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Abstract

Background: Surgical patients incur preventable harm from cognitive and judgment errors made
under time constraints and uncertainty regarding patients’ diagnoses and predicted response to
treatment. Decision analysis and techniques of reinforcement learning theoretically can mitigate
these challenges but are poorly understood and rarely used clinically. This review seeks to promote
understanding of decision analysis and reinforcement learning by describing their use in the
context of surgical decision-making.

Methods: Cochrane, EMBASE, and PubMed databases were searched from their inception to
June 2019. Forty-one articles about cognitive and diagnostic errors, decision-making, decision
analysis, and machine-learning were included and assimilated into relevant categories per
PRISMA guidelines.

Results: Requirements for time-consuming manual data entry and crude representations of
individual patients and clinical context compromise many traditional decision-support tools.
Decision analysis methods for calculating probability thresholds can inform population-based
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recommendations that jointly consider risks, benefits, costs, and patient values but lack precision
for individual patient-centered decisions. Reinforcement learning, a machine-learning method that
mimics human learning, can use a large set of patient-specific input data to identify actions
yielding the greatest probability of achieving a goal; this methodology follows a sequence of
events with uncertain conditions, offering potential advantages for personalized, patient-centered
decision-making. Clinical application would require secure integration of multiple data sources
and attention to ethical considerations regarding liability for errors and individual patient
preferences.

Conclusions: Traditional decision-support tools are ill-equipped to accommodate time
constraints and uncertainty regarding diagnoses and the predicted response to treatment, both of
which often impair surgical decision-making. Decision analysis and reinforcement learning have
the potential to play complementary roles in delivering high-value surgical care through sound
judgment and optimal decision-making.

TOC Statement- 20191224

This review describes challenges and opportunities in methods of surgical decision-making and
clinical practice. Traditional decision-support tools are ill-equipped to accommodate time
constraints and uncertainty; decision analysis and reinforcement learning theoretically can
augment surgical decision-making across populations and for individual patients

INTRODUCTION

Every day, patients and physicians must decide which diagnostic and therapeutic
interventions should be performed or deferred. Although hundreds or thousands of
interventions may yield more benefit than harm, limitations of time and resources mandate
that only the most advantageous interventions are performed. This approach to resource use
is often misused or ignored in the United States, where doctors and hospitals may tend to
overtreat the insured and undertreat the uninsured.! More importantly, decisions regarding
interventions impact mortality, morbidity, and quality of life for patients and their caregivers.

Ideally, clinical reasoning incorporates rigorous medical training, clinical intuition, critical
thinking, evidence-based medicine, and a robust process of shared decision-making among
physicians, patients, and their caregivers. Unfortunately, decisions often transpire under time
constraints and conditions of uncertainty regarding an individual patient’s diagnoses and
predicted response to treatment. Time constraints may be imposed by acute diseases that
require urgent diagnosis and treatment, or by busy clinical schedules that restrict time for
gathering information and deliberating; uncertainty may be imposed by a lack of provider
knowledge, the unavailability of patient data, such as outside hospital records or diagnostic
tests, or the absence of high-level evidence to guide important management decisions. Under
such time constraints and uncertainty, clinicians may rely instead on cognitive shortcuts and
snap judgements using pattern recognition and intuition.2: 3 Cognitive shortcuts without
deliberation can lead to bias or predictable and systematic cognitive errors.* ® Cognitive and
judgment errors are a leading cause of misdiagnosis, and physicians are often blind to them
unless feedback is provided by post-mortem examinations, of which 10-15% reveal major
diagnostic errors.5-8 Cognitive and judgment errors are especially harmful in surgical
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decision-making, in which high-stakes decisions can markedly affect clinical outcomes.® In
a survey of 7,905 members of the American College of Surgeons, lapses in judgment were
the most common cause of major medical errors.10

Decision-support tools are supposed to mitigate these errors. Unfortunately, they often
require time-consuming, manual data entry and are designed for non-specific, generalized
application to any patient with a certain disease or condition, and so they lack precision for
the unique pathophysiology and clinical context of individual patients.11 Not surprisingly,
most of these decision support tools have not achieved widespread clinical adoption.12
Surgeons need better decision-support tools. Methods of decision analysis methods and
technologies of reinforcement learning can generate population-based recommendations and
augment decision-making for individual patients. Unfortunately, many clinicians are
unfamiliar with them and the applications in surgery are sparse. Among many promising
methods for improving patient-centered decision support,13: 14 this review features
reinforcement learning, because it most closely mimics human learning and offers specific
recommendations for discrete actions rather than predicted probabilities that only indirectly
support decisions. Predictive analytic risk assessments are useful when risk is unexpectedly
very low or very high, but most patients have intermediate risk. This review describes
decision analysis and reinforcement learning in the context of clinical surgical decision-
making.

