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Abstract

Background: Surgical patients incur preventable harm from cognitive and judgment errors made 

under time constraints and uncertainty regarding patients’ diagnoses and predicted response to 

treatment. Decision analysis and techniques of reinforcement learning theoretically can mitigate 

these challenges but are poorly understood and rarely used clinically. This review seeks to promote 

understanding of decision analysis and reinforcement learning by describing their use in the 

context of surgical decision-making.

Methods: Cochrane, EMBASE, and PubMed databases were searched from their inception to 

June 2019. Forty-one articles about cognitive and diagnostic errors, decision-making, decision 

analysis, and machine-learning were included and assimilated into relevant categories per 

PRISMA guidelines.

Results: Requirements for time-consuming manual data entry and crude representations of 

individual patients and clinical context compromise many traditional decision-support tools. 

Decision analysis methods for calculating probability thresholds can inform population-based 
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recommendations that jointly consider risks, benefits, costs, and patient values but lack precision 

for individual patient-centered decisions. Reinforcement learning, a machine-learning method that 

mimics human learning, can use a large set of patient-specific input data to identify actions 

yielding the greatest probability of achieving a goal; this methodology follows a sequence of 

events with uncertain conditions, offering potential advantages for personalized, patient-centered 

decision-making. Clinical application would require secure integration of multiple data sources 

and attention to ethical considerations regarding liability for errors and individual patient 

preferences.

Conclusions: Traditional decision-support tools are ill-equipped to accommodate time 

constraints and uncertainty regarding diagnoses and the predicted response to treatment, both of 

which often impair surgical decision-making. Decision analysis and reinforcement learning have 

the potential to play complementary roles in delivering high-value surgical care through sound 

judgment and optimal decision-making.

TOC Statement- 20191224

This review describes challenges and opportunities in methods of surgical decision-making and 

clinical practice. Traditional decision-support tools are ill-equipped to accommodate time 

constraints and uncertainty; decision analysis and reinforcement learning theoretically can 

augment surgical decision-making across populations and for individual patients

INTRODUCTION

Every day, patients and physicians must decide which diagnostic and therapeutic 

interventions should be performed or deferred. Although hundreds or thousands of 

interventions may yield more benefit than harm, limitations of time and resources mandate 

that only the most advantageous interventions are performed. This approach to resource use 

is often misused or ignored in the United States, where doctors and hospitals may tend to 

overtreat the insured and undertreat the uninsured.1 More importantly, decisions regarding 

interventions impact mortality, morbidity, and quality of life for patients and their caregivers.

Ideally, clinical reasoning incorporates rigorous medical training, clinical intuition, critical 

thinking, evidence-based medicine, and a robust process of shared decision-making among 

physicians, patients, and their caregivers. Unfortunately, decisions often transpire under time 

constraints and conditions of uncertainty regarding an individual patient’s diagnoses and 

predicted response to treatment. Time constraints may be imposed by acute diseases that 

require urgent diagnosis and treatment, or by busy clinical schedules that restrict time for 

gathering information and deliberating; uncertainty may be imposed by a lack of provider 

knowledge, the unavailability of patient data, such as outside hospital records or diagnostic 

tests, or the absence of high-level evidence to guide important management decisions. Under 

such time constraints and uncertainty, clinicians may rely instead on cognitive shortcuts and 

snap judgements using pattern recognition and intuition.2, 3 Cognitive shortcuts without 

deliberation can lead to bias or predictable and systematic cognitive errors.4, 5 Cognitive and 

judgment errors are a leading cause of misdiagnosis, and physicians are often blind to them 

unless feedback is provided by post-mortem examinations, of which 10-15% reveal major 

diagnostic errors.6–8 Cognitive and judgment errors are especially harmful in surgical 
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decision-making, in which high-stakes decisions can markedly affect clinical outcomes.9 In 

a survey of 7,905 members of the American College of Surgeons, lapses in judgment were 

the most common cause of major medical errors.10

Decision-support tools are supposed to mitigate these errors. Unfortunately, they often 

require time-consuming, manual data entry and are designed for non-specific, generalized 

application to any patient with a certain disease or condition, and so they lack precision for 

the unique pathophysiology and clinical context of individual patients.11 Not surprisingly, 

most of these decision support tools have not achieved widespread clinical adoption.12 

Surgeons need better decision-support tools. Methods of decision analysis methods and 

technologies of reinforcement learning can generate population-based recommendations and 

augment decision-making for individual patients. Unfortunately, many clinicians are 

unfamiliar with them and the applications in surgery are sparse. Among many promising 

methods for improving patient-centered decision support,13, 14 this review features 

reinforcement learning, because it most closely mimics human learning and offers specific 

recommendations for discrete actions rather than predicted probabilities that only indirectly 

support decisions. Predictive analytic risk assessments are useful when risk is unexpectedly 

very low or very high, but most patients have intermediate risk. This review describes 

decision analysis and reinforcement learning in the context of clinical surgical decision-

making.

