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A B S T R A C T   

This paper formulates a Model Predictive Control (MPC) policy to mitigate the COVID-19 contagion in Brazil, 
designed as optimal On-Off social isolation strategy. The proposed optimization algorithm is able to determine 
the time and duration of social distancing policies in the country. The achieved results are based on data from the 
period between March and May of 2020, regarding the cumulative number of infections and deaths due to the 
SARS-CoV-2 virus. This dataset is assumably largely sub-notified due to the absence of mass testing in Brazil. 
Thus, the MPC is based on a SIR model which is identified using an uncertainty-weighted Least-Squares criterion. 
Furthermore, this model includes an additional dynamic variable that mimics the response of the population to 
the social distancing policies determined by the government, which affect the COVID-19 transmission rate. The 
proposed control method is set within a mixed-logical formalism, since the decision variable is forcefully binary 
(existence or the absence of social distance policy). A dwell-time constraint is included to avoid too frequent 
shifts between these two inputs. The achieved simulation results illustrate how such optimal control method 
would operate in practice, pointing out that no social distancing should be relaxed before mid August 2020. If 
relaxations are necessary, they should not be performed before this date and should be in small periods, no longer 
than 25 days. This paradigm would proceed roughly until January/2021. The results also indicate a possible 
second peak of infections, which has a forecast to the beginning of October. This peak can be reduced if the 
periods of days with relaxed social isolation measures are shortened.   

1. Introduction 

The COVID-19 pandemic seems to be the global health crisis of our 
time. Scientist first identified this virus (SARS-CoV-2) in humans in 
Wuhan, in the province of Hubei, China by December 2019. It causes 
severe acute respiratory syndrome which can become potentially fatal. 
The WHO estimated by the end of March that the number confirmed 
cases was reaching the order 70,000, with more than 33,000 confirmed 
deaths. Now, by the end of April, it has already spread to almost every 
country of the world, infecting 3,019,246 and killing more than 208,112 
people (World Heath Organization, 2020). Its spread is rapid and effi
cient and it seems that to tackle this pandemic, global scientific efforts 
are necessary (Bedford et al., 2019). Since vaccines have not yet been 
developed, most countries have adopted measures to ensure social 
distancing, aiming to avoid the spread (Adam, 2020). It seems that the 

COVID-19 has posed an unique question regarding what are the viable 
public policies necessary to handle its spread. We note that countries 
have chosen different strategies to determine social distancing mea
sures, as reviewed by Chudik, Pesaran, and Rebucci (2020) and Cohen 
Kupferschmidt (2020). Up to the Authors’ best knowledge no govern
mental policy regarding COVID-19 has been based or driven by 
advanced feedback control strategies, that account for optimality con
cerns, input saturation and constraints. There are only theoretical results 
regarding this topic. 

The idea behind social distance is to prevent health systems from 
becoming saturated due to large amounts of COVID-19 patients being 
treated at the same time. Therefore, with social distancing policies, the 
health systems do not have to deal with hospital bed shortages associ
ated with a large peak of infections, since the demands for treatment 
become distributed over time. Fig. 1 illustrates the evolution of 
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symptomatic individuals due to the SARS-CoV-2 virus with respect to no 
isolation and hard social isolation policies. The threshold represents an 
estimate for the number of available Intense Care Unit (ICU) hospital 
beds. 

However, social distancing measures exhibit at least three ambig
uous side-effects, which policy makers should take into account:  

1. If the governments interrupt the social distancing policy before the 
correct time, the measure is only able to shift the pattern of 
contamination to the future, which does not help diminishing the 
problem of saturating the health system due to excessive demand for 
ICU beds. This topic has been throughly discussed by Hellewell et al. 
(2020);  

2. Countries that implement rigid social distancing measures have seen 
devastating economic effects. The recent papers by Eichenbaum, 
Rebelo, and Trabandt (2020) and Gormsen and Koijen (2020) elab
orate on this issue;  

3. A large part of the population may not be immunized and might 
suffer from future waves of COVID-19 infections, after the social 
distancing measures take place. Furthermore, recurrent wintertime 
outbreaks of SARS-CoV-2 virus will probably occur after this initial 
pandemic dissemination (Kissler, Tedijanto, Goldstein, Grad, & 
Lipsitch, 2020). 

Therefore, it becomes of fundamental importance to predict the 
correct time and the duration of social distancing interventions. Well- 
designed social distance policies may help to control the evolution of 
the disease, to avoid the saturation of the heath systems and to minimize 
the economic side effects caused by them. 

In this paper, the Brazilian context is taken into account (Werneck & 
Carvalho, 2020). Brazil is a continent-sized tropical1 country and it has 
already been facing many issues due to the COVID-19 pandemic. The 
country has 26 federated states, which have been choosing different 
social distancing measures since mid-March2 The federal government is 
reluctant to implement nation-wide policies, claiming that the negative 
economic effects are too steep and that social distancing is an erroneous 
choice (The Lancet, 2020); the government suggests that the economy 
cannot stop and that herd immunity could be a solution to this 
pandemic. The expected impacts of the disease in Brazil are catastrophic 
(Ismael et al., 2020; Rocha Filho et al., 2020). Moreover, due to lack of 
testing, Brazil is only accounting for patients with severe symptoms or 
those how have died; therefore, a huge percentage of sub-notification 
(over 90%) has been reported (Delatorre, Mir, Graf, & Bello, 2020; 
Rocha Filho et al., 2020; Silva, Velasco, da Silva Marques, & Tibirica, 
2020). The daily reports (”measurements”) delivered by the Ministry of 
Health, collecting number of infected and deceased patients, only gives 
an impression of the virus spread of past moment, since, on average, a 
person will exhibit acute symptoms only 20 days of the infection. 

The first death due to the SARS-CoV-2 virus in Brazil was registered 
in March 17, while the first case was officially notified in February 26. 
Nonetheless, recent papers (Delatorre et al., 2020; Rodriguez-Morales 
et al., 2020) point out that the virus was already present in Brazil 
since the end of January, before the Carnival festivals. Through infer
ential statistics, Delatorre et al. (2020) acknowledge that community 
transmission has been ongoing in the state of S~ao Paulo since the 
beginning of February (over one month before the official reports). 

Even though a strong public health system is available in Brazil, as of 
April 30, many states were already exhibiting a near-collapse situation, 
with over 95% of ICU beds occupied with COVID-19 patients. This is 
illustrated in Fig. 2, which show the ICU occupancy rate and the number 
of available in many states (Brazilian Federal Medicine Council, 2020). 

Clearly, the situation is already border-lining. 
Motivated by the previous discussion, in this paper we investigate 

the problem of controlling the evolution of the COVID-19 pandemic in 
Brazil using optimal social distancing policies, which are designed 
through a Model Predictive Control (MPC) framework. 

The MPC framework is a widespread optimal control method for the 
control of processes subject to constraints (Camacho & Bordons, 2013). 
MPC allows to explicitly consider the effect of input, output and state 
constraints in the control design procedure, which is rather convenient. 
As any standard discrete control method (Skogestad & Postlethwaite, 
2007), MPC-formulated laws stand for piece-wise-constant signals for 
sampled-data systems, which is clearly the scope of the COVID-19 
dissemination process, since it is measured daily through the number 
of infected and deceased individuals. 

The frameworks to predict and control the complex dynamics of the 
SARS-CoV-2 virus spread are definitely mixed discrete-continuous 
problems under multiple objectives due to the nature of the problem 
(daily measurements and piece-wise constant control). MPC certainly 
fits this context. 

