Skip to main content
. Author manuscript; available in PMC: 2021 Jul 30.
Published in final edited form as: Stat Methods Med Res. 2020 Jan 30;29(9):2520–2537. doi: 10.1177/0962280219889080

Table A1:

Parameter constraints for the L-BFGS-B algorithm.

Scenario Candidate Distribution θ 1 θ 2
S 1 Normal μ ∈ (Qmin, Qmax) σ ∈ (10−3, 50)
Log-Normal μ ∈ (log(Qmin), log(Qmax)) σ ∈ (10−3, 50)
Gamma α ∈ (10−3, 100) β ∈ (10−3, 100)
Beta α ∈ (10−3, 40) β ∈ (10−3, 40)
Weibull λ ∈ (10−3, 100) k ∈ (10−3, 100)
S2 & S3 Normal μ ∈ (Q1, Q3) σ ∈ (10−3, 50)
Log-Normal μ ∈ (log(Q1), log(Q3)) σ ∈ (10−3, 50)
Gamma α ∈ (10−3, 100) β ∈ (10−3, 100)
Beta α ∈ (10−3, 40) β ∈ (10−3, 40)
Weibull λ ∈ (10−3, 100) k ∈ (10−3, 100)