METHODS

Cochrane, EMBASE, and PubMed databases were searched from their inception to June 

2019 (Supplemental Digital Content 1 lists article search parameters and objectives). 

Articles were excluded if they were not published in English or were not primary literature 

or a review article. Articles were selected for inclusion by reviewing manually the abstracts 

and full texts to assess topical relevance, methodological strength, and novel or meritorious 

contribution to existing literature. Articles of interest cited by other articles identified in the 

initial search were reviewed using the same inclusion criteria. Forty-one articles were 

included and assimilated into relevant categories (Table 1) according to guidelines of the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping 

Reviews (PRISMA-ScR) (Supplemental Digital Content 2 lists PRISMA-ScR criteria). The 

decision to review decision analysis and reinforcement learning methods was made prior to 

performing the literature search. Topic subcategories were chosen after performing the 

literature review by favoring themes that emerged from the literature. Decision-making 

concepts and theories were described in the context of surgical decision-making scenarios. 

The assimilation process was limited by heterogeneity among topics and reporting practices 

which precluded the performance of a systematic review and meta-analysis. The 41 articles 

included addressed the topics of decision-making (n=13), decision analysis (n=13), and 

machine-learning (n=15).
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OBSERVATIONS

Patient-Centered Decision-Making

Shared decision-making that is truly effective improves patient satisfaction and compliance 

and may decrease costs from unnecessary interventions.15, 16 Ethically, patient-centered 

decision-making should be a fundamental principle governing a health care system that 

values patient autonomy.17 But clinicians often ignore patient values. Patients, caregivers, 

and providers frequently misunderstand one another and their goals of care.16, 18 These 

misunderstandings are compounded not only when patients and caregivers with limited 

health literacy make complex medical decisions, but also when clinicians fail to recognize 

inadequate decision-making capacity. Bertrand et al.19 assessed the decision-making 

capacity of 206 patients in an ICU using two methods: a mini-mental status examination and 

the opinion of attending physicians, nurses, and residents. Clinicians thought 45% of the 

population had decision-making capacity, but only 17% of the patients had capacity per the 

criteria of the mini-mental status examination. In a systematic review of 32 articles including 

13,176 patients and surgeons, only 36% of all patient-surgeon interactions represented 

shared decision-making.20 Surgeons are often unknowingly blind to this phenomenon, and 

one in seven surgical patients report decisional regret.20, 21 After establishing rapport and 

decision-making capacity, surgeons should ask patients about their goals of care and values. 

These findings suggest that patient assessments often omit this step.

Research that should rely on patient preferences often omits these patient preferences. Non-

inferiority trials measure a trade-off between losing the established efficacy of a standard 

treatment and some possible benefit of a new therapy. If investigators weigh risk-benefit 

trade-offs differently than patients, the new therapy may be designated non-inferior and 

achieve clinical adoption before clinicians realize that patients actually preferred the 

standard therapy. Acuna et al.22 cite the ACOSOG Z0011 trial as an example. Patients who 

did not undergo completion axillary lymph node dissection had 45% lesser rates of surgical 

complications and 13% lesser rates of lymphedema at 1-year follow up, and the non-

inferiority margin for overall survival set by investigators was 1.3, or 6%.23 But some 

patients may not accept a 6% decreased overall survival in exchange for fewer 

complications.

Many prediction models and decision-support tools ignore patient values. Each year, more 

than 1,000 published articles feature independent risk factors or independent predictors in 

their title or abstract.12 Most decision support tools described in these articles have flaws 

that preclude their widespread clinical adoption (e.g., the risk factors or predictors are not 

widely available or used by clinicians, predictive performance is weak, and/or the findings 

are not validated in a separate study population to ensure generalizability), but even the 

successful tools often do not incorporate patient values. The CHA2DS2-VASc score is a 

clinical classification scheme that uses seven ordinal and binary variables to estimate 

annualized risk of stroke among patients with atrial fibrillation and makes clinically useful 

recommendations regarding antiplatelet and anticoagulation therapy, earning support from 

the European Society of Cardiology, American College of Cardiology, and American Heart 

Association.24 CHA2DS2-VASc makes assumptions about patient preferences for outcomes 
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like stroke and hemorrhage, which may skew decisions regarding antiplatelet and 

anticoagulation therapy for any individual patient, as discussed in the “Patient Values” 

section below.

Decision Analysis—Clinical and translational research and evidence-based medicine 

define best practices for managing disease and for promoting health by measuring and 

evaluating the risks and benefits of diagnostic and therapeutic interventions. Clinical 

application requires the additional step of considering these risks and benefits alongside 

patient values and financial costs. Methods of decision analysis accomplish this step by 

weighing risks and benefits by patient values and by incorporating costs to quantify value of 

care, thereby facilitating optimal use of resources across health care systems. This process 

produces probability thresholds that inform guidelines and recommendations for diagnostic 

and therapeutic interventions across populations.