We must remark that many research papers have demonstrated the 
application and validation of this control tool for health-related, bio
logical and ecological regulation purposes (de �Avila-Simas et al., 2019; 
Ionescu et al., 2008; Moscoso-V�asquez, Colmegna, & S�anchez-Pe~na, 
2016; Zurakowski, Messina, Tuna, & Teel, 2004). Thus, MPC fits natu
rally to COVID-19 social distancing control problem. A possible control 
approach regarding the COVID-19 contagion is to take into account 
social distancing constraints and, at the same time, minimize the peak of 
active infections, ensuring this variable stays below than the available 
amount of ICU beds. Such strategy is indeed viable through the MPC 
paradigm. The main contributions of this paper are the following:  

� We present two modified versions of the Susceptible-Infected- 
Recovered (SIR) model (Kermack & McKendrick, 1927), embed
ding the effects of social distancing measures in the evolution of the 
disease;  
� We propose an additional dynamic state variable, which models the 

response of the population to social distancing measures enforced by 
the government. We also use this state variable to forecast the 
reduction of the speed of transmission of the virus, with respect to 
enacted distancing policy;  
� Due to the fact that large error margins have been reported regarding 

the available COVID-19 data and statistics in Brazil (see (Bhatia 
et al., 2020)), we perform an uncertainty-weighted Least-Squares 
criterion to estimate the parameters of the virus infection/spread 
model, considering both nominal and inconsistent-data conditions.  
� Based on these uncertain models, we propose an MPC-based control 

framework to determine in real time whether to apply or not the 
social distancing policy. This control strategy resides in the solution 
of a Mixed-Integer Dynamic Programming Problem, at each sam
pling instant (day), according to new available datasets (number of 
infected and deaths). The constraints of the MPC procedure are given 
with respect to the number of available ICU hospital beds in the 
country. The MPC also accounts for a minimal dwell-time on each 
control action (no isolation, complete lock-down), so that frequent 
social distancing policy shifting does not happen. 

Note that, for the sake of practical purposes, we estimate model 
parameters and distancing policies using real data from the Brazilian 
Ministry of Health, in a fashion similar to the estimation scheme pre
sented by Bastos and Cajueiro (2020). 

Our paper relates to some other recent papers that investigate the 
COVID-19 pandemic from a control viewpoint. There are some recent 
works that have also inserted a control variable in the available epide
miological model in order to emulate the control of infections using 
strategies such as vaccination, isolation, culling and self-isolation (Bol
zoni, Bonacini, Soresina, & Groppi, 2017; Piguillem, Shi et al., 2020; 

1 Recent research point out that high temperatures may favor the spread of 
this virus; see the work by Auler, C�assaro, da Silva, and Pires (2020).  

2 Throughout this paper, the Year/Month/Day notation is used. 
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Piunovskiy, Plakhov, & Tumanov, 2020). In particular, we state that the 
recent paper (Piguillem et al., 2020) has also addressed the issue of 
optimal social distancing COVID-19 policies. A case study regarding 
Belgium has been presented in (Alleman, Torfs, & Nopens, 2020), 
considering a continuous MPC policy; a robust MPC method, regarding 
the COVID-19 spread in Germany, has been investigated by K€ohler et al. 
(2020). 

We must stress that this paper differs from Piguillem et al. (2020), 
Alleman et al. (2020) and K€ohler et al. (2020) in three main points:  

(i) We consider the possibility of large amounts of uncertainty 
regarding the infected/deaths measurements (which stands true 
for the Brazilian case, which is ours). The previous papers 
considered relatively small parametric uncertainties added to the 
model (identified with real data). In our case, we consider large 
amounts of uncertainty and use uncertainty-embedded models 
derived through a series of identification runs.  

(ii) As in (Alleman et al., 2020) and K€ohler et al. (2020), we design 
and synthetize an optimal control strategy with a Model Predic
tive Control formalism, which has has wide industrial practice 

and easy implementation. The MPC design in this paper follows a 
mixed-integer approach and embeds a dwell-time constraint, 
which had not been tested in previous papers. Furthermore, the 
chosen control input differs: in Alleman et al. (2020), the control 
input is the actual isolation parameter, while in K€ohler et al. 
(2020) it directly affects the infection and transmission rates. In 
this paper, the control input stands for a new model variable 
which indicates the government enacted social distancing policy, 
which affects the average isolation observed in the population, 
that then influences with the transmission and infection 
dynamics.  

(iii) We model the response of the population to these social isolation 
rules with an additional dynamic variable (and fit our variations 
of the SIR models accordingly).  

(iv) The considered dwell-time constraint ensures that the social 
distancing policy remains constant for at least Nm days, avoiding 
frequent shifting between isolation and non-isolation states 
(which obviously would cause ambiguity and confusion to the 
population). 

Fig. 1. Necessity of Social Isolation.  

Fig. 2. ICU Beds and occupancy rate in Brazil, per state (20/04/30).  
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This work is organized as follows: In Section 2, we introduce the SIR 
models used in this work and the modifications we make in order to 
model people’s response to the social distancing policies. In Section 3, 
we present the approach used to estimate the parameters of the models; 
therein, we also present the model-data fitting results. Section 4 presents 
the optimal control scheme used to mitigate the evolution and the 
spread of the disease along time. Finally, Section 5 presents the main 
conclusions of the work. 

2. Epidemiological models 

Recent literature (Kucharski et al., 2020; Peng, Yang, Zhang, Zhuge, 
& Hong, 2020) shows that the infection rate and evolution dynamics of 
the SARS-CoV-2 virus can be adequately described by 
Susceptible-Infected-Recovered (SIR) models, which were originally 
presented by Kermack and McKendrick (1927). 

In this Section, we present two modified versions of the SIR model 
that take into account the effects of social distancing measures and 
embedded them to the evolution dynamic of the disease. The new var
iables account for the dynamics of the population response to such social 
distancing measures (enacted by local governments). 

For reading purposes, we present a thorough Nomenclature and 
Symbology paper in Appendix A. 

2.1. Original SIR model and modifications regarding COVID-19 

The SIR describes the spread of a given disease with respect to a 
population split into three non-intersecting classes, which stand for:  

� Susceptible individuals (S), who are prone to contract the disease;  
� Infected individuals (I), which currently have the disease;  
� Recovered individuals (R), who have already recovered from the 

disease. 

Due to the evolution of the spread of the disease, the size of each of 
these classes change over time and the total population size N is the sum 
of these three classes, as follows: 

NðtÞ ¼ SðtÞ þ IðtÞ þ RðtÞ (1) 

In the SIR model, the parameter β stands for the average number of 
contacts that are sufficient for transmission of the virus from one indi
vidual, per unit of time t. Therefore, βI(t)/N(t) determines the average 
number of contacts that are sufficient for transmission from infected 
individuals, per unit of time, to one susceptible individual; and (βI(t)/N 
(t))S(t) determines the number of new cases per unit of time due to the 
amount of S(t) susceptible individuals (they are “available for 
infection”). 

Furthermore, the parameter γ stands for the recovery rate, which is 
the rate that each infected individual recovers (or dies). This parameter 
characterizes the amount of individuals that “leaves” the infected class, 
considering a constant probability quota per unit of time. 

Based on these definitions, the SIR dynamics are: 

dS
dt
ðtÞ ¼ �

βIðtÞSðtÞ
NðtÞ

dI
dt
ðtÞ ¼

βIðtÞSðtÞ
NðtÞ

� γIðtÞ

dR
dt
ðtÞ ¼ γIðtÞ

½SIR�: (2) 

Since the SIR model is used herein to describe a short-term pandemic 
outbreak, we do not consider the effects of demographic variations. 
Despite recent discussion regarding the possibilities of reinfection(Del 
Rio & Malani, 2020), we assume that the recovered individuals will not 
be reinfected (at least for simplicity purposes), i.e. an individual does not 
contract the disease twice. We will not implement this first SIR model, it 

is only included for the sake of referencing. 
Indeed, the model should also include the dynamic relationships that 

appear due to the fraction of people that unfortunately die from the 
disease. Thus, we include a parameter ρ, which stands for the probability 
of an individual form the infected class I(t) dying from infection before 
recovering, as suggested in Keeling and Rohani (2011). In this case, the 
following set of Equations arise: 

dS
dt
ðtÞ ¼ �

βIðtÞSðtÞ
NðtÞ

dI
dt
ðtÞ ¼

βIðtÞSðtÞ
NðtÞ

� γIðtÞ �
ρ

1 � ρ γIðtÞ ¼
βIðtÞSðtÞ

NðtÞ
�

γIðtÞ
1 � ρ

dR
dt
ðtÞ ¼ γIðtÞ

dD
dt
ðtÞ ¼

ρ
1 � ρ γIðtÞ

½SIRD�;

(3)  

where ρ
1� ρ γIðtÞ stands for the number of people from the population that 

die due to the disease, per unity of time; and D(t) is the number of people 
that die due to the disease. Note that, in this case, the number of in
dividuals in the population reduces due to the infection according to 

dN
dt
ðtÞ ¼ �

ρ
1 � ρ γIðtÞ:

For the ease of reference, this adaptation of the SIR model is named 
hereafter as the “SIRD” (Susceptible-Infected-Recovered-Dead) model. 

