 

is mechanistically similar to the heat desensitization (Yang et al., 2015; Luo et al., 2019).

Besides being tools for scientific research, peptide toxins have been developed as drugs 

because of their high affinity and selectivity for targets (Robinson et al., 2017; Ombati et al., 

2018). For instance, the conotoxin ziconotide is an analgesic drug targeting voltage-gated 

calcium channels (Safavi-Hemami et al., 2019). TRPV1 is also a validated target for 

analgesics (Julius, 2013). However, as TRPV1 is critically involved in body temperature 

regulation (Gavva et al., 2007), small molecule blockers of this channel failed in clinical 

trials as they often caused severe side effects such as altered body temperature and heat 

sensation in patients (Gavva, 2009; Garami et al., 2018). Therefore, to develop novel 

molecules targeting TRPV1 as analgesics, alternative strategies that can inhibit TRPV1 

activities are required.
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In this study, we have identified a variant of RhTx from the venom of the Chinese red-

headed centipede Scolopendra subspinipes mutilans, which contains four more residues at 

the N terminus. We named this 31-residue peptide toxin RhTx2. Like RhTx, RhTx2 

activated TRPV1; however, RhTx2 desensitized the channel with significantly faster 

kinetics. We explored the structural mechanisms underlying toxin binding and 

desensitization with computational modeling and docking in combination of functional 

analyses. Our results suggest that a distinct structural mechanism underlies RhTx2 

interaction with TRPV1.

2. Results

2.1. Identification of RhTx2

From the venom of the Chinese red-headed centipede (Fig. 1A), we previously found a 27-

residue peptide toxin RhTx (Yang et al., 2015). The gene encoding RhTx translates into a 

69-residue peptide (Fig. 1B), which is much larger than RhTx. We hypothesized that the 69-

residue peptide undergoes post-translational modification, which likely yields multiple 

matured peptides including RhTx. We further purified the venom fraction containing RhTx 

with molecular weight from 2000 to 8000 Da (dashed box, Fig. 1B) using a C18 RP-HPLC 

(Waters, Milford, CT, USA) column. We identified a peptide, termed RhTx2, from the 

fraction indicated by an arrow in red (Fig. 1C) that is identical to RhTx except for four 

additional residues (NSKY) at its N terminus (Fig. 1D). We determined the molecular 

weight of native RhTx2 to be 3458.8 Da by matrix-assisted laser desorption/ionization time-

of-flight (MALDI--TOF) mass spectrometry (Bruker Daltonik GmbH, Leipzig, Germany) 

(Fig. 1E), which is consistent with its amino acid sequence (Fig. 1D, highlighted in yellow). 

To facilitate functional studies of RhTx2, we performed refolding of chemically synthesized 

RhTx2 peptide. The molecular weight of our refolded RhTx2 is 4 Da less than that of the 

linear peptide (Fig. 1F and G, respectively), supporting the formation of two disulfide bonds. 

Co-elution of the native and refolded RhTx2 exhibited only one peak in HPLC, which is 

distinct from that of linear RhTx2 peptide (Fig. 1H). These results demonstrated that the 

conformation of synthesized and refolded RhTx2 is similar to that of the native toxin with 

two disulfide bonds formed between Cys9-Cys20 and Cys14-Cys27, respectively. Therefore, 

we used the synthesized and refolded RhTx2 in all functional studies.

We have previously determined the structure of RhTx with NMR (Yang et al., 2015), which 

forms a compact structure stabilized by two pairs of disulfide bonds (Fig. 2A, PDB ID: 

2MVA). We have computationally modeled the structure of RhTx2 with four more residues. 

After three rounds of loop modeling using the Rosetta computational structural biology suite 

(Leaver-Fay et al., 2011), the model with the most favorable energy suggested that the N 

terminal NSKY residues adopted a helical conformation (dashed box in red, Fig. 2B and E). 