METHODS

Cochrane, EMBASE, and PubMed databases were searched from their inception to June
2019 (Supplemental Digital Content 1 lists article search parameters and objectives).
Acrticles were excluded if they were not published in English or were not primary literature
or a review article. Articles were selected for inclusion by reviewing manually the abstracts
and full texts to assess topical relevance, methodological strength, and novel or meritorious
contribution to existing literature. Articles of interest cited by other articles identified in the
initial search were reviewed using the same inclusion criteria. Forty-one articles were
included and assimilated into relevant categories (Table 1) according to guidelines of the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping
Reviews (PRISMA-ScR) (Supplemental Digital Content 2 lists PRISMA-ScR criteria). The
decision to review decision analysis and reinforcement learning methods was made prior to
performing the literature search. Topic subcategories were chosen after performing the
literature review by favoring themes that emerged from the literature. Decision-making
concepts and theories were described in the context of surgical decision-making scenarios.
The assimilation process was limited by heterogeneity among topics and reporting practices
which precluded the performance of a systematic review and meta-analysis. The 41 articles
included addressed the topics of decision-making (n=13), decision analysis (n=13), and
machine-learning (n=15).
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OBSERVATIONS

Patient-Centered Decision-Making

Shared decision-making that is truly effective improves patient satisfaction and compliance
and may decrease costs from unnecessary interventions.1% 16 Ethically, patient-centered
decision-making should be a fundamental principle governing a health care system that
values patient autonomy.1” But clinicians often ignore patient values. Patients, caregivers,
and providers frequently misunderstand one another and their goals of care.16: 18 These
misunderstandings are compounded not only when patients and caregivers with limited
health literacy make complex medical decisions, but also when clinicians fail to recognize
inadequate decision-making capacity. Bertrand et al.19 assessed the decision-making
capacity of 206 patients in an ICU using two methods: a mini-mental status examination and
the opinion of attending physicians, nurses, and residents. Clinicians thought 45% of the
population had decision-making capacity, but only 17% of the patients had capacity per the
criteria of the mini-mental status examination. In a systematic review of 32 articles including
13,176 patients and surgeons, only 36% of all patient-surgeon interactions represented
shared decision-making.2? Surgeons are often unknowingly blind to this phenomenon, and
one in seven surgical patients report decisional regret.20: 21 After establishing rapport and
decision-making capacity, surgeons should ask patients about their goals of care and values.
These findings suggest that patient assessments often omit this step.

Research that should rely on patient preferences often omits these patient preferences. Non-
inferiority trials measure a trade-off between losing the established efficacy of a standard
treatment and some possible benefit of a new therapy. If investigators weigh risk-benefit
trade-offs differently than patients, the new therapy may be designated non-inferior and
achieve clinical adoption before clinicians realize that patients actually preferred the
standard therapy. Acuna et al.?2 cite the ACOSOG Z0011 trial as an example. Patients who
did not undergo completion axillary lymph node dissection had 45% lesser rates of surgical
complications and 13% lesser rates of lymphedema at 1-year follow up, and the non-
inferiority margin for overall survival set by investigators was 1.3, or 6%.23 But some
patients may not accept a 6% decreased overall survival in exchange for fewer
complications.

Many prediction models and decision-support tools ignore patient values. Each year, more
than 1,000 published articles feature independent risk factors or independent predictors in
their title or abstract.12 Most decision support tools described in these articles have flaws
that preclude their widespread clinical adoption (e.g., the risk factors or predictors are not
widely available or used by clinicians, predictive performance is weak, and/or the findings
are not validated in a separate study population to ensure generalizability), but even the
successful tools often do not incorporate patient values. The CHA2DS2-VASc score is a
clinical classification scheme that uses seven ordinal and binary variables to estimate
annualized risk of stroke among patients with atrial fibrillation and makes clinically useful
recommendations regarding antiplatelet and anticoagulation therapy, earning support from
the European Society of Cardiology, American College of Cardiology, and American Heart
Association.24 CHA2DS2-VASc makes assumptions about patient preferences for outcomes
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like stroke and hemorrhage, which may skew decisions regarding antiplatelet and
anticoagulation therapy for any individual patient, as discussed in the “Patient Values”
section below.

Decision Analysis—Clinical and translational research and evidence-based medicine
define best practices for managing disease and for promoting health by measuring and
evaluating the risks and benefits of diagnostic and therapeutic interventions. Clinical
application requires the additional step of considering these risks and benefits alongside
patient values and financial costs. Methods of decision analysis accomplish this step by
weighing risks and benefits by patient values and by incorporating costs to quantify value of
care, thereby facilitating optimal use of resources across health care systems. This process
produces probability thresholds that inform guidelines and recommendations for diagnostic
and therapeutic interventions across populations.

