Skip to main content
. 2020 Jul 23;8:532. doi: 10.3389/fchem.2020.00532

Table 3.

Room temperature catalytic dehydration of D-sorbitol using functionalized yttrium oxide nanomaterials.

graphic file with name fchem-08-00532-i0001.jpg
Entrya Catalyst Solvent Conversion (%)b Yield of 1,4-sorbitan (%)c Yield of isosorbide (%)d TOF (h−1)e
1 H2SO4f H2O <20 18 1 1.49
2 C1 H2O 67 64 3 5.33
3 EtOH 62 60 2 4.99
4 H2O/EtOH 87 87 7.24
5 H2O/EtOH (80°C) 58 55 3 4.58
6 C2 H2O 66 66 5.49
7 EtOH 50 47 3 3.91
8 H2O/EtOH 76 76 6.33
9 C3 H2O 93 85 8 7.08
10 EtOH 67 64 3 5.33
11 H2O/EtOH 84 84 6.99
12 H2O/EtOH (80°C) 51 47 4 3.91
13 C4 H2O 48 48 3.99
14 EtOH 72 67 5 5.58
15 H2O/EtOH 94 92 2 7.66
16 C1g H2O 29 29 2.41
17 EtOH 42 40 2 3.33
18 H2O/EtOH 86 86 7.16
19 C4g H2O 68 58 10 4.83
20 EtOH 46 44 2 3.66
21 H2O/EtOH 86 86 7.16
a

Catalytic details as in Experimental Section.

b

Conversion of D-sorbitol to both mono- and di-dehydrated products, determined by GC-MS (Section 6 in Supporting Information).

c

Yield of 1,4-sorbitan based on original D-sorbitol, determined by GC-MS (Section 6 in Supporting Information).

d

Yield of isosorbide based on original D-sorbitol, determined by GC-MS (Section 6 in Supporting Information).

e

Turnover frequency, molmono−dehydratedproductmolY1 (6 h)−1, h−1 as unit.

f

Concentrated H2SO4, 2 mol% H+ loading of conc. H2SO4 over substrate.