Since, in the case of the SARS-CoV-2 virus, there is a relevant per
centage of the infected individuals that are asymptomatic, we split the 
class of infected individuals into the classes of symptomatic and 
asymptomatic individuals, as suggested in Robinson and Stilianakis 
(2013), Arino, Brauer, van-den Driessche, Watmough, and Wu (2008) 
and Longini-Jr., Halloran, Nizam, and Yang (2004): 

dS
dt
ðtÞ ¼ � ðβAIAðtÞ þ βSISðtÞÞ

SðtÞ
NðtÞ

dIAðtÞ
dt

¼ ð1 � pÞðβAIAðtÞ þ βSISðtÞÞ
SðtÞ
NðtÞ

� ðγAÞIAðtÞ

dIS

dt
ðtÞ ¼ pðβAIAðtÞ þ βSISðtÞÞ

SðtÞ
NðtÞ

�
γSISðtÞ
1 � ρ

dRA

dt
ðtÞ ¼ γAIAðtÞ

dRS

dt
ðtÞ ¼ γSISðtÞ

dD
dt
ðtÞ ¼

ρ
1 � ργSISðtÞ

½SIRASD�; (4)  

where IA (RA) is the number of asymptomatic infected (recovered) in
dividuals, IS (RS) is the number of symptomatic infected (recovered) 
individuals and p is the proportion of individuals who develop symp
toms. For ease of reference, this latter model is named hereafter as the 
“SIRASD” (Susceptible-Infected-Recovered-Asymptomatic-Symptom
atic-Dead) model. The SIRASD model has been widely used in the recent 
literature to describe the COVID-19 pandemics (Piguillem et al., 2020). 
Just like with SIRD model, the original condition that N(t) is constant 
over time form the SIR model no longer holds. Therefore, to evaluate the 
variation of the population size N(t) over time, one needs to integrate 

dN
dt
ðtÞ ¼ �

ρ
1 � ργSISðtÞ:

Remark 1. We note that literature presents more “complex” de
scriptions of the pandemic diseases, such as the “SIDARTHE” model used 
in K€ohler et al. (2020) (that splits the infections into (symptomatic, 
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asymptomatic) detected, undetected, recovered, threatened and 
extinct). Anyhow, we cannot account for these models regarding the 
COVID-19 contagion in Brazil, because we have an insufficient amount 
of data to identify such models. The Ministry of Health only discloses the 
total amount of infections and deaths due to the SARS-CoV-2 virus at 
each day. Due to the absence of mass (sampled) testing, no data is 
available regarding detected asymptomatic individuals or exact ICU bed 
occupancy rates, as it is available in Germany, for instance, where the 
paper by K€ohler et al. (2020) originates. To choose more complex 
models than the ones considered in this paper may only decrease the 
truthfulness/validity of the identification results, since the estimated 
parameter values may simply represent a singular solution that matches 
the identification datasets, but cannot be used truthfully for fore
casting/prediction purposes. 

2.2. The new control-embedded models 

In order to design and synthesize effective control strategies for so
cial distancing (public) policies, to be oriented to the population by local 
governments, these previous SIRD and SIRASD models must be adapted 
to include the dynamics and effects of social distancing. Therefore, a 
new differential equation is proposed to model the response of popula
tion to these social distancing guidelines. This new dynamic equation is 
appended to those of S(t), I(t) and D(t), which also become affected by 
the amount of social distancing at a present time. 

We will denote ψ(t) as this varying parameter which account for the 
population response: ψ ¼ 0 stands for the case of a complete lock-down 
(in a hypothetical and unachievable sense that there would not be any 
more contact between individuals in the population), while ψ ¼ 1 stands 
for a no-isolation state, where the population is behaving “as usual”, 
with regular activities as before the pandemic. The differential equation 
which models the evolution of ψ(t) is the following: 

dψ
dt
ðtÞ ¼

(
αOffð1 � ψðtÞÞ if uðtÞ ¼ 0;

αOn
�
Kψ ðtÞψ inf � ψðtÞ

�
if uðtÞ ¼ 1:

½C� (5)  

where u(t) is a binary variable which determines the social isolation 
policy regulated by the government (this signal will be later on deter
mined by the proposed optimal controller): for the cases when social 
isolation is determined, an “On” state is set, with u ¼ 1; when the 
government does not enact an isolation measure, an “Off” state is set, 
with u ¼ 0. Note that αOn and αOff are settling-time parameters which 
relate to the average time the population takes to respond to the enacted 
social isolation measures. 

The dynamic equation above [C] accounts for these two “On”/“Off” 
possibilities:  

� “Off”) if the government determines no isolation is necessary, it 
follows that u ¼ 0 and dψ

dt ðtÞ ¼ αOffð1 � ψðtÞÞ; meaning that roughly 
after 5

αOff 
days, ψ converges3 to 1. In this case, there is no mitigation of 

the COVID-19 spread;  
� “On”) if the government determines that a hard isolation is needed, it 

follows that u ¼ 1 and dψ
dt ðtÞ ¼ αOnðKψ ðtÞψ inf � ψðtÞÞ. For the case of a 

constant static gain Kψ ðtÞ ¼ Kψ ; it follows that roughly after 5
αOn 

days, 
the social isolation variable ψ converges4 to Kψ ψ inf ;where ψ inf stands 
for the ”hardest” isolation observed in practice. The time-varying 
gain Kψ gives the relationship between this “hardest” isolation fac
tor and the social distancing guideline (control input u), as gives the 
following law: 

Kψ ðtÞ ¼ 1 � γKγ
ρ

1 � ρ
IðtÞ
NðtÞ

;

with some positive γK. This relationship implies that Kψ(t)ψ inf de
creases (yielding stronger social isolation) as more active infections 
occur.  

Remark 2. Since [C] represents a first-order differential system, the 
settling-time constants αOn and αOff determine the convergence speed of 
ψ(t). Notice that, for an arbitrary system dx

dt ðtÞ ¼ αxðxf � xðtÞÞ; x(t) rea
ches 0.99xf in 5/αx units of time, since the solution for this differential 
equation is xðtÞ ¼ ð1 � e� αxtÞxf ;with αx > 0, for which xð5 =αxÞ ¼ 0:99xf . 

Since ψ(t) is the average people’s response to public policies to 
reduce the spread of the virus (such as isolation measures or incentive to 
wear masks), it affects the transmission factors and, thus, we replace β in 
the SIRD model by ψ(t)β and βA and βS in the SIRASD model, respec
tively, by ψ(t)βA and ψ(t)βS. It is worth mentioning that the population 
response to the On-Off isolation policy control may depend on factors 
such as the incremental number of deaths and the amount of information 
they known about the disease. Anyhow, since this factor depends on 
people’s choices, and thus becomes rather difficult to quantify, we opt 
for the simplicity of the previous differential equation [C], since we may 
partially estimate its parameters with the available data. 