Evaluating Model Utility

The diagnostic performance and clinical utility of a test or model are complementary but
separate considerations. A magnetic resonance image (MRI) of the chest may have excellent
diagnostic performance in identifying traumatic thoracic injuries, but obtaining a chest MRI
for an unstable patient with penetrating chest trauma could harm the patient by delaying
operative exploration, thereby yielding negative clinical utility. The techniques of decision
analysis compare directly the overall clinical utility of diagnostic tests or prediction models
based on risks, benefits, costs, and patient values. This offers a major advantage over the
common practice of comparing tests and models by discrimination or accuracy alone. For
example, the diagnosis of appendicitis among pregnant women is challenging; several other
conditions mimic appendicitis, cephalad displacement of the appendix alters the clinical
presentation, and teratogenic radiation effects preclude the routine use of computed
tomography. A missed diagnosis with progression to complicated appendicitis is associated
with increased risk for fetal loss relative to the risk of non-therapeutic laparotomy, 20%
vs.3% in one study.2> Therefore, in predicting appendicitis among pregnant women, false-
negative results are more harmful than false-positives results.

Consider two models predicting appendicitis among 100 pregnant women presenting with
fever and right-sided abdominal pain, of whom 50 actually have appendicitis (Figure 1).
Model A has much greater specificity and slightly less sensitivity than Model B. Accuracy
assigns equal weight to sensitivity and specificity, so Model A is more accurate. The
likelihood of one fetal loss due to a wrong diagnosis applying Model A 100 times is
(4*0.20) + (2*0.03) = 0.86; the likelihood with Model B is (1*0.20) + (11*0.03) = 0.53. If a
woman wishes to avoid fetal demise due to a wrong diagnosis, Model B has greater utility,
despite its lesser accuracy. In such cases, metrics like the number needed to treat or harm are
useful.

Number Needed to Treat or Harm

The number needed to treat (NNT)—the number of patients that must undergo an
intervention to avoid one adverse event—adjusts for prevalence by incorporating baseline
risk without an intervention and the risk reduction associated with the intervention. The
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importance of adjusting for prevalence is illustrated by application of Bayesian probability
to mammographic detection of breast cancer.28 A group of physicians were presented with
three statistics: a 40 year-old woman undergoing screening mammography has a 1% chance
of having breast cancer; if she has breast cancer, the probability of a positive mammography
is 80%; if she does not have breast cancer, the probability of positive mammography is
9.6%. Most physicians in this study estimated that this 40 year-old woman with a positive
screening mammogram had a 70-80% probability of actually having breast cancer,
approximately one order of magnitude greater than the actual probability of 7.8%.

NNT is the reciprocal of absolute risk reduction, or the raw difference in risk of an adverse
event between two options. Consider an uncomplicated, intra-abdominal infection for which
management options include antibiotics alone or surgical source control. If the risk of
disease progression and septic shock while treating with antibiotics alone is 7% and the risk
or progression and shock after a surgical source control procedure is 2%, then the number
needed to treat with surgery to avoid one case of septic shock is 1/(0.07-0.02)=20 patients.
NNT does not account for adverse events attributable to the intervention itself, manifest as
number needed to harm (NNH), or the number of patients that must undergo an intervention
to produce one adverse event, calculated as the reciprocal of the raw difference in harm. If
the risk of allergy or untoward effect from antibiotics is 4% and the risk of postoperative
complications is 8% then the NNH with surgery is 1/ (0.08-0.04) = 25. NNT=20 and
NNH=25, therefore surgery is advantageous when assuming equal weight for postoperative
complications, medication side effects, and progression to septic shock. Patients and
surgeons may not agree with these assumptions. Incorporation of relative value addresses
this problem.

Patient Values

Probability thresholds incorporate patient values by calculating relative values of risks and
benefits attributable to the intervention and its alternatives. Published literature can produce
relative values. The CHA2DS2-VASc score makes assumptions about patient values
regarding stroke and hemorrhage when recommending antiplatelet and anticoagulation
therapy for patients with atrial fibrillation. Four studies investigating patient preferences and
quality of life suggest that patients consider one stroke equivalent to five episodes of serious
gastrointestinal bleeding.27-30 Considering this ratio within a decision analysis framework,
the relative value of serious bleeding relative to stroke is 0.744; the relative value of minor
bleeding relative to stroke is 0.014.31 Applied to known frequencies of major and minor
bleeding events among anticoagulated patients, the threshold NNT is 152. Among elderly
patients with a history of stroke, diabetes, and hypertension, anticoagulation decreases 1-
year stroke risk from 8.1% to 2.6%, such that the NNT=1/(0.081-0.026)=18.32 The NNT in
this subgroup is well below the threshold NNT, and therefore, this subgroup should receive
anticoagulation therapy.

This calculation used five, well-designed studies to derive and apply relative values.2’~30. 32
Similar data are often unavailable for surgical diseases, and especially for rare ones. In
addition, this method calculates thresholds for aggregate patient populations. A patient who
declines allogenic blood transfusions may consider stroke and serious gastrointestinal

Surgery. Author manuscript; available in PMC 2021 August 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Loftus et al. Page 7

bleeding to be equally harmful, generating a different probability threshold than the general
population.