Evaluating Model Utility

The diagnostic performance and clinical utility of a test or model are complementary but 

separate considerations. A magnetic resonance image (MRI) of the chest may have excellent 

diagnostic performance in identifying traumatic thoracic injuries, but obtaining a chest MRI 

for an unstable patient with penetrating chest trauma could harm the patient by delaying 

operative exploration, thereby yielding negative clinical utility. The techniques of decision 

analysis compare directly the overall clinical utility of diagnostic tests or prediction models 

based on risks, benefits, costs, and patient values. This offers a major advantage over the 

common practice of comparing tests and models by discrimination or accuracy alone. For 

example, the diagnosis of appendicitis among pregnant women is challenging; several other 

conditions mimic appendicitis, cephalad displacement of the appendix alters the clinical 

presentation, and teratogenic radiation effects preclude the routine use of computed 

tomography. A missed diagnosis with progression to complicated appendicitis is associated 

with increased risk for fetal loss relative to the risk of non-therapeutic laparotomy, 20% 

vs.3% in one study.25 Therefore, in predicting appendicitis among pregnant women, false-

negative results are more harmful than false-positives results.

Consider two models predicting appendicitis among 100 pregnant women presenting with 

fever and right-sided abdominal pain, of whom 50 actually have appendicitis (Figure 1). 

Model A has much greater specificity and slightly less sensitivity than Model B. Accuracy 

assigns equal weight to sensitivity and specificity, so Model A is more accurate. The 

likelihood of one fetal loss due to a wrong diagnosis applying Model A 100 times is 

(4*0.20) + (2*0.03) = 0.86; the likelihood with Model B is (1*0.20) + (11*0.03) = 0.53. If a 

woman wishes to avoid fetal demise due to a wrong diagnosis, Model B has greater utility, 

despite its lesser accuracy. In such cases, metrics like the number needed to treat or harm are 

useful.

Number Needed to Treat or Harm

The number needed to treat (NNT)—the number of patients that must undergo an 

intervention to avoid one adverse event—adjusts for prevalence by incorporating baseline 

risk without an intervention and the risk reduction associated with the intervention. The 
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importance of adjusting for prevalence is illustrated by application of Bayesian probability 

to mammographic detection of breast cancer.26 A group of physicians were presented with 

three statistics: a 40 year-old woman undergoing screening mammography has a 1% chance 

of having breast cancer; if she has breast cancer, the probability of a positive mammography 

is 80%; if she does not have breast cancer, the probability of positive mammography is 

9.6%. Most physicians in this study estimated that this 40 year-old woman with a positive 

screening mammogram had a 70-80% probability of actually having breast cancer, 

approximately one order of magnitude greater than the actual probability of 7.8%.

NNT is the reciprocal of absolute risk reduction, or the raw difference in risk of an adverse 

event between two options. Consider an uncomplicated, intra-abdominal infection for which 

management options include antibiotics alone or surgical source control. If the risk of 

disease progression and septic shock while treating with antibiotics alone is 7% and the risk 

or progression and shock after a surgical source control procedure is 2%, then the number 

needed to treat with surgery to avoid one case of septic shock is 1/(0.07-0.02)=20 patients. 

NNT does not account for adverse events attributable to the intervention itself, manifest as 

number needed to harm (NNH), or the number of patients that must undergo an intervention 

to produce one adverse event, calculated as the reciprocal of the raw difference in harm. If 

the risk of allergy or untoward effect from antibiotics is 4% and the risk of postoperative 

complications is 8% then the NNH with surgery is 1/ (0.08-0.04) = 25. NNT=20 and 

NNH=25, therefore surgery is advantageous when assuming equal weight for postoperative 

complications, medication side effects, and progression to septic shock. Patients and 

surgeons may not agree with these assumptions. Incorporation of relative value addresses 

this problem.

Patient Values

Probability thresholds incorporate patient values by calculating relative values of risks and 

benefits attributable to the intervention and its alternatives. Published literature can produce 

relative values. The CHA2DS2-VASc score makes assumptions about patient values 

regarding stroke and hemorrhage when recommending antiplatelet and anticoagulation 

therapy for patients with atrial fibrillation. Four studies investigating patient preferences and 

quality of life suggest that patients consider one stroke equivalent to five episodes of serious 

gastrointestinal bleeding.27–30 Considering this ratio within a decision analysis framework, 

the relative value of serious bleeding relative to stroke is 0.744; the relative value of minor 

bleeding relative to stroke is 0.014.31 Applied to known frequencies of major and minor 

bleeding events among anticoagulated patients, the threshold NNT is 152. Among elderly 

patients with a history of stroke, diabetes, and hypertension, anticoagulation decreases 1-

year stroke risk from 8.1% to 2.6%, such that the NNT=1/(0.081-0.026)=18.32 The NNT in 

this subgroup is well below the threshold NNT, and therefore, this subgroup should receive 

anticoagulation therapy.