As compared to RhTx (Fig. 2A and C), RhTx2 exhibited a large patch of positively charged 

electrostatic surface (blue, Fig. 2D). Such a patch is formed by three residues: K3, R19 and 

K30. The orientation of the side chain in the extra residue K3 is similar to that of R19, so 

they form a large patch together. The N1 residue likely forms two hydrogen bonds with the 

last residue E31 (Fig. 2F, dotted lines in blue), which is expected to stabilize the 

conformation of the N terminus in RhTx2. Because the extracellular side of plasma 
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membrane is negatively charged, these four extra residues are expected to impose a profound 

impact on the function of RhTx2.

2.2. RhTx2 activates and desensitizes TRPV1 channel

To characterize the function of RhTx2, we first tested whether it activates TRPV1 like RhTx. 

With patch-clamp recording, we observed that when RhTx2 was perfused from extracellular 

side, it robustly activated TRPV1 expressed in HEK293T cells (Fig. 3A). RhTx2 applied to 

the intracellular side failed to open TRPV1 (Fig. 3B and C), indicating that RhTx2 also 

binds to the outer pore region of TRPV1 like RhTx (Yang et al., 2015). Consistently, RhTx2 

activation cannot be blocked by capsazepine as the mixture of RhTx2 and capsazepine (289 

μM and 300 μM, respectively) still activated TRPV1 (Fig. 3D). Capsazepine is a competitive 

inhibitor to TRPV1 agoinist capsaicin, which binds to the transmembrane domains of 

TRPV1(Cao et al., 2013; Yang et al., 2015). However, the concentration-response curve of 

RhTx2 was rightward shifted, showing that the EC50 value was increased from 0.47 ± 0.03 

μM of RhTx to 38.35 ± 4.61 μM for RhTx2 (Fig. 3E). The Hill coefficients of RhTx and 

RhTx2 were similar (1.02 ± 0.06 and 0.79 ± 0.08, respectively). This nearly 100-fold change 

in EC50 suggests that apparent binding affinity of RhTx2 to TRPV1 was much lower than 

RhTx. As compared to TRPV1, RhTx2 induced current activation in the closely related 

TRPV2 and TRPV3 channels was much smaller (Fig. 4A–C), indicting the toxin is selective 

for TRPV1 channel.

Besides changes in EC50, another striking feature of RhTx2 was that it induced rapid 

TRPV1 desensitization upon prolonged application (Fig. 3A). Though RhTx also 

desensitized TRPV1 with prolonged application (Luo et al., 2019) (Fig. 3F), desensitization 

by RhTx2 was significantly faster (Fig. 3F and G). Moreover, with RhTx2 the steady state 

open probability in the desensitized state was also significantly lower than that of RhTx (Fig. 

3F), suggesting that RhTx2 leads to more complete TRPV1 desensitization. We further 

measured the recovery of TRPV1 from RhTx2 induced desensitization (Fig. 4D). We found 

that upon desensitization, little recovery was observed in about 6 min, indicating the 

recovery is a fairly slow process. Desensitization serves as an important way to regulate ion 

channel functions. RhTx2 with a fast desensitization kinetics is a promising starting point 

for understanding the mechanisms of channel desensitization as well as for developing an 

inhibitor of TRPV1 ion channel.

2.3. Mechanisms of TRPV1 desensitization by RhTx2

We explored the mechanisms of RhTx2-induced desensitization with patch-clamp. With 

single-channel recordings, we observed that on the same membrane patch of TRPV1 

channels, perfusion of 300 μM RhTx2 first induced strong channel opening (as reflected in 

current levels from O1 to O5, Fig. 5A). As the channels started to desensitize, both their 

open probabilities and single-channel currents were reduced (Fig. 5A and B). In fact, the 

single-channel conductance was significantly reduced from 154.4 ± 10.8 pS to 65.8 ± 6.7 pS 

(Fig. 5C). Therefore, desensitization of TRPV1 current involves two mechanisms: decrease 

of open probability and decrease in single-channel conductance upon prolonged RhTx2 

application.
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2.4. Potential structural mechanisms underlying toxin binding and channel 
desensitization