Finally, we include these new dynamics into the SIRD and SIRASD 
models as discussed. In this case, we get the following models that we 
denote SIRDC (Susceptible-Infected-Dead-with Control) model: 

dS
dt
ðtÞ ¼ �

ψðtÞβIðtÞSðtÞ
NðtÞ

dI
dt
ðtÞ ¼

ψðtÞβIðtÞSðtÞ
NðtÞ

�
γIðtÞ
1 � ρ

dR
dt
ðtÞ ¼ γIðtÞ

dD
dt
ðtÞ ¼

ρ
1 � ρ γIðtÞ

dψ
dt
ðtÞ ¼ αOffð1 � ψðtÞÞð1 � uðtÞÞ þ αOn

�
Kψ ðtÞψ inf � ψðtÞ

�
uðtÞ

Kψ ðtÞ ¼ 1 � γKγ
ρ

1 � ρ
IðtÞ
NðtÞ

:

½SIRDC�;

(6)  

and SIRASDC (Susceptible-Infected-Asymptomatic-Symptomatic-Dead- 
with Control): 

dS
dt
ðtÞ ¼ � ψðtÞðβAIAðtÞþβSISðtÞÞ

SðtÞ
NðtÞ

dIA

dt
ðtÞ ¼ ð1 � pÞψðtÞðβAIAðtÞþβSISðtÞÞ

SðtÞ
NðtÞ
� ðγAÞIAðtÞ

dIS

dt
ðtÞ ¼ pψðtÞðβAIAðtÞþβSISðtÞÞ

SðtÞ
NðtÞ
�

γSISðtÞ
1 � ρ

dRA

dt
ðtÞ ¼ γAIAðtÞ

dRS

dt
ðtÞ ¼ γSISðtÞ

dD
dt
ðtÞ ¼

ρ
1 � ργSISðtÞ

dψ
dt
ðtÞ ¼ αOffð1 � ψðtÞÞð1 � uðtÞÞþαOn

�
Kψ ðtÞψ inf � ψðtÞ

�
uðtÞ

Kψ ðtÞ ¼ 1 � γKγA
ρ

1 � ρ
IAðtÞ
NðtÞ

½SIRASDC�;

(7) 
3 Note that limt→∞

�
dψ
dt ðtÞ ¼ αOffð1 � ψðtÞÞ

�

→ðψ→1Þ.  
4 Note that limt→∞

�
dψ
dt ðtÞ ¼ αOnðKψ ψ inf � ψðtÞÞ

�

→ðψ→Kψ ψ infÞ. 
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which will be used for identification and control purposes. 

Remark 3. We must stress that all parameters and variables of the 
SIRDC and SIRASDC models, used for control synthesis and simulation, 
are positive. 

3. Tuning of the SIRDC / SIRASDC models 

In this Section, we present the results concerning the estimation of 
the epidemiological parameters of Eq. (7). 

We must, at first, re-affirm that recent literature regarding the Bra
zilian COVID-19 context has raised attention to the large amount of sub- 
notification in the country (Bhatia et al., 2020; Rocha Filho et al., 2020; 
Rodriguez-Morales et al., 2020; Silva et al., 2020; The Lancet, 2020). 
Therefore, we progress by embedding the uncertainty regarding the 
available datasets to the identification procedure. 

The following identification is based the real data provided by the 
Ministry of Health of Brazil from February 25, 2020 to May 8, 2020. 
Specifically, we consider the cumulative number of infected individuals 
(ZðtÞ ¼ IðtÞþ RðtÞþ DðtÞ) and the number of deaths D(t). 

To incorporate the issue of sub-notification, we assume that the data 
provided by the Ministry of Health is corrupted. Instead of using the 
original data, we assume: 

DnominalðtÞ ¼ qDDðtÞ; (8)  

ZnominalðtÞ � DðtÞ ¼ qIðZðtÞ � DðtÞÞ; (9)  

where the instances of Znominal(t) and Dnominal(t) represent the data 
provided by Ministry of Health. The parameters qI 2 [0, 1] and qD 2 [0, 
1] are uncertainty measures that provide a relationship between the 
nominal (observed) data and the real (latent) variable. We estimate all 
parameters of our models by minimizing the square-error between the 
integrated variables and their real values, according to regular identi
fication methodologies (Bard, 1974; Brauer, Castillo-Chavez, & Feng, 
2019). We proceed by following an hierarchical procedure as done in 
Bastos and Cajueiro (2020). 

Our identification procedure also includes a limit5 to the parameter 
values, as follows: β, βS, βA 2 [1/20, 2], γ, γS, γA 2 [1/14, 1/2], ρ, ρS 2

[0.001, 0.2], αOn 2 [0, 1] and ψ inf 2 [0.3, 0.7]. These limits are in 
accordance with those presented by Bastos and Cajueiro (2020); Wer
neck and Carvalho (2020). 

3.1. Least square procedures 

Firstly, we consider the estimation of the infection, transmission and 
death probability, β, γ and ρ, respectively, of the SIRD model in Eq. (3). 
This procedure is followed by taking into account that no social 
distancing policy was enacted in Brazil from February 25, 2020 to March 
22, 2020, i.e. ψðtÞ ¼ 1 for this period; Bastos and Cajueiro (2020) pre
sent a through discussion on this matter. The transmission rate param
eter γ is then fixed for all the subsequent identification procedures, since 
this parameter is characteristic of the disease. We refer to the β value of 
this step as b1. 

Secondly, we assume that γK ¼ 0 during this first period (no social 
distancing) and estimate the parameters of the SIRDC model from Eq. (6) 
by minimizing the following square-error: 

min
β;ρ;αOn ;ψ inf

1
2
X

t

�
½f ðZðtÞ � DðtÞÞ � f ð̂IðtÞ þ R̂ðtÞÞ�2 þ ½f ðDðtÞÞ � f ðD̂ðtÞÞ�2

�
;

(10)  

where Z(t) and D(t) represent the data provided by the Ministry of 
Health of Brazil embedded with uncertainty, as gave Eqs. (8)-(9), and 
ÎðtÞ; R̂ðtÞ D̂ðtÞ are estimated parameter values using the SIRD model. Note 
that we use the nonlinear function fðzÞ ¼ lnð1þzÞ to correct the expo
nential characteristic of the series so that the errors of the last values of 
the series do not dominate the minimization. We assume that there are 
no recovered individuals at the beginning of the series, and also that 
ψ0 ¼ 1 (no-isolation state). We refer to the parameters values of this step 
as β ¼ bðqI ;qDÞ

2 ; ρ ¼ rðqI ;qDÞ
2 ; αOn ¼ aðqI ;qDÞ

2 and ψ inf ¼ iðqI ;qDÞ
2 . We limit β in 

½ð1 � δβÞb1; ð1þδβÞb1�; with δβ ¼ 0:5. For the models with uncertainty, 
αOn and ψ inf are also limited in ½ð1 � δαOn Þa

ð1;1Þ
2 ; ð1þδαOn Þa

ð1;1Þ
2 � and 

½ð1 � δψ inf Þi
ð1;1Þ
2 ; ð1þδψ inf Þi

ð1;1Þ
2 �; with δαOn ¼ 0:9 and δψ inf ¼ 0:3; that is, 

these values under uncertainty are limited by a range defined by the 
simulation without uncertainty. 

Remark 4. We stress that the nonlinear map f(z) is increasing in its 
domain, and so is f(z)2. This function further weights the last values of 
the series w.r.t. to the first data steps. Moreover, the formulation in Eq. 
(10) is coherent with regular Least-Square identification procedures, 
which minimize the squared difference between model and data. 