This calculation used five, well-designed studies to derive and apply relative values.27–30, 32 

Similar data are often unavailable for surgical diseases, and especially for rare ones. In 

addition, this method calculates thresholds for aggregate patient populations. A patient who 

declines allogenic blood transfusions may consider stroke and serious gastrointestinal 
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bleeding to be equally harmful, generating a different probability threshold than the general 

population.

Decision Trees and Curves

Decision tree analysis uses predicted risks, benefits, and relative values of possible outcomes 

to calculate probability thresholds.33 Each patient has a probability p that the disease is 

present. If p is near 1, a diagnostic or therapeutic intervention targeting that disease is likely 

useful; in contrast, if p is near 0, the intervention is likely useless. Between 0 and 1, there is 

a probability threshold pt where the predicted utilities of performing and deferring the 

intervention are equal. Decision trees are the foundation for some machine-learning 

methods. Random Forests use a multitude of decision trees, as the name implies. This review 

considers decision trees separately from the machine-learning techniques that employ 

decision trees.

Consider a patient who presents with post-prandial epigastric pain (Figure 2). Whether 

symptoms are attributable to biliary dyskinesia or another process (e.g. gastritis, pancreatitis) 

is unclear. Approximately 60-90% of all adults with similar presentations will have 

improvement or resolution of these symptoms after cholecystectomy, with a lesser likelihood 

of benefit for patients with atypical symptoms and no gallstones.34, 35 This thought 

experiment assumes 75% probability that symptoms are due to biliary dyskinesia and will 

resolve after cholecystectomy. Assume that the value of surgery when disease is present and 

the value of no surgery when disease is not present are each favorable (0.80), undergoing 

unnecessary surgery has half the value (0.40), and that deferring surgery when disease is 

present has the least value (0.20). The probability threshold would be 0.40, considerably less 

than the probability that symptoms are due to biliary dyskinesia (0.75), so cholecystectomy 

is advantageous. For a patient with atypical symptoms, no gallstones, and a 35% probability 

that symptoms are attributable to biliary dyskinesia, cholecystectomy would be 

disadvantageous.

Djulbegovic et al.36 applied this process to the prophylaxis of deep vein thrombosis (DVT), 

demonstrating that patients with a DVT risk of 15% or more should receive DVT 

prophylaxis, and patients with less than 15% risk should not. This approach mandates binary 

outcome predictions. For models predicting risk along a continuum (i.e. 0-100%), 

conversion to a dichotomous threshold sacrifices precision, but decision curve analysis 

obviates conversion to a binary outcome threshold.37 Decision curve analysis proceeds by 

solving a decision tree for pt, identifying the number of truepositive and false-positive 

results according to pt, calculating the net benefit of the prediction model used to estimate p, 

and varying pt over a clinically relevant range of possible values. Model net benefit is 

calculated for each new pt, producing a decision curve that plots pt against model net benefit 

for two patient populations: one in which all patients have the condition being predicted, and 

one in which no patients have the condition being predicted. The model is beneficial at all pt 
for which the space between the two lines has net benefit >0. By avoiding conversion of 

continuous probability scores to binary variables, this approach has the theoretic advantage 

of preserving precision.
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The tendency to overtreat the insured and undertreat the uninsured in the United States 

suggests that current practices for incorporating costs in medical decisions are suboptimal.1 

Optimizing value of care, i.e. clinical outcomes in the context of financial costs, could 

address this problem.38 Decision analyses can accomplish this goal by comparing gains, 

expressed as QALYs (quality-adjusted life years), with expenditures expressed in monetary 

values like dollars.39 Among patients with non-valvular atrial fibrillation with at least one 

risk factor for stroke, administration of warfarin costs about $8,000 per one QALY saved; 

for a 65-year old patient with no risk factors, administration of warfarin costs about 

$370,000 per one QALY saved.40 Robbins et al. 41 demonstrate a method for surveying 

involved parties and incorporating their willingness to bear financial burdens in NNT 

analyses.

Reinforcement Learning—Reinforcement learning is potentially useful in surgical 

decision-making, because it can use an expanded set of complex input data including text, 

image, and waveform data tailored to individual patients to recommend specific actions at 

sequential decision points. Reinforcement learning is the subfield of artificial intelligence 

that most closely mimics human learning and decision-making. The agent (in this 

discussion, the agent is an algorithm) learns to map states (in this discussion, states refer to 

patient conditions such as stages of cancer) observed from its environment (in this 

discussion, the environment consists of data available to the algorithm, e.g., data from an 

electronic health record or database) to actions that maximize a reward (in this discussion, 

the reward is a clinical outcome). Actions may affect not only the immediate outcomes but 

also all subsequent states and outcomes.42 By developing optimal value functions and 

decision-making policies, reinforcement learning identifies sequences of actions yielding the 

greatest probability of long-term favorable outcomes as conditions of uncertainty evolve 

over time. Interactions between a learning algorithm and its environment often occur within 

a Markov Decision Process containing states, actions, state-transition probabilities, and 

rewards. (Figure 3).