Decision Trees and Curves

Decision tree analysis uses predicted risks, benefits, and relative values of possible outcomes
to calculate probability thresholds.33 Each patient has a probability pthat the disease is
present. If pis near 1, a diagnostic or therapeutic intervention targeting that disease is likely
useful; in contrast, if pis near 0, the intervention is likely useless. Between 0 and 1, there is
a probability threshold p;where the predicted utilities of performing and deferring the
intervention are equal. Decision trees are the foundation for some machine-learning
methods. Random Forests use a multitude of decision trees, as the name implies. This review
considers decision trees separately from the machine-learning techniques that employ
decision trees.

Consider a patient who presents with post-prandial epigastric pain (Figure 2). Whether
symptoms are attributable to biliary dyskinesia or another process (e.g. gastritis, pancreatitis)
is unclear. Approximately 60-90% of all adults with similar presentations will have
improvement or resolution of these symptoms after cholecystectomy, with a lesser likelihood
of benefit for patients with atypical symptoms and no gallstones.3* 35 This thought
experiment assumes 75% probability that symptoms are due to biliary dyskinesia and will
resolve after cholecystectomy. Assume that the value of surgery when disease is present and
the value of no surgery when disease is not present are each favorable (0.80), undergoing
unnecessary surgery has half the value (0.40), and that deferring surgery when disease is
present has the least value (0.20). The probability threshold would be 0.40, considerably less
than the probability that symptoms are due to biliary dyskinesia (0.75), so cholecystectomy
is advantageous. For a patient with atypical symptoms, no gallstones, and a 35% probability
that symptoms are attributable to biliary dyskinesia, cholecystectomy would be
disadvantageous.

Djulbegovic et al.38 applied this process to the prophylaxis of deep vein thrombosis (DVT),
demonstrating that patients with a DVT risk of 15% or more should receive DVT
prophylaxis, and patients with less than 15% risk should not. This approach mandates binary
outcome predictions. For models predicting risk along a continuum (i.e. 0-100%),
conversion to a dichotomous threshold sacrifices precision, but decision curve analysis
obviates conversion to a binary outcome threshold.3” Decision curve analysis proceeds by
solving a decision tree for pt, identifying the number of truepositive and false-positive
results according to pt, calculating the net benefit of the prediction model used to estimate p,
and varying ptover a clinically relevant range of possible values. Model net benefit is
calculated for each new pt, producing a decision curve that plots pzagainst model net benefit
for two patient populations: one in which all patients have the condition being predicted, and
one in which no patients have the condition being predicted. The model is beneficial at all pf
for which the space between the two lines has net benefit >0. By avoiding conversion of
continuous probability scores to binary variables, this approach has the theoretic advantage
of preserving precision.
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The tendency to overtreat the insured and undertreat the uninsured in the United States
suggests that current practices for incorporating costs in medical decisions are suboptimal.l
Optimizing value of care, i.e. clinical outcomes in the context of financial costs, could
address this problem.38 Decision analyses can accomplish this goal by comparing gains,
expressed as QALY (quality-adjusted life years), with expenditures expressed in monetary
values like dollars.3? Among patients with non-valvular atrial fibrillation with at least one
risk factor for stroke, administration of warfarin costs about $8,000 per one QALY saved;
for a 65-year old patient with no risk factors, administration of warfarin costs about
$370,000 per one QALY saved.*? Robbins et al. 41 demonstrate a method for surveying
involved parties and incorporating their willingness to bear financial burdens in NNT
analyses.

Reinforcement Learning—Reinforcement learning is potentially useful in surgical
decision-making, because it can use an expanded set of complex input data including text,
image, and waveform data tailored to individual patients to recommend specific actions at
sequential decision points. Reinforcement learning is the subfield of artificial intelligence
that most closely mimics human learning and decision-making. The agent (in this
discussion, the agent is an algorithm) learns to map states (in this discussion, states refer to
patient conditions such as stages of cancer) observed from its environment (in this
discussion, the environment consists of data available to the algorithm, e.g., data from an
electronic health record or database) to actions that maximize a reward (in this discussion,
the reward is a clinical outcome). Actions may affect not only the immediate outcomes but
also all subsequent states and outcomes.*2 By developing optimal value functions and
decision-making policies, reinforcement learning identifies sequences of actions yielding the
greatest probability of long-term favorable outcomes as conditions of uncertainty evolve
over time. Interactions between a learning algorithm and its environment often occur within
a Markov Decision Process containing states, actions, state-transition probabilities, and
rewards. (Figure 3).