Thirdly, we estimate the complete SIRASD model. For such, we as
sume that asymptomatic infected comprise all individuals without 
symptoms and also those with mild symptoms (that do not need ICU 
beds), and that symptomatic infected are individuals with moderate to 
severe symptoms. This line of thought follows the orientation given by 
the Brazilian Ministry of Health, that incentives people to only seek 
medical attention if symptoms are moderate or severe, and to stay home 
otherwise. Therefore, we suppose that γS ¼ γ and βS ¼ β; which corre
sponds to the simulation with uncertainty only upon the number of 
deaths (i.e. qD 6¼ 1 and qI ¼ 1Þ. Since the uncertainty for the number of 
infected is also related to the asymptomatic individuals, we use p ¼ qI. 
We use this value for the infection probability as constant, so that the 
initial condition for the asymptomatic infected is IA;0 ¼ IS;0ð1 � qIÞ=qI. 
In this context, we estimate the parameters βA, γA, ρS, αOn and ψ inf in 
order to minimize the following square-error:  

where ÎSðtÞ and D̂ðtÞ represent the values obtained with the SIRASD 
model. 

3.2. Obtained models 

The previous identification procedure was realized for a large 
number of possibilities of uncertainty (qD and qI). We account for three 
models:  

� The ”Nominal” SIRDC model, which is tuned for qD ¼ qI ¼ 1; 
� The ”Uncertain 1” SIRASD model, which is derived from the iden

tification procedure considering 50% more sub-notified deaths and 
30 times more infected individuals than reported (qD ¼ 2=3 and qI ¼

1 =30Þ;  
� And the ”Uncertain 2” SIRASD model, which is likewise found 

through the identification procedure for 50% more sub-notified 

min
βA ;γA ;ρ;αOn ;ψ inf

1
2
X

t

��

f ðZðtÞ � DðtÞÞ � f
�

ÎSðtÞ þ R̂SðtÞ
��2

þ ½f ðDðtÞÞ � f ðD̂ðtÞÞ�2
�

; (11)   

5 If more restrictive bounds are used, we mention them explicitly. 
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deaths and 15 times more infected individuals than reported (qD ¼ 2 
=3 and qI ¼ 1 =15Þ. 

The respective model parameters, found through the identification 
procedure detailed in Section 3, are presented in Table 1. Regarding the 
population response to social distancing guidelines, the settling-time 
parameters and maximal isolation fator values are given in Table 2. 

Remark 5. We must note that the minimization procedures detailed 
above could be likewise applied to 

P
tðfadaptedðzðtÞ � ẑðtÞÞÞ2; being z the 

data for a given variable and ẑ its model equivalency. In such case, one 
should consider fadaptedðzÞ ¼ lnð1þjzjÞ to exclude possible parameter 
BIAS. The parameters estimated with both approaches are roughly the 
same. 

3.3. Some results 

To conclude this Section, we show some short-term simulation re
sults in Fig. 3. This Figure represents the SIRASDC model running with 
respect to known data, from 20/03/27 until 20/05/08. The differences 
between the speed of the COVID-19 spread considering nominal and 
uncertain conditions are considerable. In Fig. 4, the data is shown in a 
logarithmic scale. 

These Figures depict the differences between the models and also 
marks how the nominal model perfectly fits the dataset from the Min
istry of Healthy. Clearly, the amount of sub-notification plays a signifi
cant role in the analysis of this pandemic. If one does not take the 
uncertainty into account, wrong and rash decisions may be performed. 
We must stress that an increase on the number of infected individuals 
(larger sub-notification) means that the mortality rate of the disease 
decreases, while it increases for a larger sub-notification margin with 
respect to the number of deaths. 

4. The predictive control strategy 

In this Section, we develop the second main contribution of this 
work, i.e. the optimal control strategy aiming to mitigate the impacts of 
the COVID-19 pandemic. In practice, the resulting control law which 
should be implemented by the means of social distancing policies, 
conducted through orientation by the local government. 

For this goal, we consider the control-appended models (SIRDC and 
SIRASDC), which are now regulated under a closed-loop scheme. In fact, 
the proposed control strategy is formulated with respect to SIRASDC 
model, as explained in the sequel. 

We must consider that the predictive control strategy is to be syn
thesized based on a model that a priori encompasses the dataset mis
matches (uncertainty in terms of sub-notification). Taking into account a 
model that considered that all measures (deaths, infections) are not 
exact can further improve the outcome of the control policy, since it will 
be more conservative with respect to social isolation measures. In some 
sense, this kinds of strategy is a robust MPC feedback procedure, because 
it is based on a worst-case pandemic level. The application of the MPC 
feedback without the uncertain realization of the model can lead to 
performances which may borderline the use of the available ICU beds in 
the country, i.e. the nominal prediction model may give a result in terms 
of infections which is less than what is observed in practice. This situ
ation would lead to necessity of possibly longer periods of social isola
tion. Then, such robust MPC procedure is able to avoid this kind of 

situation and it can be able to significantly reduce the number of 
fatalities. 

4.1. Control objectives 

As previously discussed, social isolation measures are necessary since 
they are able to ”flatten” the COVID-19 spread curve. Fig. 1 illustrates 
this issue, which shows a simulation for the evolution of symptomatic 
individuals Is(t) over time with no social isolation ψðtÞ ¼ 1 and hard 
social isolation (ψ ¼ 0; which represents a complete lock-down situa
tion). Clearly, when social isolation policies are implied (mathemati
cally, for ψ < 1), the infection peak is postponed and reduced. 

Therefore, the control objectives regarding COVID-19 isolation pol
icies are the following:  

� To reduce the peak of symptomatic individuals, as much as possible;  
� To ensure that the peak is smaller than the number of available ICU 

beds (a tolerance factor can be included);  
� To determine isolation policies for as little time as possible (in order 

to mitigate the effects of isolation on economy);  
� And to avoid shifting between states (isolation or not), maintaining a 

minimal period of Nm days in each condition. 

These objectives can be mathematically expressed, respectively, as 
follows:  

(a) By minimizing the amount of symptomatic individuals IS;  
(b) By ensuring that IS � nICUð1þξÞ for all t, where nICU represents 

the amount of ICU beds and ξ 2 (0, 1) a tolerance factor (which 
should also be minimized);  

(c) By minimizing the isolation policy u(t), which should be 0 (no 
isolation) for as long as possible;  

(d) To ensure that u(t) is piece-wise constant and maintained at each 
state (0 or 1) for Np samples, where k ¼ t

Ts 
stands for the sampling 

unit and Ts the sampling period. We denote this as a dwell-time 
constraint on u. 

4.2. Control law 

As remarked by Silveira and Pagano (2005), the implementation of 
any feedback control policy derived from u(t) to real biological system 
may light upon two complicating issues:  

1. Feedback control in the continuous time-domain t would require the 
measurement of the involved variables at every instant of time, 
which is obviously not possible. Anyhow, since the COVID-19 spread 
has ”slow” dynamics, discretized versions of the SIRDC / SIRASDC 
continuous models can be used. Given that new measurements are 
available each day, the discrete sampling is of Ts ¼ 1day;  

2. The control signal should, essentially, model the human action on the 
studied ecosystem. As previously argued, the human correspondence 
to the isolation policies have already been included to the SIRDC and 
SIRASDC models, through the dynamics of ψ(t).  

Remark 6. The discretization method used in this paper is very usual: 
all derivative functions dx

dt ðtÞ are approximated by the deviance along on 

Table 1 
Obtained [SIRD]/[SIRASD] model parameters.  

Model βA γA βS γS p ρ 

Nominal – – 0.4230 0.1395 – 0.09917 
Uncertain 1 0.3689 0.0952 0.4307 0.1395 0.0625 0.1462 
Uncertain 2 0.4307 0.1395 0.4307 0.1395 0.0322 0.1461  

Table 2 
Obtained [C] model parameters.  

Model αOn αOff ψ inf 

Nominal 0.1483 0.2966 0.4914 
Uncertain 1 0.1462 0.2924 0.5721 
Uncertain 2 0.1400 0.2801 0.5664  

M.M. Morato et al.                                                                                                                                                                                                                             



Annual Reviews in Control 50 (2020) 417–431

424

sampling period, this is: dx
dt ðtÞ �

ðxðkþ1Þ� xðkÞÞ
Ts

. This is usually referred to as 
Euler/forward discretization (Skogestad & Postlethwaite, 2007). 