Since RhTx binds to the outer pore region above the pore helix to activate TRPV1 channel 

(Yang et al., 2015), we docked the RhTx molecule to both the closed and open state 

structures of TRPV1 (Fig. 6A–D). From docking we observed that in both states, RhTx 

binds to similar out pore region of TRPV1, though the relative orientation of the RhTx 

molecule is different in these two states. Given that the outer pore region undergoes 

substantial conformational changes as revealed by the cryo-EM structures (Cao et al., 2013; 

Liao et al., 2013) (PDB ID: 3J5P and 3J5Q for the closed and open states, respectively) as 

well as FRET imaging in live cells (Yang et al. 2010, 2014), it is reasonable that the binding 

configurations of RhTx molecule are different. Furthermore, we reasoned that the 

structurally similar RhTx2 may also bind to the vicinity of pore helix to alter both the open 

probability and single-channel conductance. To investigate how RhTx2 binds and 

desensitizes TRPV1 channel, we computationally docked RhTx2 to the cryo-EM structure 

of TRPV1 channel in the closed state and toxin-activated state (PDB ID: 3J5P and 3J5Q, 

respectively) (Cao et al., 2013; Liao et al., 2013). We observed that the docking 

configurations of RhTx2 to the closed state of TRPV1 is indeed similar to that of RhTx, 

where they resided above the pore helix in the outer pore region (Fig. 6E and F). With 

positively charged Lys in the N terminus of RhTx2 (Fig. 2D), this helical domain pointed 

downward to the negatively charged cell membrane surface (dashed box in red and shaded 

green, respectively. Fig. 6F).

In single-channel recordings, we observed that when RhTx2 desensitized TRPV1 channel, 

the single-channel conductance was significantly reduced (Fig. 5). Consistent with this 

observation, when RhTx2 was docked to the open state of TRPV1, it bound preferentially 

right above the entrance of selectivity filter (Fig. 6G), where it may sterically hinder the 

permeation of ions through the selectivity filter (Fig. 6H). Therefore, our docking 

experiments suggested that when RhTx2 initially contacts TRPV1 channel which is still in 

the closed state, it binds to the periphery of the selectivity filter to first open the channel. As 

TRPV1 transits from the closed state to the open state, the binding configuration of RhTx2 

changes to a central position above the selectivity filer, where it hinders ion permeation 

through the channel pore.

3. Discussion

In this study we have identified a peptide toxin RhTx2 from the venom of Chinese red-

headed centipede (Fig. 1). Like RhTx (Yang et al., 2015), RhTx2 also activates the 

nociceptive TRPV1 channel, but prolonged perfusion of RhTx2 rapidly desensitizes TRPV1 

by reducing both the channel open probability and single-channel conductance (Fig. 5). We 

reasoned that such differences in the functional properties of RhTx2 is largely attributed to 

the extra four residues NSKY at its N terminus as compared to RhTx. Our previous NMR 

study has revealed that the conformation of the N terminus of RhTx is highly flexible (Yang 

et al., 2015). In RhTx2, the four extra residues likely formed a helical structure based on our 

modeling studies (Fig. 2E). Moreover, with the addition of the four extra residues in RhTx2, 

in our structural model of RhTx2 the N1 residue likely forms two hydrogen bonds with the 
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last residue E31 (Fig. 2F, dotted lines in blue), which is expected to stabilize the 

conformation of the N terminus in RhTx2. As the positively charged K brings the N 

terminus of RhTx2 towards the cell membrane, like a lever it alters the binding conformation 

of other parts of the toxins, which further may lead to sterical hinderence of the binding of 

RhTx2 and changes in binding affinity. Indeed, the concentration-response curve of TRPV1 

activation of RhTx2 was largely right-shifted (Fig. 3D).