For a patient presenting with adhesive small bowel obstruction without peritonitis, a surgeon
may recommend one of two primary actions: observation or operative exploration.
Resolution and discharge home without the need for abdominal exploration, bowel resection,
or intra-abdominal sepsis during hospitalization is the goal, although the goal could be any
patient-centered outcome that available data can represent. This “thought experiment”
assumes that initial observation yields a 50% chance of transitioning to a state of resolved
bowel obstruction, a +3 reward, and a 50% chance that the patient will develop peritonitis, a
-2 reward. If, instead, the patient undergoes early operative exploration, there is an 80%
chance of resolution, representing a +2 reward, and a 20% chance of intra-abdominal sepsis
due to missed enterotomy or surgical site infection, representing a —3 reward. At the next
decision step, the patient with intra-abdominal sepsis may be observed, yielding a 100%
probability of persistent, intra-abdominal sepsis, or undergo reoperation, yielding a 60%
chance of clinical improvement with resolution of obstruction and infection, representing a
+4 reward. The algorithm performs a series of such interactions with the environment. The
environment sends rewards at each time step, and a value function determines which
sequence of actions maximizes the cumulative long-term reward, generating a policy for
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choosing actions in each state, but also adapting to uncertain conditions that evolve over
time. Details regarding “reward” and “value functions” are beyond the score of this review;
interested readers are referred to foundational work on these topics by Sutton and Barto.*2

Electronic Health Records

Like other artificial intelligence subfields, most reinforcement learning algorithms require
large datasets for training and validation. To achieve the granularity necessary for precise
application to individual patients, datasets must be large enough that they contain data from
multiple patients that closely mimic the individual patient for whom the decision-support
tool is being applied. Many electronic health records (EHR) contain massive quantities of
data. Most EHR platforms are adept for billing and ensuring completeness of records, but
their interfaces are often cumbersome, and clinically important information lies buried in
layers of auto-populated fields. In one observational study, medical interns spent 43% of
their time during an inpatient rotation using EHRs.*3 Thirteen percent of their time included
direct patient care, down from 25% two decades ago.*3 44 One might expect decision-
support tools requiring manual data acquisition and entry to be overlooked. Among studies
investigating barriers to effective, shared decision-making, time constraint was the most
common barrier.18 In a survey of trainees at academic hospitals, only 26% of all respondents
regularly used a risk calculator or other risk assessment tool.1} Respondents identified lack
of integration with clinical workflow as a major barrier to clinical adoption.

Theoretically, reinforcement learning can capitalize on large datasets in EHRs and obviate
manual data entry.#° It is also possible to expand the input of data for the model to learn
from images on radiographs and video monitors and by natural language processing from
notes written by clinicians through integration with deep learning, which is adept at parsing
large datasets and different types of complex input data. For example, information from
computed tomography, cardiac telemetry waveforms, and written descriptions of diseases,
operations, and postoperative complications could be processed and represented by deep
learning models, and then used as input data for models of reinforcement learning. This
approach, termed deep reinforcement learning, has the potential to make the best possible
recommendations by incorporating more data not requiring manual input from more sources.

Deep Reinforcement Learning

For health care applications to be useful, reinforcement learning platforms must efficiently
process large volumes of complex data. As the number of variables representing states
increases linearly, the combinations and mixtures of data that could represent unique states
increase exponentially, computational requirements increase exponentially, and it becomes
impossible for naive or shallow models to perform an exhaustive search for the best possible
action in a given state.*6: 47 To address this challenge, deep learning and reinforcement
learning may be combined, i.e., reinforcement learning with parametric function
approximation by deep neural networks that efficiently extract key features and patterns
from complex environments.*® When deep learning models are provided with the same data
of vital signs and laboratory evaluations used to calculate a traditional illness severity score
(for instance the sequential organ failure assessment (SOFA) score often used in an ICU
setting), the deep model makes more accurate predictions of mortality.*° Deep models have
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performed well in predicting protein structure from raw protein sequences and the impact of
human gene mutations.> 51 Deep models are also adept at tasks that involve computer
vision that use pixels as input data to classify images. This technology can apply to
radiographs and data from video monitors, expanding the set of input data available to
represent environments in reinforcement models.52-55

The gaming industry has applied deep reinforcement learning with impressive results. ‘Go’
is a complex game. There are 32,490 possible first moves, and the number of possible board
configurations and available moves increases rapidly as the game progresses. Therefore, an
exhaustive search for the optimal move in a certain board configuration with reinforcement
learning alone is not feasible. By combining deep and reinforcement learning, an AlphaGo
program defeated the European Go champion five games to zero.*® A subsequent version,
named AlphaGo Zero, was trained purely with deep reinforcement learning using self-play,
without any supervised human data and domain knowledge.>® AlphaGo Zero defeated the
previous version 100 games to zero.