Henceforth, this paper considers a piece-wise constant control signal 
u(t), generated from periodic measurements, every Ts ¼ 1 day. Consid
ering control increments denoted Δu(k), it is implied that: 

uðkÞ ¼ uðk � 1Þ þ ΔuðkÞ (12) 

The actual control law that the controller applies to the system is uðtÞ
¼ uðkTsÞ for the whole time during each sampling period interval, i.e. 
8tjkTs � t � ðk þ 1ÞTs. This is clearly a piece-wise constant signal due to 
Eq. (12). 

Apart from being piece-wise constant, the control law u must obey 
another main restriction, in order to be implementable in practice: it 
must depart from uð0Þ ¼ 1; which is the last observed social distancing 

policy (the country is still in an isolation condition). It must be noted 
that t ¼ 0 stands for the instant corresponding to the last sampled field 
data (infected, deaths dating 29 April). 

4.3. The optimal On-Off control framework 

To design an optimal controller which determines the On-Off control 
policy u(t) according to the previous discussion, we will follow the 
Model Predictive Control formalism. 

Sometimes named moving/sliding horizon control, the MPC concept 
is quite straightforward for the optimal control of constrained systems. 
The basic MPC formulation resides in the solution of an optimization 
problem with respect to a sequence of control actions Uk, at each discrete 
instant. This optimization is written in terms of a process prediction 
model, performance goals and constraints, which are handled explicitly. 

Fig. 3. Short-term simulation for the SIRASD model: Nominal vs. Uncertain.  

Fig. 4. Short-term simulation for the SIRASD model: Nominal vs. Uncertain (Log-scale).  
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The essence of the MPC framework resides in solving this optimization 
procedure at each discrete time step k and applying the first entry of the 
control sequence solution Uk; then, the horizon “rolls forward”. 

Therefore, we consider an well-posed quadratic function J which is 
minimized seeking to accomplish objectives (a) and (c) (reducing in
fections and reducing the social isolation periods) presented in Section 
4.1. This cost function is analytically expressed as: 

J ¼
XNp

j¼1

�
ISðkþ jjkÞT QIISðk þ jjkÞ

�

�
Imax

S
�2 þ

XNp � 1

j¼0
uðk þ jjkÞTð1 � QIÞuðkþ jjkÞ;

(13)  

where Np is a given prediction horizon, and Qu 2 (0, 1] is a weighting 
scalar. This weighting is introduced to induce a trade-off between 
strengthening social isolation measures (QI closer to 1) to mitigate the 
number of active symptomatic infections and relaxing it, to reduce 
economic backlashes (QI closer to 0). The notation ðk þjjkÞ stands for a 
model-based prediction for instant kþ j made at instant k. The constant 
Imax
S stands for the maximal possible value of IS, with respect to open- 

loop simulations (as in Fig. 1); we include this constant to ensure that 
the magnitude of the first and second term of J are the same (i.e. 
normalization). 

The vector of control efforts inside the prediction horizon Uk (to be 
optimized) is also presented: 

Uk ¼ ½ uðkjkÞ uðk þ 1jkÞ ⋯ u
�
k þ Np � 1

�
�k
�
�T : (14)  

From this control sequence, at each sampling instant k, one takes the 
first entry u(k) and applies the control signal according to Eq. (12) to the 
controlled COVID-19 spread process (SIRDC / SIRASDC models). 

Notice that if one simply minimized the previous cost function J, at 
each sampling instant k, with respect to a control sequence Uk, the re
sults would be a control sequence Uk which provides a trade-off (ac
cording to weighting scalar QI) between the minimization of infected 
individuals and control effort (u gets closer to 0 and, thus, less isolation 
is implied). 

Anyhow, for an appropriate application of this paradigm, the con
straints of each uðkþ jjkÞ; as given in Section 4.2, should be taken into 
account by the optimization procedure. It follows that: 

ISðkþ jjkÞ � nICUð1þ ξÞ 8j ¼ 1;⋯;Np; (15)  

0 � uðk þ jjkÞ � 1 8j ¼ 0;⋯;Np � 1; (16)  

uðk þ jþ 1jkÞ ¼ uðkþ jjkÞ þ Δuðkþ jjkÞ 8j ¼ 0;⋯;Np � 1; (17)  

Δuðk þ jjkÞisbinary 8j ¼ 0;⋯;Np � 1; (18)  

Δuðk þ mjkÞ ¼ 0 if k Δuðkþ jþ 1jkÞ � Δuðkþ jjkÞ k¼ 1 8m

¼ j;⋯; jþ Nm: (19) 

We stress that:  

� Eq. (15) ensures that the peak of infections is reduced and does not 
surpass nICUð1 þ ξÞ;  
� Eq. (16) ensures the control signal is bounded within the social 

isolation limits, Eq. (17) ensures that this law is piece-wise constant 
and Eq. (18) implied that the variation is binary (so that the control 
is, in fact, ”On”/”Off”);  
� Eq. (19) implies that a minimal dwell-time of Nm samples must be 

accounted for, i.e. the control determines that u stays at a given state 
”On” or ”Off” for a minimal period of Nm days. It is implied that Np >

Nm. 

Notice that the slack/tolerance variable ξ defined in Section 4.1 
should also be minimized so that it does not become a freely-moving 
degree-of-freedom of the optimization procedure, but a constrained 

variable. Therefore, a ξTQIξ penalty is included to the cost function J, as 
follows: 

J ¼
XNp

j¼1

�
ISðk þ jjkÞT QIISðk þ jjkÞ

�

�
Imax

S
�2 þ

XNp � 1

j¼0
uðk þ jjkÞTð1 � QIÞuðkþ jjkÞ

þ ξT QIξ:
(20)  

Remark 7. We note that to use a quadratic formulation of the cost 
function J, as given in Eq. (20), is seen in quite a few MPC applications 
(Camacho & Bordons, 2013). For convenience, we proceed with a 
quadratic weight on the minimized variables. Anyhow, we must note 
that, since the considered epidemic control problem has only positive 
variables (Is and u are inherently positive due to the nature of the 
mathematical problem that describes the COVID-19 contagion), the cost 
function J could be alternatively formulated as a linearly dependent cost 
on Is and u, which would lead to similar results. Using linear cost 
functions in MPC applied for epidemic control has been previously seen 
in Nowzari, Preciado, and Pappas (2016), K€ohler, Enyioha, and 
Allg€ower (2018) and Watkins, Nowzari, and Pappas (2019). 

Therefore, bearing in mind this previous discussion, the MPC 
approach to mitigate the effect of COVID-19 spread consists in mini
mizing the cost function J at every discrete-time step k, with respect to 
the previously discussed constraints and taking into account a dis
cretized version of the SIRASDC model, with Ts ¼ 1 day. One can 
mathematically express this problem as follows: 

min
Uk

J (21)  

subject to:

8
<

:

Discrete SIRASDC Model
Peak reduction constraint: Eq: ð15Þ

Control signal constraints: Eqs: ð16Þ-ð19Þ

We note that the “Discrete SIRASDC model” used as a prediction 
model in the MPC optimization is simply found by applying an Euler 
discretization method (as detailed in Remark 6) to Eq. (7). This dis
cretized model is then extended as a prediction model, describing future 
instants ðkþ jÞ with respect to the information at (k). 

5. Simulation results, forecasts and discussion 

In this Section, we present simulation forecasts using the SIRDC/ 
SIRASDC with parameters identified in Section 3. The following results 
were obtained with the aid of Matlab software, Yalmip toolbox and 
Branch-and-Bound (BNB) solver. 

In the sequel, the baseline threshold in the IS curves represent the 
number of available ICU beds in the country (see Fig. 2). The maximal 
threshold stands for an incremented number of ICUs (twice the baseline 
value), accounting for field hospitals and emergency ICUs that have 
been made specifically for the COVID-19 pandemic. 

The following control results were obtained considering the SIRASD 
models (Nominal, Uncertain 1 and Uncertain 2), as presented in Section 
3. 