For a patient presenting with adhesive small bowel obstruction without peritonitis, a surgeon 

may recommend one of two primary actions: observation or operative exploration. 

Resolution and discharge home without the need for abdominal exploration, bowel resection, 

or intra-abdominal sepsis during hospitalization is the goal, although the goal could be any 

patient-centered outcome that available data can represent. This “thought experiment” 

assumes that initial observation yields a 50% chance of transitioning to a state of resolved 

bowel obstruction, a +3 reward, and a 50% chance that the patient will develop peritonitis, a 

−2 reward. If, instead, the patient undergoes early operative exploration, there is an 80% 

chance of resolution, representing a +2 reward, and a 20% chance of intra-abdominal sepsis 

due to missed enterotomy or surgical site infection, representing a −3 reward. At the next 

decision step, the patient with intra-abdominal sepsis may be observed, yielding a 100% 

probability of persistent, intra-abdominal sepsis, or undergo reoperation, yielding a 60% 

chance of clinical improvement with resolution of obstruction and infection, representing a 

+4 reward. The algorithm performs a series of such interactions with the environment. The 

environment sends rewards at each time step, and a value function determines which 

sequence of actions maximizes the cumulative long-term reward, generating a policy for 
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choosing actions in each state, but also adapting to uncertain conditions that evolve over 

time. Details regarding “reward” and “value functions” are beyond the score of this review; 

interested readers are referred to foundational work on these topics by Sutton and Barto.42

Electronic Health Records

Like other artificial intelligence subfields, most reinforcement learning algorithms require 

large datasets for training and validation. To achieve the granularity necessary for precise 

application to individual patients, datasets must be large enough that they contain data from 

multiple patients that closely mimic the individual patient for whom the decision-support 

tool is being applied. Many electronic health records (EHR) contain massive quantities of 

data. Most EHR platforms are adept for billing and ensuring completeness of records, but 

their interfaces are often cumbersome, and clinically important information lies buried in 

layers of auto-populated fields. In one observational study, medical interns spent 43% of 

their time during an inpatient rotation using EHRs.43 Thirteen percent of their time included 

direct patient care, down from 25% two decades ago.43, 44 One might expect decision-

support tools requiring manual data acquisition and entry to be overlooked. Among studies 

investigating barriers to effective, shared decision-making, time constraint was the most 

common barrier.18 In a survey of trainees at academic hospitals, only 26% of all respondents 

regularly used a risk calculator or other risk assessment tool.11 Respondents identified lack 

of integration with clinical workflow as a major barrier to clinical adoption.

Theoretically, reinforcement learning can capitalize on large datasets in EHRs and obviate 

manual data entry.45 It is also possible to expand the input of data for the model to learn 

from images on radiographs and video monitors and by natural language processing from 

notes written by clinicians through integration with deep learning, which is adept at parsing 

large datasets and different types of complex input data. For example, information from 

computed tomography, cardiac telemetry waveforms, and written descriptions of diseases, 

operations, and postoperative complications could be processed and represented by deep 

learning models, and then used as input data for models of reinforcement learning. This 

approach, termed deep reinforcement learning, has the potential to make the best possible 

recommendations by incorporating more data not requiring manual input from more sources.

Deep Reinforcement Learning

For health care applications to be useful, reinforcement learning platforms must efficiently 

process large volumes of complex data. As the number of variables representing states 

increases linearly, the combinations and mixtures of data that could represent unique states 

increase exponentially, computational requirements increase exponentially, and it becomes 

impossible for naive or shallow models to perform an exhaustive search for the best possible 

action in a given state.46, 47 To address this challenge, deep learning and reinforcement 

learning may be combined, i.e., reinforcement learning with parametric function 

approximation by deep neural networks that efficiently extract key features and patterns 

from complex environments.48 When deep learning models are provided with the same data 

of vital signs and laboratory evaluations used to calculate a traditional illness severity score 

(for instance the sequential organ failure assessment (SOFA) score often used in an ICU 

setting), the deep model makes more accurate predictions of mortality.49 Deep models have 
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performed well in predicting protein structure from raw protein sequences and the impact of 

human gene mutations.50, 51 Deep models are also adept at tasks that involve computer 

vision that use pixels as input data to classify images. This technology can apply to 

radiographs and data from video monitors, expanding the set of input data available to 

represent environments in reinforcement models.52–55

The gaming industry has applied deep reinforcement learning with impressive results. ‘Go’ 

is a complex game. There are 32,490 possible first moves, and the number of possible board 

configurations and available moves increases rapidly as the game progresses. Therefore, an 

exhaustive search for the optimal move in a certain board configuration with reinforcement 

learning alone is not feasible. By combining deep and reinforcement learning, an AlphaGo 

program defeated the European Go champion five games to zero.46 A subsequent version, 

named AlphaGo Zero, was trained purely with deep reinforcement learning using self-play, 

without any supervised human data and domain knowledge.56 AlphaGo Zero defeated the 

previous version 100 games to zero.