Health Care Applications

Evidence from retrospective studies suggests that reinforcement learning can apply to
clinical decision-support. Sepsis is a common, morbid condition for which management
strategies are evolving. Within the last decade, evidence-based guidelines have
recommended intravenous fluid resuscitation targeting the establishment and maintenance of
a central venous pressure of 8-12 mm Hg, among other hemodynamic goals. Adherence to
this recommendation was associated with administration of nearly 17 liters of intravenous
fluid within the first three days of treatment.5”: 8 Unfortunately, sepsis-associated
vasoplegia, capillary leak, and decreased ventricular compliance portend poor fluid-
responsiveness.>® Less than half of all septic patients with hypotension are fluid-responsive,
similar to other populations of critically ill patients.0: 61 Excessive administration of
intravenous fluid can be harmful. Even among healthy volunteers, only 15% of a fluid bolus
remains intravascular three hours after administration.52 Fluid boluses, increased central
venous pressure, and positive fluid balance have been associated with increased mortality
among sepsis patients.63: 64 Methods to ensure optimal balance between intravenous fluid
resuscitation and vasopressor administration for patients with sepsis and septic shock remain
highly controversial.

Komorowski et al.#® created the Al (Artificial Intelligence) Clinician, a clinical-decision
support model capable of recommending the appropriate volume of intravenous fluid and the
appropriate doses of vasopressor for septic patients. The model uses a Markov Decision
Process framework in which 90-day survival is the ultimate goal. The model was trained
with data from the Medical Information Mart for Intensive Care (MIMIC)-111 from 61,532
ICU admissions and validated on the Philips eRI data from over 3.3 million ICU admissions.
Forty-eight variables, including vital signs, laboratory values, and comorbidities, tracked
along 4-hour increments over 72 hours and clustered into 750 distinct states. The model
“learned” that certain combinations of intravenous fluids and vasopressors were associated
with transitions between states, and that certain state transitions were associated with the
greatest probability of survival. Al Clinician tended to recommend lesser intravenous fluid
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and greater doses of vasopressors than clinicians. Mortality was least when actions taken by
clinicians matched recommendations from Al Clinician.

When epileptic seizures do not respond to medications, electrical stimulation of the brain
and vagus nerve with implantable devices may be a viable alternative treatment. The optimal
approach would provide enough neurostimulation to decrease or eliminate seizure activity
while minimizing cell damage due to excessive neurostimulation. The optimal approach is
difficult to achieve, partly due to difficulties in accurately representing this paradigm with
traditional statistical methods and regression modeling. Pineau et al.5° developed a
reinforcement learning model to perform this task. The model trained on experimental
recordings of in vitro electroencephalogram field potentials that were hand-labeled as
normal or seizure activity used to define different states. Actions included no stimulation or
stimulation at three, different, fixed frequencies. Whereas Komorowski et al.#° targeted a
single binary outcome (i.e., survival), the Pineau study targeted two outcomes (i.e., seizure
activity and neurostimulation), penalizing both. Minimization of seizure activity was
assigned a greater value than the minimization of stimulation, which reflects the clinical
observation that seizures are worse than neurostimulation from implantable devices. When
applied to experimental data, the model produced decreases in seizure activity comparable to
traditional periodic stimulation at fixed frequencies, but with less neurostimulation, thereby
achieving the ultimate goal.

Strengths and Limitations of Decision Analysis and Reinforcement Learning—
Decision analysis and reinforcement learning have unique and shared strengths and
limitations (Figure 4). These similarities and differences suggest complementary roles in
augmenting clinical reasoning across populations and for individual patients.

In summary, decision analysis methods quantify overall clinical utility by weighing risks and
benefits by patient values and incorporating costs to quantify the “value” of care, facilitating
optimal use of resources across health care systems. Probability thresholds inform guidelines
and recommendations for diagnostic and therapeutic interventions across populations.56
Reinforcement learning can use an expanded set of complex input data, including text,
image, and waveform data, tailored to individual patients to recommend actions at sequential
decision points with uncertain conditions. Both reinforcement learning and decision analysis
can make specific recommendations for discrete choices incorporating multiple risks,
benefits, and alternatives of possible interventions and the likelihood that they will lead to
patient-centered outcomes of interest.

Decision trees and curves typically use few input variables, limiting their ability to represent
the unique physiology of individual patients. Like all models, they are less effective when
the index patient differs from the cohort used for the development of the model.1® The same
phenomenon limits evidence-based guidelines.6”- 68 In addition, decision analyses adapt
poorly to conditions of uncertainty, because these decision analyses require that inputs are
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known or imputed. Finally, the use of simple decision tree and curve analysis is difficult to
apply to sequential decision-making, which is often necessary for health care applications.1

