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Abstract

Largazole is a potent class I selective histone deacetylase (HDAC) inhibitor prodrug with 

anticancer activity against solid tumors in preclinical models. Largazole possesses in vitro activity 

against glioblastoma multiforme (GBM) cells and sufficiently crosses the blood-brain barrier 

based on measurement of the active species, largazole thiol, to achieve therapeutically relevant 

concentrations in the mouse brain. The effective dose resulted in pronounced functional responses 

on the transcript level based on RNA-sequencing and RT-qPCR, revealing desirable expression 

changes of genes related to neuroprotection, including Bdnf and Pax6 upregulation, extending the 

applicability of largazole to the treatment of brain cancer and neurodegenerative disorders. The 

largazole-induced modulation of Pax6 unifies both activities since Pax6 expression suppresses 

GBM proliferation and invasion and inversely correlates with GBM tumor grade, while it is also 

implicated in neurogenesis, neuronal plasticity and cognitive ability. Our results suggests that 

largazole could be repurposed for diseases of the brain.
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Introduction

Glioblastoma multiforme (GBM; WHO grade IV glioma) is the most common, highly 

aggressive, and treatment resistant primary malignant brain tumor in adults.1 Investigations 

of the mechanisms underlying the pathogenesis of GBM via RNA sequencing demonstrated 

the involvement of both dysregulated genetic and epigenetic mechanisms where altered 

expressions and/or sequences of histone deacetylases (HDACs)-coding genes have been 

reported.2 Analysis of RNA-sequencing data from The Cancer Genome Atlas (TCGA) 

revealed significant increase in the expression levels of HDACs 1–3 (class I) and HDAC 7 

(class IIa) in high grade gliomas.3 Histone deacetylases (HDACs) are validated drug targets 

for cancer therapy as the association of epigenetic changes, including loss of acetylation, 

with cancer malignancies and the overexpression of class I HDACs in cancers were readily 

documented.4 This was further supported by the FDA approval of four HDAC inhibitors for 

cancer therapy, including the pan-HDAC inhibitors vorinostat (SAHA) and belinostat 

(PXD101) for some T-cell lymphomas, and panobinostat (LBH589) for multiple myeloma 

(Figure 1), and the class I selective HDAC inhibitor romidepsin (FK228) for cutaneous T-

cell lymphoma.5 The inhibition of HDACs results in hyperacetylation of histones, open 

chromatin structure and subsequently modulation of gene expression, in addition to direct 

and indirect actions on cell cycle, apoptosis, autophagy, angiogenesis, and signaling 

pathways, also due to modulating acetylation status of non-histone proteins to modulate 

protein-protein interactions.5

HDAC inhibitors have not yet shown significant clinical activity against solid tumors, 

including GBM where various combination regimens have been studied, due limitations 

including toxicity as well as insufficient concentration of drug within the tumor due to low 

brain uptake.2 Several studies investigated the brain bioavailability of the four marketed 

HDAC inhibitors and revealed poor blood-brain barrier (BBB) penetration.2,6–8 
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Nevertheless, the compromised BBB in GBM facilitates the access of drugs to the brain 

tumor tissue, but which is not the case in other CNS conditions.2,9

Several studies proved the role of histone acetylation in regulating memory consolidation as 

the lack of histone acetyl transferase (HAT) may contribute to impaired memory function 

associated with neurodegenerative disorders.10 Excessive HDAC activity has been also 

reported in mice as well as in post-mortem brain samples of Alzheimer’s disease (AD) 

patients.11 In particular, HDAC2 (class I) was reported to be upregulated and its knockdown 

was found to restore disturbed synaptic plasticity and memory deficits in mouse models of 

AD.11,12 In line with these findings, it was suggested that targeted inhibition of class I 

HDACs could potentially ameliorate cognitive decline associated with neurodegenerative 

disorders such as AD.10 Among the FDA approved HDAC inhibitors, SAHA has been 

extensively studied in several animal models of AD and age-associated cognitive decline and 

was reported to rescue spatial and early contextual memory impairment.10,13 Furthermore, 

several studies utilizing in vivo models of Huntington’s disease (HD) demonstrated 

improved motor and behavioral impairments, molecular biomarkers of disease progression 

and reversed aberrant neuronal differentiation in response to pan-HDAC inhibitors SAHA 

and LBH589.14,15 However, the results have been controversial, and beneficial effects were 

not robustly observed across various studies, largely due to limited brain bioavailability of 

these agents.6 Collectively, these data indicate the need and promise of a brain-penetrant 

class I selective HDAC inhibitor for GBM and non-cancer CNS diseases.