Health Care Applications

Evidence from retrospective studies suggests that reinforcement learning can apply to 

clinical decision-support. Sepsis is a common, morbid condition for which management 

strategies are evolving. Within the last decade, evidence-based guidelines have 

recommended intravenous fluid resuscitation targeting the establishment and maintenance of 

a central venous pressure of 8-12 mm Hg, among other hemodynamic goals. Adherence to 

this recommendation was associated with administration of nearly 17 liters of intravenous 

fluid within the first three days of treatment.57, 58 Unfortunately, sepsis-associated 

vasoplegia, capillary leak, and decreased ventricular compliance portend poor fluid-

responsiveness.59 Less than half of all septic patients with hypotension are fluid-responsive, 

similar to other populations of critically ill patients.60, 61 Excessive administration of 

intravenous fluid can be harmful. Even among healthy volunteers, only 15% of a fluid bolus 

remains intravascular three hours after administration.62 Fluid boluses, increased central 

venous pressure, and positive fluid balance have been associated with increased mortality 

among sepsis patients.63, 64 Methods to ensure optimal balance between intravenous fluid 

resuscitation and vasopressor administration for patients with sepsis and septic shock remain 

highly controversial.

Komorowski et al.45 created the AI (Artificial Intelligence) Clinician, a clinical-decision 

support model capable of recommending the appropriate volume of intravenous fluid and the 

appropriate doses of vasopressor for septic patients. The model uses a Markov Decision 

Process framework in which 90-day survival is the ultimate goal. The model was trained 

with data from the Medical Information Mart for Intensive Care (MIMIC)-III from 61,532 

ICU admissions and validated on the Philips eRI data from over 3.3 million ICU admissions. 

Forty-eight variables, including vital signs, laboratory values, and comorbidities, tracked 

along 4-hour increments over 72 hours and clustered into 750 distinct states. The model 

“learned” that certain combinations of intravenous fluids and vasopressors were associated 

with transitions between states, and that certain state transitions were associated with the 

greatest probability of survival. AI Clinician tended to recommend lesser intravenous fluid 
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and greater doses of vasopressors than clinicians. Mortality was least when actions taken by 

clinicians matched recommendations from AI Clinician.

When epileptic seizures do not respond to medications, electrical stimulation of the brain 

and vagus nerve with implantable devices may be a viable alternative treatment. The optimal 

approach would provide enough neurostimulation to decrease or eliminate seizure activity 

while minimizing cell damage due to excessive neurostimulation. The optimal approach is 

difficult to achieve, partly due to difficulties in accurately representing this paradigm with 

traditional statistical methods and regression modeling. Pineau et al.65 developed a 

reinforcement learning model to perform this task. The model trained on experimental 

recordings of in vitro electroencephalogram field potentials that were hand-labeled as 

normal or seizure activity used to define different states. Actions included no stimulation or 

stimulation at three, different, fixed frequencies. Whereas Komorowski et al.45 targeted a 

single binary outcome (i.e., survival), the Pineau study targeted two outcomes (i.e., seizure 

activity and neurostimulation), penalizing both. Minimization of seizure activity was 

assigned a greater value than the minimization of stimulation, which reflects the clinical 

observation that seizures are worse than neurostimulation from implantable devices. When 

applied to experimental data, the model produced decreases in seizure activity comparable to 

traditional periodic stimulation at fixed frequencies, but with less neurostimulation, thereby 

achieving the ultimate goal.

Strengths and Limitations of Decision Analysis and Reinforcement Learning—
Decision analysis and reinforcement learning have unique and shared strengths and 

limitations (Figure 4). These similarities and differences suggest complementary roles in 

augmenting clinical reasoning across populations and for individual patients.

Strengths

In summary, decision analysis methods quantify overall clinical utility by weighing risks and 

benefits by patient values and incorporating costs to quantify the “value” of care, facilitating 

optimal use of resources across health care systems. Probability thresholds inform guidelines 

and recommendations for diagnostic and therapeutic interventions across populations.66 

Reinforcement learning can use an expanded set of complex input data, including text, 

image, and waveform data, tailored to individual patients to recommend actions at sequential 

decision points with uncertain conditions. Both reinforcement learning and decision analysis 

can make specific recommendations for discrete choices incorporating multiple risks, 

benefits, and alternatives of possible interventions and the likelihood that they will lead to 

patient-centered outcomes of interest.