In addition, the K3 within the extra four residues introduced a positive charge that drastically 

changes surface electrostatic potential (Fig. 2D). Electrostatic interactions are one of the 

major forces that determine protein folding and interaction. In cation channels like voltage-

gated potassium, sodium and calcium channels as well as TRP channels, there are many 

negatively charged residues in the outer pore region that attract and concentrate cations 

(Doyle et al., 1998; Wu et al., 2015; Shen et al., 2018; Liao et al., 2013). Moreover, the 

surface of the cell membrane is also negatively charged because of the phosphate group 

within the phospholipids. Therefore, it is not surprising for the positively charged N 

terminus of RhTx2 to be in the proximity of cell membrane as suggested by our docking 

experiments (Fig. 6G and H). Likely though this mechanism, the binding configuration of 

RhTx2 is altered as compared to that of RhTx, leading to changes in functional properties of 

RhTx2. Such a mechanism of toxin binding has been previously exploited to optimize 

existing toxins. For instance, the binding configuration of scorpion toxin BmKTX on Kv1.3 

channel was changed by introducing a single negatively charged point mutation, which 

increased the selectivity of the toxin to Kv1.3 channel (Chen et al. 2014, 2015).

Peptide toxins are a promising starting point for the development of biologic drugs due to 

relatively small size, high affinity and high selectivity (Robinson et al., 2017; Ombati et al., 

2018). Specifically for the analgesic target TRPV1 ion channel, direct inhibition of the 

channel failed in clinical trials because of severe side effects (Gavva, 2009). For this reason, 

alternative strategies to modulate TRPV1 channel have been actively pursued. For instance, 

a small molecule MRS1477 can positively and allosterically modulate the ligand activation 

of TRPV1, leading to analgesic effects without side effects such as hyperthermia in animal 

studies (Kaszas et al., 2012; Lebovitz et al., 2012). Interestingly, peptide toxins APHC1 and 

APHC3 from sea anemone Heteractis crispa have been reported to antagonize TRPV1 to 

achieve analgesia without changing body temperature (Andreev et al., 2013). Under 

physiological conditions with the presence of extracellular calcium, calcium ions permeate 

through activated TRPV1 to bind with intracellular calmodulins, which further bind to the 

intracellular domains to cause calcium dependent desensitization (Lishko et al., 2007; Lau et 

al., 2012). RhTx2 rapidly desensitizes TRPV1 activation by binding to the outer pore region, 

so it employs distinct mechanisms to induce desensitization. In this sense, RhTx2 and 

calcium ions may work synergistically to desensitize the TRPV1 channel, so it is promising 

to examine whether RhTx2 exerts analgesic effects in animal models in future.

4. Materials and methods

4.1. Venom collection, toxin purification and protein sequencing

Adult Scolopendra subspinipes L. Koch (both sexes, n = 1000) were purchased from Jiangsu 

Province, China. As previously reported (Yang et al., 2012; Yang et al., 2015), venom was 
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collected manually by stimulating the venom glands with a 3-V alternating current. Unique 

peptide toxins were purified from the raw venom using a combination of a Sephadex G-50 

gel filtration column and reverse-phase (RP) HPLC. The purity of target peptides was 

analyzed using a matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF). 

Lyophilized HPLC fractions were dissolved in 0.1% (v/v) trifluoroacetic acid/water, from 

which 0.5 μl was spotted onto a MALDI-TOF plate with 0.5 μl α-cya-no-4-

hydroxycinnamic acid matrix (10 mg/ml in 60% acetonitrile). Spots were analyzed by an 

UltraFlex I mass spectrometer (Bruker Daltonics) in a positive ion mode. Peptides with 

purity over 99.5% were collected and stored at −20 °C until further use. A Shimadzu protein 

sequencer (PPSQ-31A, Shimadzu, Japan) was used for the determination of primary 

sequence of peptides.

4.2. cDNA library and cloning

The venom-gland cDNA library was prepared as previously described (Li et al., 2007). 