Largazole is a prodrug, characterized by the presence of a thioester moiety, which upon 

hydrolysis liberates largazole thiol as the most potent natural class I selective HDAC 

inhibitor discovered from marine cyanobacteria (Figure 1).16–19 Of particular interest, it 

potently inhibits HDAC2, the key regulator of cognition-enhancing genes, at picomolar 

concentrations (Ki 0.07 nM).19,20 Anticancer studies of largazole demonstrated in vivo solid 

tumor anticancer (colon) and anti-invasive properties (triple negative breast cancer).18,21 

Largazole was also shown to exhibit potent antiproliferative effects against sympathetic 

nervous system cancer cells, including IMR-32 neuroblastoma cells;16 data which we 

corroborated in SH-SY5Y neuroblastoma cells (IC50 102 nM, Supplementary Figure S1). 

The antiproliferative effects of largazole in the NCI-60 screen demonstrated a wide spectrum 

of activity, including CNS tumor cell lines,18 indicating largazole’s potential against cancers 

of both peripheral and central nervous system, including brain cancers, with brain 

penetration being the requisite. Compared to other clinical and preclinical stage class I 

HDAC inhibitors, largazole possesses prominent features which include: (1) superior in vitro 

potency against class I HDACs;19 (2) a scaffold amenable to generate next-generation 

inhibitors with class I isoform selectivity;22 (3) modulation of activity profiles through 

alteration of prodrug properties as well as opportunity for conjugation to targeting agents; 

(4) oral bioavailability indicating that it can successfully pass intestinal membranes,23 which 

was not the case for the disulfide prodrugs such as present in the only approved class I 

HDAC inhibitor, romidepsin;23 and (5) scalable synthesis.24 The lack of nonspecific toxicity 

in vivo would allow to test largazole for other indications where cellular reprogramming 

would have a beneficial effect.25,26 These differentiating features of largazole may overcome 

limitations presented by current HDAC inhibitor therapies and other most advanced HDAC 

inhibitors in clinical trials. Here we describe the anticancer effects of largazole in GBM in 
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vitro, brain bioavailability and its potential neuroprotective effects through modulation of 

expression of genes implicated in neuroprotection in vitro and in vivo, identifying 

opportunities for repurposing of this preclinical candidate.

Results and Discussion

Initial in vitro testing validated the anticancer activity of largazole against two GBM cancer 

cell lines, SF-268 and SF-295 (Figure 2A). Largazole potently inhibited the proliferation of 

both cell lines with IC50 values of 62 and 68 nM, respectively. We then investigated the 

effects of largazole on target genes involved in neuroprotection/neurogenesis. One key target 

is BDNF, a brain-derived neurotrophic factor implicated in synaptic plasticity, neuronal 

development, behavioral adaptations, and cognition.27 Reduced expression of BDNF has 

been associated with neurodegenerative disorders such as Alzheimer’s, Huntington’s, and 

Parkinson’s diseases.28 SF-268 and SF-295 cells were both treated with largazole at the IC90 

dose (0.3 μM) for 12 h and BDNF expression was assessed by RT-qPCR, revealing a 1.4-

fold increase (Figure 2B).

We then investigated the ability of largazole to cross the BBB, indirectly by assessing 

histone hyperacetylation using Western blot analysis, and directly by quantifying levels of 

largazole thiol in non-tumor bearing mouse brain by HPLC-MS using multiple reaction 

monitoring (MRM), as described in Yu et al.29 Initial intraperitoneal (ip) dosing studies 

identified 5 mg/kg as sufficient to induce slight hyperacetylation in the brain and 

pronounced effects at 50 mg/kg after 4 h, suggesting that largazole (presumably the active 

thiol form) is highly brain-penetrant (Figure 3A). An ip dose of 50 mg/kg resulted in 

largazole thiol concentrations near the IC90 of the GBM in vitro activity after 4 h (300 nM) 

with time-dependent decrease to concentrations near the IC50 after 24 h (~80 nM, Figure 

3B). A lower ip dose (10 mg/kg) or oral administration (50 mg/kg) followed a similar trend 

with highest levels near the IC50 achieved in both cases after 4 h (Figure 3B). Therefore, 

these data set the stage for future brain-tumor efficacy studies since effective concentrations 

to retard GBM cell growth can be achieved, even if the BBB is not compromised as in our 

model system, extending the applicability of largazole to GBM but also non-cancer CNS 

diseases. Acute toxicity studies aimed at determining the maximum tolerated dose (MTD) 

indicated that single ip dosing with largazole was well tolerated up to 200 mg/kg. Repeated 

dosing below the MTD (and above our highest assay concentration of 50 mg/kg) on four 

consecutive days, using 60 mg/kg (x 4) and 75 mg/kg (x 4) did also not result in toxicity.