Reinforcement learning can perform sequential decision-making tasks, but with each
additional decision, a smaller proportion of the original sample remains, decreasing the
effective sample size.89 For many surgical diseases, there are no large databases containing
all information necessary to solve certain problems with reinforcement learning. Sharing
EHR data among institutions could solve this problem, but ensuring the interoperability and
security of multi-institutional EHR data is difficult both logistically and technically. In
addition, when comparing a reinforcement learning policy with clinician decisions, model
input data should include all data that truly can influence clinician decision-making.4® For
example, a model recommending operative versus non-operative management of acute
appendicitis should incorporate evidence present on computed tomography of a pericecal
phlegmon, suggesting a greater likelihood of the need to perform a greater-risk operation
like an ileocecectomy or right hemicolectomy, a greater likelihood that surgeons will
recommend non-operative management, and worse outcomes regardless of management
strategies. A model that ignores any pericecal phlegmon could make erroneous associations
between non-operative management and worse outcomes for these patients. Similarly, a
model that ignores appendicoliths, which suggest greater likelihood of failing non-operative
management, may underestimate the benefits of early appendectomy for these patients. In
these clinical scenarios, the findings on physical examination can make important
contributions to surgical decision-making but cannot be included in predictive analytic
models with current technologies. Finally, even when all relevant input data are
incorporated, it can be difficult to understand how a model reached its recommendation. To
mitigate this challenge, methods to improve the transparency and interpretability of the
models are available, such as methods that identify model inputs that made important
contributions in determining model outputs.49: 70

Patients and surgeons will want to know how confident the models really are that predictions
made by the model will match true, observed outcomes. This need for confidence in the
model and suggetions of treatment are important, because confidence levels of the machine-
learning model can be approximated mathematically to (0,1), with greater values suggesting
greater confidence that the model output is accurate, but this method may also overestimate
model certainty.’? Alternatively, predicted probabilities can be calibrated with reliability
curves, producing confidence scores.”2 Calibration compares model outputs to a gold
standard and answers the question, “do x of 100 patients with predicted risk x% have the
outcome?” which may be depicted graphically or described with the Brier score (calculated
as the difference between predicted probability and the actual outcome, raised to the second
power), observed-to-expected ratios, or the o value of the Hosmer-Lemeshow goodness-of-
fit chi-squared statistic. In predictive analytic terms, calibration compares model predictions
with actual outcomes; e.g., if a perfectly calibrated model predicts a 5% chance of
postoperative delirium for 100 different patients, delirium will actually occur in five of those
patients. Whereas stable discrimination or accuracy depends on consistent effects of the
measured covariates on outputs, stable calibration requires that unmeasured covariates make
minimal impact on the outcome of interest.”3 Therefore, the performance of the model
should be described with both discrimination and calibration. Calibration has a clinically
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important impact on medical decision-making.”* Unfortunately, calibration is often omitted
in development and validation of models of machine-learning.”?

Both decision analysis and reinforcement learning require large, high-quality datasets for
development and validation. For a patient with early stage breast cancer, the choice to pursue
breast-conserving therapy with partial mastectomy and adjuvant radiotherapy limits future
treatment options involving additional radiotherapy, which may affect a small subgroup of
patients who will develop conditions for which additional radiotherapy is potentially
beneficial. Provided with enough granular, longitudinal data, a model could make
predictions that consider these subtleties, but such data are often unavailable. EHRs are
notorious for noisy data which compromise the performance of traditional and machine-
learning models alike.”® Even when large, longitudinal, high-quality data are available,
contemporary approaches to decision analysis and reinforcement learning cannot tailor
recommendations to the unique values of individual patients. There may come a time when
the availability of massive volumes of data and computational power allows for the efficient
training of reinforcement learning models designed to achieve a specific goal that is
determined through a shared decision-making process among patients, caregivers, and
clinicians. Until then, however, attentive clinicians that understand and interpret clinical
context must perform this task. Currently, there is no evidence demonstrating that
reinforcement learning can improve surgical decision-making for individual patients or that
reinforcement learning is superior to other decision-support methods. Therefore, its potential
advantages, though promising, remain theoretical.

Complementary Clinical Application

The unique strengths and limitations of decision analysis and reinforcement learning suggest
complementary roles in augmenting clinical reasoning. Decision analysis is well-suited for
generating population-based recommendations that optimize clinical utility and value of
care; reinforcement learning is also potentially ideal for individual, patient-centered,
sequential decision-making (Figure 5). To produce general recommendations, data from
aggregate patient populations regarding the risks and benefits of elective repair of a
symptomatic ventral hernia may be considered within the context of financial costs and
patient-centered outcomes like long-term functional status and quality of life. In isolation,
this may not ensure optimal decision-making for individual patients. Approximately half of
all evidence-based practices are provided to patients in the United States.”® Personalized
approaches may succeed where dissemination of clinical practice guidelines has failed.
Theoretically, for a patient presenting with a symptomatic ventral hernia, deep reinforcement
learning can incorporate an expanded set of input data to determine whether elective repair
or expectant management is more likely to yield optimal long-term functional status and
quality of life in that specific patient, with sequential recommendations that evolve with
changes in clinical conditions over time.