Briefly, the total RNAs were extracted from the venom gland of 20 centipedes using TRIzol 

(Life Technologies Ltd.) and used to prepare the cDNA library using a SMART™ PCR 

cDNA synthesis kit (Clontech, Palo Alto, CA). The first strand was synthesized by using the 

3′ SMART CDS Primer II A (5′ AAGCAGTGGTATCAACGCAGAGTACT (30)N–1N 3′, 

where N = A, C, G, or T and N−1 = A, G, or C) and SMART II A oligonucleotide, (5′ 
AAGCAGTGGTATCAACGCAGAGTACGCGGG 3′). The 5′ PCR primer II A (5′ 
AAGCAGTGGTATCAACGCAGAGT 3′) provided by the kit was used to synthesize the 

second strand using Advantage polymerase (Clontech, Palo Alto, CA). RACE (Rapid 

Amplification of cDNA ends) was used to clone transcripts encoding RhTx from the venom-

gland cDNA library.

For cloning, the sense-direction primers were designed according to the amino acid 

sequences determined by Edman degradation. These primers were used in conjunction with 

an antisense SMART™ II A primer II in PCR reactions to screen for transcripts encoding 

neurotoxins. PCR was performed using Advantage polymerase (Clontech) under the 

following conditions: 2 min at 94 °C, followed by 30 cycles of 10 s at 92 °C, 30 s at 50 °C, 

and 40 s at 72 °C. Finally, the PCR products were cloned into pGEM®-T Easy vector 

(Promega, Madison, WI). DNA sequencing was performed on an ABI PRISM 377 DNA 

sequencer (Applied Biosystems).

4.3. Toxins synthesis, refolding and purification

Linear RhTx and RhTx2 peptides were synthesized by GL Biochem (Shanghai) Ltd. Crude 

reduced peptides were further purified by RP-HPLC. Once the purity of a peptide of interest 

was determined to be higher than 95% by MALDI-TOF mass spectrometry and HPLC 

techniques, the peaks were pooled and lyophilized. The linear reduced peptide was dissolved 

in 0.1 M Tris-HCl buffer (pH 7.0) at a final concentration of 30 μM glutathione containing 5 

mM reduced glutathione and 0.5 mM oxidized glutathione. Oxidization and folding were 

performed at room temperature and monitored at 280 nm by analytical RP-HPLC and 

MALDI-TOF mass spectrometry.
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4.4. Molecular biology and cell transfection

cDNA of Murine TRPV1 (a gift from Dr. Michael X. Zhu, University of Texas Health 

Science Center at Houston) was used. The construct used in this study also carries a point 

mutation E571A to increase protein expression and facilitate patch-clamp recordings; 

functional characterizations of E571A were reported in our previous study (Yang et al., 

2015). To facilitate identification of channel-expressing cells, eYFP was fused to the C-

terminus of TRPV1. Our previous study has shown that tagging of the fluorescence protein 

did not alter channel functions (Cheng et al., 2007).

HEK293T cells, purchased from and authenticated by American Type Culture Collection 

(ATCC), were cultured in DMEM medium with 10% FBS, 100 u/ml penicillin and 100 

mg/ml streptomycin at 37 °C with 5% CO2. Cells were plated on glass coverslips 24 h 

before transfection. Transient transfection was conducted by adding 4 μl Lipo-fectamine 

3000 (Invitrogen) and 4 μg plasmid DNA into opti-MEM and then stored for 20 min. The 

mixer was added to a 35 mm cell culture dish. Electrophysiological experiments and 

fluorescence imaging recordings were performed between 24 h and 48 h after transfection.

4.5. Chemicals

All chemicals such as capsaicin were purchased from Sigma-Aldrich.