Given the bioavailability of largazole thiol in mice brains and promising toxicity data, we 

further assessed the effects of largazole on Bdnf expression in vivo 12 h following ip dose of 

50 mg/kg largazole. We detected a 3.3-fold increase in Bdnf gene expression based on RT-

qPCR (Figure 3C). The upregulation of Bdnf indicates that largazole thiol levels in the brain 

are sufficient to induce a functional response. To capture functional consequences in the 

brain on a global level, we then carried out RNA-sequencing, followed by Ingenuity 

Pathway Analysis (IPA) of differentially expressed genes using cutoff criteria of 2.5-fold 

change (Exp log ratio 1) and p-value of 0.05 to focus on biologically and statistically 

significant changes (1220 genes). Aside from cancer, which was detected as a top hit in the 

IPA list of diseases and functions (Supplementary Figure S2, Table S1), we were interested 
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in investigating the potential applications of largazole in diseases or functions implicated in 

nervous system development and function, neurological and behavioral diseases. Based on 

the activation z-scores, a statistical quantity computed for each biological function, the 

activation states of some diseases related to those categories were predicted and linked to the 

corresponding genes in the dataset (Tables 1 and 2). Our findings support beneficial effects 

in response to largazole treatment, since behavioral functions such as cognition as well as 

several nervous system functions involved in neuroprotection were predicted to increase 

(Table 1), whereas the activation states of several neurological diseases were decreased 

(Table 2).

Interestingly, the top canonical pathway that had a positive z-score and highly correlated 

with three major neuro categories (nervous system development, neurological diseases, and 

behavior) was Dopamine-DARPP32 feedback in cAMP signaling with a z-score of 3.838 

and p-value of 1.44E-05 (Supplementary Figure S3). DARPP32 is a key mediator of 

dopamine signaling and a well-known marker of differentiated striatal medium spiny 

neurons (MSNs), highly vulnerable neurons in HD.30 It is highly expressed in MSNs and 

modulate their response to dopamine. Mutant mice lacking BDNF were reported to exhibit 

reduced expression levels of DARPP32.30 Another study demonstrated increased histone 

acetylation and expression of DARPP32 mRNA and protein levels following in vitro 

exposure of MSNs to HDAC inhibitors to promote their phenotypic maturation.31 

Furthermore, a recent study demonstrated enhanced DARPP32 protein levels, a marker of 

striatal development, in response to the pan-HDAC inhibitor LBH589 in an animal model of 

HD.14

Several other relevant canonical pathways were identified in the analysis, including: CREB 

signaling in neurons and synaptic long term potentiation (LTP) signaling. A recent study 

ascribed the critical roles of BDNF and CREB signaling in hippocampal LTP and memory 

formation where SAHA (25 mg/kg ip)was shown to reverse induced-cognitive and synaptic 

plasticity impairments in vivo through the upregulation of BDNF, tropomyosin-related 

kinase B (TrkB), and CREB signaling pathways in the hippocampus.32 Moreover, SAHA 

was previously reported to enhance LTP of excitatory synapses in vitro (0.5 μM) using rat 

organotypic hippocampal brain slices, but without cognition enhancing effects in vivo – at 

the same dose that showed functional consequences with largazole (50 mg/kg ip) - attributed 

to limited brain bioavailability of SAHA.6

Our analysis also identified several regulator effect networks, which demonstrated the 

neuroprotective potential of largazole (Figure 4). Such networks connect the upstream 

regulator identified and predicted to be activated in the analysis, through the differentially 

regulated genes in the dataset, to a relevant phenotype or disease state where it has been 

implicated. One network involved Nrf2 (NFE2L2), a neuroprotective transcription factor 

which induces antioxidant and phase II detoxification enzymes upon binding to the 

antioxidant response element (ARE), which has been reported to prevent or reduce neuronal 

cell death (Figure 4).33 The Nrf2-ARE pathway is a therapeutic target in neurodegenerative 

diseases where oxidative stress has been implicated in the etiology.34 Other networks 

identified include cell cycle, gene expression, and posttranslational modifications, consistent 

with the established mechanisms of HDAC inhibitors in cancer (Supplementary Figure S4).
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Close inspection of the top 37 differentially expressed genes revealed Pax6 and Oprm1 with 