Limitations

Decision trees and curves typically use few input variables, limiting their ability to represent 

the unique physiology of individual patients. Like all models, they are less effective when 

the index patient differs from the cohort used for the development of the model.15 The same 

phenomenon limits evidence-based guidelines.67, 68 In addition, decision analyses adapt 

poorly to conditions of uncertainty, because these decision analyses require that inputs are 
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known or imputed. Finally, the use of simple decision tree and curve analysis is difficult to 

apply to sequential decision-making, which is often necessary for health care applications.14

Reinforcement learning can perform sequential decision-making tasks, but with each 

additional decision, a smaller proportion of the original sample remains, decreasing the 

effective sample size.69 For many surgical diseases, there are no large databases containing 

all information necessary to solve certain problems with reinforcement learning. Sharing 

EHR data among institutions could solve this problem, but ensuring the interoperability and 

security of multi-institutional EHR data is difficult both logistically and technically. In 

addition, when comparing a reinforcement learning policy with clinician decisions, model 

input data should include all data that truly can influence clinician decision-making.45 For 

example, a model recommending operative versus non-operative management of acute 

appendicitis should incorporate evidence present on computed tomography of a pericecal 

phlegmon, suggesting a greater likelihood of the need to perform a greater-risk operation 

like an ileocecectomy or right hemicolectomy, a greater likelihood that surgeons will 

recommend non-operative management, and worse outcomes regardless of management 

strategies. A model that ignores any pericecal phlegmon could make erroneous associations 

between non-operative management and worse outcomes for these patients. Similarly, a 

model that ignores appendicoliths, which suggest greater likelihood of failing non-operative 

management, may underestimate the benefits of early appendectomy for these patients. In 

these clinical scenarios, the findings on physical examination can make important 

contributions to surgical decision-making but cannot be included in predictive analytic 

models with current technologies. Finally, even when all relevant input data are 

incorporated, it can be difficult to understand how a model reached its recommendation. To 

mitigate this challenge, methods to improve the transparency and interpretability of the 

models are available, such as methods that identify model inputs that made important 

contributions in determining model outputs.49, 70

Patients and surgeons will want to know how confident the models really are that predictions 

made by the model will match true, observed outcomes. This need for confidence in the 

model and suggetions of treatment are important, because confidence levels of the machine-

learning model can be approximated mathematically to (0,1), with greater values suggesting 

greater confidence that the model output is accurate, but this method may also overestimate 

model certainty.71 Alternatively, predicted probabilities can be calibrated with reliability 

curves, producing confidence scores.72 Calibration compares model outputs to a gold 

standard and answers the question, “do x of 100 patients with predicted risk x% have the 

outcome?” which may be depicted graphically or described with the Brier score (calculated 

as the difference between predicted probability and the actual outcome, raised to the second 

power), observed-to-expected ratios, or the p value of the Hosmer-Lemeshow goodness-of-

fit chi-squared statistic. In predictive analytic terms, calibration compares model predictions 

with actual outcomes; e.g., if a perfectly calibrated model predicts a 5% chance of 

postoperative delirium for 100 different patients, delirium will actually occur in five of those 

patients. Whereas stable discrimination or accuracy depends on consistent effects of the 

measured covariates on outputs, stable calibration requires that unmeasured covariates make 

minimal impact on the outcome of interest.73 Therefore, the performance of the model 

should be described with both discrimination and calibration. Calibration has a clinically 
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important impact on medical decision-making.74 Unfortunately, calibration is often omitted 

in development and validation of models of machine-learning.72

Both decision analysis and reinforcement learning require large, high-quality datasets for 

development and validation. For a patient with early stage breast cancer, the choice to pursue 

breast-conserving therapy with partial mastectomy and adjuvant radiotherapy limits future 

treatment options involving additional radiotherapy, which may affect a small subgroup of 

patients who will develop conditions for which additional radiotherapy is potentially 

beneficial. Provided with enough granular, longitudinal data, a model could make 

predictions that consider these subtleties, but such data are often unavailable. EHRs are 

notorious for noisy data which compromise the performance of traditional and machine-

learning models alike.75 Even when large, longitudinal, high-quality data are available, 

contemporary approaches to decision analysis and reinforcement learning cannot tailor 

recommendations to the unique values of individual patients. There may come a time when 

the availability of massive volumes of data and computational power allows for the efficient 

training of reinforcement learning models designed to achieve a specific goal that is 

determined through a shared decision-making process among patients, caregivers, and 

clinicians. Until then, however, attentive clinicians that understand and interpret clinical 

context must perform this task. Currently, there is no evidence demonstrating that 

reinforcement learning can improve surgical decision-making for individual patients or that 

reinforcement learning is superior to other decision-support methods. Therefore, its potential 

advantages, though promising, remain theoretical.