Ethical Considerations

Clinical adoption of reinforcement learning would inevitably lead to disagreements between
clinicians and recommendations by the model. There could be substantial legal
consequences in assigning liability for adverse events. The nature of the decision also has
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important implications. Humans and computers both make errors, but patients and their
caregivers may have markedly different perceptions regarding human and computer errors
regarding sensitive decisions such as situations in which determining futility of care can lead
to suggestions of withdrawal of life-sustaining treatments. Finally, a model trained with data
from a homogeneous patient population may not represent accurately a separate population
or individual patient. For instance, Awad et al.”’ reported substantial cross-cultural variation
in preferences for moral dilemmas facing self-driving cars. Similar variations likely exist
among surgical patients and their caregivers.

CONCLUSIONS

Surgical patients incur preventable harm from cognitive and judgment errors made under
time constraints and uncertainty regarding a patient’s diagnosis and predicted response to
treatment. Clinicians often ignore or are ignorant of the availability of decision-support
tools, which require time-consuming manual entry of appropriate data and lack precision for
representing individual patient pathophysiology and clinical context. To address these
challenges, decision analysis methods can generate population-based recommendations that
jointly consider risks, benefits, costs, and patient values. Reinforcement learning offer the
possibility of using large sets of complex patient-specific input data (when available) to
identify actions yielding the greatest probability of achieving a goal following a sequence of
events as uncertain conditions evolve, offering theoretic advantages for personalized,
patient-centered decision-making. The unique potential strengths and limitations of decision
analysis and reinforcement learning suggest complementary roles in achieving the ultimate
goal of delivering high-value surgical care through sound judgment and optimal decision-
making.
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Figure 1: Optimizing the accuracy of the prediction model may not optimize clinical utility.
Model A has greater accuracy, but if a pregnant woman presenting with fever and right-sided

abdominal pain wishes to avoid fetal demise due to a wrong diagnosis, then Model B is
favorable.
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Sb2
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Value of
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Value of
outcome b

AN
e

Y

The disease is
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Value of
outcome ¢

A
1-p

Value of
outcome d

Solve the decision tree for p,, the probability threshold at which the predicted
benefit of the intervention equals the predicted benefit of no intervention:

p@ + (1-p)b - pic + (1-p)d solves to (a-c)/(d-b) = (1-p)/p:

Decision tree
application

Patient with
post-prandial
epigastric pain,
probability that
symptoms are due
to biliary
dyskinesia=75%

(0.80-0.20)/

—

Cholecystectomy

Symptoms were
due to biliary
dyskinesia

P
0.75

Symptoms were
not due to
biliary
dyskinesia
o

Y

0.80

>

No
cholecystectomy

Symptoms were
due to biliary
dyskinesia

 J

0.40

Q. 13>

0.80-0.40) = 1.50 =

Symptoms were
not due to
biliary
dyskinesia
P

Y

0.20

Q2>

(1-p:)/p. solvesto

0.80

pt= 0.40, whichis $e55 than the pobability that symptoms are due to
biliary dyskinesia (p= 0.75), so cholecystectomy is recommended

Figure 2: Decision tree framework and clinical application.
When it is unclear whether a diagnostic or therapeutic intervention is useful, decision tree

analysis identifies a probability threshold (p?) at which value-adjusted outcomes for
intervention and no intervention are equivocal. A prediction model or published literature
provides the probability that disease is present. If this value is greater than pz, then the
intervention is useful. Published literature and patient interviews provide relative values for

each outcome.
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Figure 3: Reinforcement learning framework and clinical application.
An algorithm interacts with its environment (consisting of data from electronic health

records or datasets) to learn states (representing disease or patient acuity), actions that lead
to new states, probabilities of transitioning between states, and associations between state
transitions and an ultimate goal, such as survival or discharge to home in good health. The
algorithm then identifies actions that are most likely to achieve the ultimate goal. This
process can occur within a Markov Decision Process framework and apply to a patient
presenting with bowel obstruction, estimating the clinical utility of observation and operative
exploration in response to evolving clinical conditions.
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Strengths of decision analysis and reinforcement
armng to augment clinical reasoning
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Limitations of decision anaIYS|s and reinforcement
learning to augment clinical reasomng
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Figure 4: Comparison of decision analysis and reinforcement learning for augmenting clinical

reasoning.

The unique strengths and weaknesses of decision analysis and reinforcement learning
suggest complementary roles in augmenting clinical reasoning.
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Personalized
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Figure 5: Decision analysis and deep reinforcement learning have complementary roles in

augmenting population-based and personalized decision-making.

Input variables from patient assessments and the data from the electronic health record feed
decision analysis tools that calculate probability thresholds to inform population-based
recommendations. Reinforcement learning models combined with deep learning
representation of an expanded set of input data can identify actions yielding the greatest
probability of a patient-centered outcome.
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