3.0- and 4.6-fold increase in expression, respectively. Pax6 is a neuronal transcription factor 

with neurodevelopmental regulatory functions that is implicated in neurogenesis and 

neuronal plasticity and plays critical role in cognitive abilities.35 Studies have demonstrated 

the correlation between Pax6 expression and AD severity where it was reported to influence 

the expression of genes related to neurodegeneration, including BDNF.36 Additionally, the 

disabilities of patients with aniridia, a neurological disease caused by PAX6 

haploinsufficiency, was reported to parallel the morphological and behavioral abnormalities 

of Pax6 mutant mice.35,37

Interestingly, aside from the role of Pax6 in neurological and neurodegenerative conditions, 

it was also shown to act as a tumor suppressor in gliomas. Pax6 expression suppressed the 

proliferation, invasion and colony formation in GBM cell lines.38 As its expression was 

shown to inversely correlate with tumor grade, Pax6 was suggested to be a prognostic 

biomarker in astrocytic glioma.39 Hence, the upregulation of Pax6 by largazole might 

contribute to its dual actions on cancer cell proliferation and modulation of genes involved in 

neuroprotection. To our knowledge, no other small molecules were reported to modulate the 

expression of Pax6 apart from one study describing the protective role of caffeine against 

impaired neurogenesis.40 Therefore, our data related to the discovery of Pax6 as an indirect 

therapeutic target for largazole might provide the basis for future studies directed at 

investigating its effects in Pax6 implicated pathogenesis and unifies both GBM anticancer 

and non-cancer CNS activities.

Finally, few studies reported elevated methylation of OPRM1 gene in AD and supported 

neuroprotective role of OPRM1 against β-amyloid peptide (Aβ) neurotoxicity through 

mTOR signaling.41,42 A recent study demonstrated the involvement of HDAC2 in the 

suppression of μ-opioid receptor activity and suggested underlying mechanisms of this 

epigenetic deregulation.43 These studies further supports our analysis where mTOR and 

opioid signaling (z-scores 1.342 and 3.157, respectively) showed up as top canonical 

pathways after DARPP32 signaling. Hence, the identification of Oprm1 as a hit in the RNA-

seq experiment suggests potential repurposing of largazole for opioid receptor modulation 

and warrants further investigations.

In conclusion, we demonstrated the GBM activity of largazole in vitro as well as brain 

bioavailability and functional consequences in vivo. Our data supports the therapeutic 

applications of largazole in brain cancer and potentially other CNS diseases, especially given 

the class I HDAC selectivity and superior brain penetration over other clinically used HDAC 

inhibitors. Although the development of BDNF enhancing drugs is still underway, the 

discovery of additional new putative targets for the therapeutic intervention of 

neurodegenerative disorders is equally important. Investigations of the impact of largazole 

on the global network of genes implicated in CNS diseases identified Pax6 and Oprm1 as 

other potential targets. Hence, these changes in gene expression illuminated potential 

repurposing opportunities of largazole, which warrants further investigations in relevant 

model systems. A “systems” approach using a brain-penetrant class I HDAC inhibitor that 

leads to downstream polypharmacology through on-target effects to modulate an entire 
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network of genes and proteins might be more efficacious and promising than targeting a 

single gene for such complex diseases with unmet medical need.

Methods

Cell viability assays.

The cells (SF268, SF295, SH-SY5Y) were seeded in 96-well plates and treated after 24 h 

with different concentrations of largazole or solvent control. Following 48 h, cell viability 

was measured using MTT. More details can be found in Supporting Information.

Immunoblot analysis.

Brain samples were homogenized through sonication in PhosphoSafe lysis buffer, 

centrifuged, and the supernatants were collected and used for immunoblot analysis probing 

with acetyl histone H3 antibody (Lys9/14). The details of the protocol can be found in 

Supporting Information.

RNA extraction and RT-qPCR.

RNA was extracted from mouse brain tissues using TRIzol while RNeasy Mini Kit (Qiagen) 

was used for cellular studies. The qPCR experiment was carried out using ABI 7300 

sequence detection system. The details of the protocol can be found in Supporting 

Information.