Complementary Clinical Application

The unique strengths and limitations of decision analysis and reinforcement learning suggest 

complementary roles in augmenting clinical reasoning. Decision analysis is well-suited for 

generating population-based recommendations that optimize clinical utility and value of 

care; reinforcement learning is also potentially ideal for individual, patient-centered, 

sequential decision-making (Figure 5). To produce general recommendations, data from 

aggregate patient populations regarding the risks and benefits of elective repair of a 

symptomatic ventral hernia may be considered within the context of financial costs and 

patient-centered outcomes like long-term functional status and quality of life. In isolation, 

this may not ensure optimal decision-making for individual patients. Approximately half of 

all evidence-based practices are provided to patients in the United States.76 Personalized 

approaches may succeed where dissemination of clinical practice guidelines has failed. 

Theoretically, for a patient presenting with a symptomatic ventral hernia, deep reinforcement 

learning can incorporate an expanded set of input data to determine whether elective repair 

or expectant management is more likely to yield optimal long-term functional status and 

quality of life in that specific patient, with sequential recommendations that evolve with 

changes in clinical conditions over time.

Ethical Considerations

Clinical adoption of reinforcement learning would inevitably lead to disagreements between 

clinicians and recommendations by the model. There could be substantial legal 

consequences in assigning liability for adverse events. The nature of the decision also has 
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important implications. Humans and computers both make errors, but patients and their 

caregivers may have markedly different perceptions regarding human and computer errors 

regarding sensitive decisions such as situations in which determining futility of care can lead 

to suggestions of withdrawal of life-sustaining treatments. Finally, a model trained with data 

from a homogeneous patient population may not represent accurately a separate population 

or individual patient. For instance, Awad et al.77 reported substantial cross-cultural variation 

in preferences for moral dilemmas facing self-driving cars. Similar variations likely exist 

among surgical patients and their caregivers.

CONCLUSIONS

Surgical patients incur preventable harm from cognitive and judgment errors made under 

time constraints and uncertainty regarding a patient’s diagnosis and predicted response to 

treatment. Clinicians often ignore or are ignorant of the availability of decision-support 

tools, which require time-consuming manual entry of appropriate data and lack precision for 

representing individual patient pathophysiology and clinical context. To address these 

challenges, decision analysis methods can generate population-based recommendations that 

jointly consider risks, benefits, costs, and patient values. Reinforcement learning offer the 

possibility of using large sets of complex patient-specific input data (when available) to 

identify actions yielding the greatest probability of achieving a goal following a sequence of 

events as uncertain conditions evolve, offering theoretic advantages for personalized, 

patient-centered decision-making. The unique potential strengths and limitations of decision 

analysis and reinforcement learning suggest complementary roles in achieving the ultimate 

goal of delivering high-value surgical care through sound judgment and optimal decision-

making.
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Figure 1: Optimizing the accuracy of the prediction model may not optimize clinical utility.
Model A has greater accuracy, but if a pregnant woman presenting with fever and right-sided 

abdominal pain wishes to avoid fetal demise due to a wrong diagnosis, then Model B is 

favorable.
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Figure 2: Decision tree framework and clinical application.
When it is unclear whether a diagnostic or therapeutic intervention is useful, decision tree 

analysis identifies a probability threshold (pt) at which value-adjusted outcomes for 

intervention and no intervention are equivocal. A prediction model or published literature 

provides the probability that disease is present. If this value is greater than pt, then the 

intervention is useful. Published literature and patient interviews provide relative values for 

each outcome.
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Figure 3: Reinforcement learning framework and clinical application.
An algorithm interacts with its environment (consisting of data from electronic health 

records or datasets) to learn states (representing disease or patient acuity), actions that lead 

to new states, probabilities of transitioning between states, and associations between state 

transitions and an ultimate goal, such as survival or discharge to home in good health. The 

algorithm then identifies actions that are most likely to achieve the ultimate goal. This 

process can occur within a Markov Decision Process framework and apply to a patient 

presenting with bowel obstruction, estimating the clinical utility of observation and operative 

exploration in response to evolving clinical conditions.
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Figure 4: Comparison of decision analysis and reinforcement learning for augmenting clinical 
reasoning.
The unique strengths and weaknesses of decision analysis and reinforcement learning 

suggest complementary roles in augmenting clinical reasoning.
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Figure 5: Decision analysis and deep reinforcement learning have complementary roles in 
augmenting population-based and personalized decision-making.
Input variables from patient assessments and the data from the electronic health record feed 

decision analysis tools that calculate probability thresholds to inform population-based 

recommendations. Reinforcement learning models combined with deep learning 

representation of an expanded set of input data can identify actions yielding the greatest 

probability of a patient-centered outcome.
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