4.6. Electrophysiology

Patch-clamp recordings were performed with a HEKA EPC10 amplifier with PatchMaster 

software (HEKA) in the outside-out or whole-cell configuration. Patch pipettes were 

prepared from borosilicate glass and fire-polished to a resistance of ~4 MΩ. For whole-cell 

recordings, serial resistance was compensated by 60%. For single-channel recordings, patch 

pipettes were fire-polished to a higher resistance of 6-to-10 MΩ. A normal solution 

containing 130 mM NaCl, 10 mM glucose, 0.2 mM EDTA and 3 mM HEPES (pH 7.2) was 

used in both bath and pipette. HEPES was used as the pH buffer. Current signal was sampled 

at 10 kHz and filtered at 2.9 kHz. All recordings were performed at room temperature (22 

°C) with the maximum variation of 1 °C.

To apply solutions containing capsaicin or other reagents during patch-clamp recording, a 

rapid solution changer with a gravity-driven perfusion system was used (RSC-200, Bio-

Logic). Each solution was delivered through a separate tube so that there was no mixing of 

solutions. Pipette tip with a membrane patch was placed directly in front of the perfusion 

outlet during recording.

4.7. Molecular docking

To model the RhTx2 with four more residues (NSKY) than RhTx, we first generated a 

fragment file of the RhTx2 amino acid sequence with the Robetta server (Kim et al., 2004). 

Then the conformation of the N terminus in RhTx2 was modeled de novo with cyclic 

coordinate descent loop modeling protocol (Wang et al., 2007). In each round of loop 

modeling, 10,000 to 20,000 models were generated. The top 20 models by energy were 

selected as the input for the next round of loop modeling. After three rounds of loop 
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modeling, the top five models converged well. The model with the lowest energy was finally 

selected as the model of RhTx2.

To prepare RhTx (PDB ID: 2mva), RhTx2 and TRPV1 (apo and closed state, 3J5P; toxin-

activated open state, 3J5Q) structure models for molecular docking, they were first relaxed 

in Rosetta version 3.5 (Leaver-Fay et al., 2011), respectively. For each structure 10,000 

decoys were generated. The top 10 lowest energy decoys converged well, so the lowest 

energy decoy among them was picked for docking. To dock the toxin, membrane 

environment was first setup on the channel model using RosettaScripts (Fleishman et al., 

2011; Yarov-Yarovoy et al., 2006). A total of 20,000 docking decoys were generated with 

Rosetta-Scripts. The top 10 decoys with largest binding energy were selected from top 1000 

total energy score decoys. Among these 10 decoys, the one satisfies best with experimental 

findings was chosen as the final docking model.

4.8. Statistics

All experiments have been independently repeated for at least three times. All statistical data 

are given as mean ± SEM. Two-tailedStudent’s t-test was applied to examine the statistical 

significance. N.S. indicates no significance. ***, p < 0.001.
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Fig. 1. Identification and purification of RhTx2 from centipede venom.
(A) The Chinese red-headed centipede Scolopendra subspinipes. (B) Centipede venom was 

fractionated using Sephadex G-50 gel filtration. (C) Fraction with molecular weight from 

2000 to 8000 Da (dashed box in (B)) was further fractionated by an analytical C18 RP-

HPLC column. (D) The cDNA and primary protein sequence of RhTx2. The signaling 

peptide was shaded and the propeptide was underlined, while the matured peptide sequence 

was highlighted in yellow. (E) The molecular weight of the purified native RhTx2 was 

determined by MALDI-TOF to be 3458.8 Da. (F and G) The molecular weight of the linear 

and refolded RhTx2 peptide was determined by MALDI-TOF to be 3458.3 Da and 3462.2 

Da, respectively. (H) Co-elution of native and synthesized and refolded RhTx2 in HPLC. 

The elution profile of the mixture of native and refolded RhTx2, and the linear peptide of 

RhTx2 are colored in black and red, respectively.
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Fig. 2. Structural modeling and characterization of RhTx2.
(A) NMR structure of RhTx (PDB ID: 2MVA). Two disulfide bonds are colored in yellow. 