Before presenting the actual results, we must affirm that the forecasts 
and arguments that we present in the sequel should not understood by 
the reader as incontrovertible truths. These forecast are model-based 
simulations which depend on a number of factors and initial condi
tions. Furthermore, we must stress that we have aggregated the whole 
set of Brazilian data in order to provide a general view of the country. 
However, if anyone intends to use the proposed method to help the 
formulation of public health policies, we suggest its application to 
datasets of smaller regions, that share the same hospital chain. We note, 
as illustrated in Fig. 2, that different regions of the country are facing 
different levels of the pandemic. 
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As evidenced in Section 3, the used models grasp the behaviors the 
SARS-CoV-2 virus dynamics quite accurately, but this does not means 
that the future predictions are unmistakable. For a fact, we cannot 
ensure that the social isolation measures will be strictly followed by the 
population, as we cannot ensure that other factors may come to help 
ease the spread of the disease (such as vaccines). What we mean by this 
is that the goal of this work is guide public policies regarding social 
isolation specially by taking into account the role of uncertainty and sub- 
notification. 

Due to the fact that the proposed model cannot exactly predict the 
pandemic dynamics, to apply some control polcy conceived based on a 
nominal model may lack conservatism. This could lead to catastrophic 
results, risking high levels of mortality. Any possible control policy that 
the government implements through social distancing measures must be 
based on recurrent (worst-case) model parameter estimations and 
recalculations of the optimization problem. One cannot use the models 
derived with the parameters presented in Table 1 as if they would not 
change along time. The correct measure is to take into account 
uncertainty-embedded models, performing the identification procedure 
detailed in Section 3 every day (when new datasets are available). Such 
adaptive control procedure (with model tuning and model-based control 
optimization) would be much more prudent, requiring constant 
measuring, monitoring, parameter estimation and control computa
tions. As discussed by K€ohler et al. (2020), feedback is utterly necessary 
to ensure a reliable handling of the SARS-CoV-2 outbreak. This is 
especially critical in Brazil, due to the high level of uncertainty on the 
datasets. 

Through the sequel, the dashed lines represent the results with un
certainty (solid dash, Uncertain 1 model; dot dash, Uncertain 2 model), 
while the solid lines account for nominal conditions. 

Considering these models, Fig. 5 shows the simulation for roughly 
one year dating from the last data sample (20/03/17), considering a 
total lock-down condition (u ¼ 1) and a no-isolation (u ¼ 0) case. The 
first 52 samples represent the known dataset, whereas the following 
samples stand for predicted data. Clearly, even if a hard isolation is 
enacted, the Brazilian health system will still face issues with large 
amounts of COVID-19 patients, with a nominal peak forecast to 26th of 
May. The nominal collapse of the healthy system (threshold) dates very 
soon, May 23. The amount of deaths expected with the uncertain model 
is unprecedented. Of course, each life matters and 2 million deceased 
individuals is a lot to bare. Psychological and social traumas will mark 

the country. A hard isolation could be able to save more than one million 
lives, taking into account the results achieved with the worst-case un
certainty scenario. 

With respect to the forecasts presented in Fig. 5, we must also stress 
that the possibility of herd immunity must be discarded. These results 
corroborate the conclusions presented by K€ohler et al. (2020), which 
indicate that neither a complete eradication of the virus nor herd im
munity are possible options to attenuate the COVID-19 pandemics 
without the availability of a vaccine. These results also go along the lines 
of (Hellewell et al., 2020). 

Considering control results, the MPC optimization procedure from 
Eq. (21) is solved for different cases of Nm (minimal amount of days in 
each state: isolation, no isolation). For such, the weighting scalar QI is 
chosen aiming to imply an adequate trade-off between peak reduction 
and social isolation. Since the occupancy rate of ICU beds in the country 
dating 20/05/08 is considerably high, we chose QI ¼ 0:9; which means 
that the MPC makes ”more effort” to reduce the amount of infected in
dividuals then to restore a no-isolation policy, which is reasonable 
considering the observed situation. The control horizon is fixed as Np ¼

60 days (the MPC makes predictions for two-months ahead of each 
sampled k, day). 

Firstly, we show the results for Nm ¼ 2; 5 and 7 days of the minimal 
days in each state condition. The decision by the MPC optimization and 
the resulting enacted social isolation measure (ψ) are shown in Fig. 6. 
The resulting effects on the amount of symptomatic individuals is shown 
in Fig. 7. We must state that, for Nm � 7 days, the amount of shifting in 
the observed social isolation variable is quite intense. Furthermore, the 
obtained results with these values for Nm were not enough to reduce the 
infection peak, as observed. Note that this kind of policy would hardly 
ever be implementable, since a confusing message would be passed to 
the society. The frequent changing between isolation or no-isolation 
would not be strictly followed, which is certainly unwanted. There
fore, these results are not considered as practical or viable. 

Then, Fig. 8 presents the obtained control results for Np ¼ 10; 14;20;
25;30;40 and 60 days, regarding the IS curve. This Figure contains a lot 
of information, which we try to explain by parts:  

� If social isolation is not maintained until roughly August 14, even the 
shortest “openings” (days in reduced isolation policies) could be 
catastrophic. Any possible reduction of the hard social isolation 
measures, before this date, would result in an infection peak which 

Fig. 5. Necessity of Social Isolation 2: Model-based Forecasts.  
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would surpass the amount of available ICU beds in the country in 
over seven times (considering the worst-case uncertainty). This is 
very significant and thus, any possible social isolation reduction 
should not proceed before the initial infection curve starts to decay 
(in both nominal and uncertain conditions);  
� Therefore, smallest peaks of infections occurs if the isolation measure 

is kept at least until August 14. After this date, when relaxations in 
these measures are enacted, a second infection peak will certainly 
appear. This second peak is due to the fact that social isolation is 
reduced by the MPC law after the decay of IS running from first peak 
(August 14). This second peak dates roughly October 3.  
� The second peak of infection is reduced with a smaller number of 

days in a no-isolation mode. This means that, after August 14, the 
MPC control action which results in the smallest values for IS are 
those with, at most, periods of 25 days in the no-isolation mode. The 
smallest amount of ”open” periods, better the results, as expected.  

� Note that as Nm increases, this second peak of infection also increases 
because the amount of minimal days determined for a no-isolation 
(or reduced-isolation) policy forces a peak increase, which is later 
treated by a total isolation after its decay. The amount of deaths are 
given in Fig. 10. Depending on the amount of days in a no-isolation 
condition, the amount of deaths may range from 0.13 to 1.88 million 
individuals, according to the uncertain models. 

Regarding these obtained results, it seems reasonable to us to ponder 
the following issues:  

� The uncertain model forecasts quite harsh infection scenarios. Even 
though the considered uncertainty is quite high (15, 30 times more 
cases), it offers us a worst-case forecast to determine public policies. 
With such uncertain model in mind, it seems evident why social 
distancing measures are so important right now and why they should 
not be dropped, despite their possible economical side-effects. It 

Fig. 6. Control Policy, Nm ¼ 2; 5 and 7 Days, Excessive Shifting.  

Fig. 7. Nm ¼ 2; 5 and 7 days, Resulting regulation.  
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seems extremely necessary for public policies to offer alternative 
solutions to those without jobs or economically suffering due to the 
social isolation.  
� No social distancing measures should be relaxed before mid-August 

(20/08/14). This would definitely help in avoiding the collapse of 
the Brazilian health system.  
� If social distancing is to be relaxed, this should not be done before the 

first infection peak starts to decay (beginning of August) and the no- 
isolation periods should be the minimal amount of days possible. To 
ensure heath safety, a conservative measure indicates that such 
paradigm of recurrent short periods of reduced isolation, followed by 
hard isolation periods would proceed until roughly 2021/01/21. 
This paradigm would be helpful to ensure that the SARS-CoV-2 virus 
does not cause further infection peaks and to mitigate the amount of 
deaths. 