RNA-seq.

Illumina RNA library construction and subsequent NextSeq500 sequencing (Illumina) were 

carried out as described in Supporting Information.

Metabolite analysis.

Analysis of largazole thiol in brains was performed using an HPLC-MS where largazole 

thiol along with the internal standard harmine were specifically monitored in the samples 

using MRM as described.23,29 The details of the protocol can be found in Supporting 

Information

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of largazole, largazole thiol, and the four FDA approved HDAC inhibitors. Atoms 

labeled in red indicate the site of prodrug activation.
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Figure 2. 
The effects of largazole on proliferation and BDNF gene expression of glioblastoma cells 

(SF-268 and SF-295). A. The antiproliferative activity of largazole assessed by MTT assay. 

B. BDNF transcript levels in response to largazole treatment (0.3 μM; 12 h) assessed by RT-

qPCR (TaqMan; GAPDH was the endogenous control). Error bars represent SD, n = 3. The 

asterisks denote significance of p < 0.05 relative to solvent control using two-tailed unpaired 

t test (* denotes p ≤ 0.05, ** denotes p ≤ 0.01)
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Figure 3. 
The brain bioavailability of largazole. A. Dose-response analysis of histone hyperacetylation 

in brain (4 h; ip). B. In vivo monitoring of largazole thiol levels in excised whole-brain 

tissue (error bars represent SEM, n = 2). C. Bdnf expression in brain tissue after 12 h 

treatment with largazole (ip 50 mg/kg) vs control assessed by RT-qPCR (TaqMan; Actin was 

the endogenous control). Error bars represent SEM, n = 2. The asterisk denotes significance 

of p ≤ 0.05 relative to solvent control using two-tailed unpaired t test.
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Figure 4. 
Regulator effect networks affected by largazole, identified through the analysis of RNA-seq 

data of mice brains (50 mg/kg ip, 12 h treatment) using IPA (2.5-fold cutoff, p < 0.05), 

showing the anticancer and neuroprotective potential of largazole. CP: canonical pathways. 

PAX6 and OPRM1 are emphasized in bold face.
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Table 1.

Diseases or functions implicated in nervous system development/behavior predicted to be activated (based on 

IPA; 2.5-fold cutoff, p < 0.05), many of which are associated with PAX6 and OPRM1.

Diseases or functions annotation p-Value Activation z-score No. of molecules Selected genes

Development of neurons 6.12E-17 3.763 132 SOD2, PAX6, OPRM1

Morphogenesis of neurons 3.03E-16 2.841 108 NLGN1, PAX6, OPRM1

Neurogenesis 8.34E-16 2.841 106 PAX6, OPRM1, SRGAP2

Development of CNS 3.37E-11 2.092 99 NLGN1, PAX6, S100B

Growth of neurites 4.16E-08 3.692 69 PAX6, S100B, CDH2

Outgrowth of neurites 3.89E-07 3.291 57 ERBB4, PAX6, NLGN1

Proliferation of neuronal cells 4.47E-08 3.476 78 CNTN2, PAX6, NLGN1

Coordination 0.00014 3.651 29 ATXN2,CDKL5, ITPR1

Migration of neurons 0.000207 3.001 32 PAX6, CDKL5, IGF1R

Differentiation of neurons 0.000188 2.223 51 CNTN2, PAX6, NLGN1

Extension of neurites 2.16E-06 2.474 29 PAX6, ERBB4, ITPR1

Cognition 4.47E-08 2.368 70 CREBBP, PAX6, OPRM1

Learning 5.55E-08 2.267 65 CREBBP, PAX6, OPRM1

Contextual conditioning 0.000338 2.138 15 ERBB4, CDKL5, VDAC1
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Table 2.

Neurological diseases predicted to be decreased in response to treatment (based on IPA; 2.5-fold cutoff, p < 

0.05).

Diseases or functions annotation p-Value Activation z-score No. of molecules Selected genes

Movement disorders 1.93E-011 −3.773 149 OPRM1, PAX6, ATXN2

Seizure disorders 6.38E-05 −3.588 63 SYN2, OPRM1, ATXN2

Paraparesis 0.000152 −2.236 5 CTSF, NDRG1, PLP1

Ataxia 0.00015 −2.775 35 PAX6, SOD2, PLP1

Congenital malformation of brain 0.00013 −3.43 36 PAX6, CREBBP, AKT3
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