(B) Rosetta model of RhTx2, with the extra four residues at the N terminus marked with a 

dashed box in red. (C and D) Distribution of electrostatic potential on the surface of RhTx 

(C) and RhTx2 (D), respectively. Coulombic electrostatic potential, in unit of kcal/mol/e, 

was calculated in the UCSF Chimera software, with positive and negative potential colored 

in blue and red, respectively. (E) The residues in the N terminus of RhTx2 forms a helical 

structure, which is stabilized by hydrogen bonds (dotted lines in blue). (F) The N1 residue 

forms two hydrogen bonds (dotted lines in blue) with the E31 residue, which stabilizes the N 

terminus conformation.
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Fig. 3. Activation and desensitization of TRPV1 by RhTx2.
(A) RhTx2 perfused from the extracellular side activated TRPV1 channels in a 

representative whole-cell recording. Due to rapid desentitization, RhTx2-induced current 

was smaller in amplitude than capsaicin-induced current. (B) RhTx2 perfused to the 

intracellular side failed to activate TRPV1 channels in a representative inside-out recording, 

whereas these channels were robustly activated by capsaicin. (C) Comparison of TRPV1 

current elicited by either extracellular or intracellular perfusion of RhTx2 at saturating 

concentration. (D) Represenstative outside-out recording of TRPV1 activated by 

extracellular perfusion of a mixture of RhTx2 and capsazepine (289 μM and 300 μM, 

respectively). (E) Concentration-response curves of TRPV1 activation by RhTx and RhTx2, 

respectively (n = 3-to-5). (F) Comparison of the kinetics in TRPV1 desensitization by RhTx 
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and RhTx2 (10 μM and 300 μM, respectively). Superimposed are exponential fits of the 

current time course. (G) Time constant of TRPV1 desensitization by RhTx and RhTx2 (n = 

4-to-6). The time constant was determined by fitting an exponential function to the current 

desensitization time course. All the electrophysiological experiments are done with the 

synthetic and refolded toxin.
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Fig. 4. Selectivity of RhTx2.
(A and B) Representative whole-cell current recordings of RhTx2 activation of TRPV2 and 

TRPV3, respectively. (C) Comparison of current activation by RhTx2 in TRPV channel. For 

each channel, n = 4. (D) Representative whole-cell current recordings of TRPV1 activation 

by RhTx2 and potential recovery from desensitization. All the electrophysiological 

experiments are done with the synthetic and refolded toxin.
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Fig. 5. Mechanisms of RhTx2-induced desensitization.
(A) From the same outside-out patch recording of TRPV1 channels, single-channel opening 

events were rare before RhTx2 application (top) or after wash-off (bottom). When RhTx2 

was perfused onto this membrane patch, current from five channels (O1 to O5) was 

immediately observed (middle). The current started to desensitize as both channel open 

probability and single-channel current amplitude decreased over time. (B) All-point 

histograms of the representative single-channel recordings shown in (A). Histograms were 

fitted to a sum of Gauss functions. (C) Single-channel conductance was significantly 

reduced by RhTx2 (n = 4-to-6). All the electrophysiological experiments are done with the 

synthetic and refolded toxin.
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Fig. 6. Docking of RhTx and RhTx2 to TRPV1 channel. (A and B) Top and side view of RhTx 
(colored in magenta) docked to TRPV1 in the apo and closed state (PDB ID: 3J5P), respectively. 
The position of cell membrane is marked by a shaded box.
(C and D) Top and side view of RhTx (colored in blue) docked to TRPV1 in the toxin-

activated open state (PDB ID: 3J5Q), respectively. (E and F) Top and side view of RhTx2 

(colored in green) docked to TRPV1 in the apo and closed state (PDB ID: 3J5P), 

respectively. The extra four residues at the N terminus of RhTx2 is boxed in red. (G and H) 
Top and side view of RhTx2 (colored in orange) docked to TRPV1 in the toxin-activated 

open state (PDB ID: 3J5Q), respectively. The surface of RhTx2 molecule was shown in (H), 
where only the transmembrane domains of TRPV1 was displayed.
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