The resulting control policies from the MPC procedure, for the 

different values for Nm, are shown in Fig. 9. These curves indicate, 
roughly, when to determine social isolation measures and when to set 
them off. In fact, the actual implemented policy would depend on a daily 
update of the MPC results with measured datasets. Anyhow, these results 
indicate a forecast of roughly when to determine or call off these mea
sures. The best result, in terms of infections, would be to follow the 
Social Isolation state until mid-August, an then relax this measure with 
small periods (that should definitely not surpass 25 days). 

We note, that results may also differ according to the chosen trade-off 
weight QI in the MPC cost function J. These results were elaborated with 
a tuning weight that “forces” stronger isolation measures than “re
laxations”. Anyhow, this choice seems coherent with the alarming sce
nario in Brazil, with rapidly increasing contagion curves. 

It seems, mathematically speaking, that even if the SIRASD model 
has a new degree-of-freedom (which is the decision variable u, to 
determine when to determine social isolation), the resulting optimiza
tion points out that the best option is to maintain isolation for as long as 

Fig. 8. Nm ¼ 10;14;20;25; 30;40 and 60 Days: Infected with Symptoms.  

Fig. 9. Control Policy: Nm ¼ 10;14;20; 25; 30;40 and 60 Days of Social Isolation.  

M.M. Morato et al.                                                                                                                                                                                                                             



Annual Reviews in Control 50 (2020) 417–431

429

possible (considering QI ¼ 0:9). Even if allowing social contact for a 
while, the optimization finds minima solutions of J for the smallest 
number of days with contact and, then, once again determines isolation. 
Even though different curves can be retrieved with alternative values for 
QI, it is very important to bare in mind that situations with IS > nICU may 
cause an unprecedented health crisis in the country. 

The COVID-19 is quite worrisome and presents devastating social 
and economic effects. Biology literature points out that social isolation is 
necessary. Using mathematical models and optimization, the answer is 
the same. 

6. Conclusions 

In this paper, we investigate an optimization-based solution for so
cial isolation measures of the COVID-19 spread for the Brazilian context. 
Since recent works have warned against the large order of sub- 
notification in Brazil, we take uncertainty into account to determine 
nominal and uncertainty dynamic models of the COVID-19 pandemics. 
Such uncertainty-embedded models are SIR-kind equations which also 
consider a new variable, which accounts for the average response of the 
population to social distancing measures (as determined by the gov
ernment). A robust Model Predictive Control framework is designed for 
the regulation of the COVID-19 through the means of such social 
isolation policies. The MPC is derived as an optimal On-Off social 
distancing planner. 

In this paper, we have tried to expose some essential insights 
regarding sub-notification and how possible relaxations of social 
distancing can be performed in the future. Below, we summarize the 
main findings of this paper, enlightening the key points:  

� The presented results corroborate the hypothesis formulated in 
Hellewell et al. (2020) and also discussed in The Lancet (2020), with 
respect to the Brazilian scenario: herd immunity cannot be consid
ered a plausible solution, offering great risk and leading to elevated 
fatality. Furthermore, as illustrate (Rocha Filho et al., 2020; 
Rodriguez-Morales et al., 2020; Silva et al., 2020), vertical isolation 
is also not an option for the time being, since we do not have the 
means to formulate an efficient public policy to separate the popu
lation at risk from those with reduced risk, due to multiple 
social-economical issues of the country.  

� Since the spread of the SARS-CoV-2 virus is inherently complex and 
varies according to multiple factors (some which are possibly 
unmodelled and external), exact prediction of the pandemic dy
namics is not possible. Therefore, the correct control procedure 
should be based on a recurrent (daily) model tuning and re- 
calculation of the control law, always taking into account the un
certainty margins. 
� The simulation forecasts found through the MPC optimization pro

cedure, which accounts for the uncertainty in the spread of the dis
ease, indicate that, at least for now, only one answer is available: 
maintain social isolation for as long as possible, without relaxing it 
before mid August 2020. This is a rather strict suggestion, but seems 
to be the sole possible way to attenuate the (already high) levels of 
the virus in Brazil. The forecasts also indicate a prediction for the 
infection peak in the country dating very soon, May 26, with a sec
ond (and larger) peak possibly arising in October. The control policy, 
in terms of social isolation, shows that relaxations (loosening the 
isolation measures) should be performed in, at most, periods of 25 
days of reduced-isolation, after the first infection peaks has passed, 
until roughly January 2021.  
� The experience and results provided in this paper could also serve for 

future pandemic outbreaks, for which social distancing policies can 
be formulated at the beginning of the spread following the mathe
matical feedback control methods herein proposed. 

Synthetically, we must stress that this paper presents only qualitative 
results of how an optimization-based On-Off strategy can be formulated 
regarding the COVID-19 spread, regarding the Brazilian context. Since 
the country as been experiencing an unwillingness to formally start 
harder social isolation measures (The Lancet, 2020), the social and 
economic costs of the pandemic might be brutal. 

The qualitative results presented in this paper can definitely serve for 
long-term regulatory decision policies in Brazil. These results indicate 
that social distancing measures will be recurrent and ongoing until 2021 
if no vaccines are developed by then. Therefore, compensatory social aid 
policies should be deployed to mitigate a long-lasting economic down
fall. We note that some recent findings also discuss this matter, sug
gesting the need for long lasting income aids during the periods of social 
isolation (Ahamed & Gutierrez-Romero, 2020; Zacchi & Morato, 2020). 
The Authors truly hope that the proposition herein formalised can serve 

Fig. 10. Nm ¼ 10;14;20;25; 30;40 and 60 Days: Deaths.  
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to help determining adequate public (health and social) policies from 
now on. 

Finally, we note that Brazil is a very large country, many different 
demographical and geographical differences. To further investigate the 
issue of uncertainty and sub-reports regarding the COVID-19 contagion 
in the country, local data and conditions should be analysed (as per 
state). The Authors plan on investigating this topic as future works. In 
these studies, the proposed MPC strategy could be designed with regard 
to local (uncertainty-embedded) models for each location, determining 
local social distancing guidelines. The approach in this paper gives an 
average guideline for the whole country. 
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Appendix A. Nomenclature and Symbology Lexicon  

Variable Meaning Unit 

t  Continuous time variable days 
Ts  Sampling period day 
k  Discrete time variable day 
S  Susceptible individuals number of people 
I  Active infected individuals number of people 
IS  Active infected individuals displaying symptoms number of people 
IA  Active infected individuals that do not display symptoms number of people 
Z  Cumulative number of infected individuals in the country number of people 
R  Recovered individuals number of people 
RS  Recovered individuals that had symptom number of people 
RI  Recovered individuals that did not display symptoms number of people 
D  Deceased individuals number of people 
N  Total population size (Brazil) number of people 
β  Average number of contacts sufficient for viral transmission 1

day  
βA  Transmission rate for the symptomatic class 1

day  
βSA  Transmission rate for the asymptomatic class 1

day  
p  Symptomatic/Asymptomatic individual rate – 
γ  Recovery rate – 
γS  Recovery rate for the symptomatic class – 
γA  Recovery rate for the asymptomatic class – 
ρ  SARS-CoV-2 lethality rate – 
ψ  Response of the Population to Social Isolation Guidelines – 
ψ inf  “Hardest” Social Isolation factor – 
u  Social Isolation Guidelines / Control Input – 
Δu  Control increment – 
αOff  Settling time parameter for “No Isolation” mode 1

day  
αOn  Settling time parameter for “Social Isolation” mode 1

day  
Kψ  Time-varying social isolation gain w.r.t. active infections – 
γK  Parameter this time-varying relationship – 
qD  Sub-report uncertainty w.r.t. to deaths – 
qI  Sub-report uncertainty w.r.t. to cumulative infections – 
fð⋅Þ Nonlinear identification function – 
nICU  Total number of available ICU beds – 
J  MPC Cost function – 
Np  MPC Prediction Horizon days 
QI  MPC trade-off weight – 
ξ  Slack variable –  
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