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Abstract
Identifying genetic factors underlying neuroanatomical variation has been difficult. Traditional methods have used brain
regions from predetermined parcellation schemes as phenotypes for genetic analyses, although these parcellations often
do not reflect brain function and/or do not account for covariance between regions. We proposed that network-based
phenotypes derived via source-based morphometry (SBM) may provide additional insight into the genetic architecture of
neuroanatomy given its data-driven approach and consideration of covariance between voxels. We found that anatomical
SBM networks constructed on ∼ 20 000 individuals from the UK Biobank were heritable and shared functionally meaningful
genetic overlap with each other. We additionally identified 27 unique genetic loci that contributed to one or more SBM
networks. Both GWA and genetic correlation results indicated complex patterns of pleiotropy and polygenicity similar to
other complex traits. Lastly, we found genetic overlap between a network related to the default mode and schizophrenia, a
disorder commonly associated with neuroanatomic alterations.

Key words: genome-wide association analysis (GWAS), genome-wide complex trait analysis (GCTA), linkage disequilibrium
score regression (LDSC), source-based morphometry (SBM), structural magnetic resonance imaging (sMRI)
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Introduction
Neuroanatomic variation, as measured in vivo by magnetic res-
onance imaging (MRI), is associated with individual differences
in cognitive ability (Aljondi et al. 2018), emotional processing
(Muhlert and Lawrence 2015), and psychiatric symptomatology
(Turetsky et al. 1995; Dotson et al. 2009). While the direction-
ality of this association is unknown, it is clear that genetic
variation influences both neuroanatomic and behavioral traits
(Toga and Thompson 2005; Briley and Tucker-Drob 2017). Fur-
thermore, it is possible that genes influencing neuroanatomy
also affect neurocognitive performance and/or risk for mental
illness. Thus, a more complete understanding of the genetic
control of neuroanatomic variability may yield insight into the
genetic architecture of normal and abnormal brain function.

Studies in twins and families (see Jansen et al. 2015) for a
comprehensive review), as well as unrelated individuals (Elliott
et al. 2018), consistently find that brain volume measures are
heritable. Identifying specific genes related to normal variation
in brain volume, however, is difficult. Candidate gene studies
indicate some genetic effects (e.g., for APOE, COMT and BDNF)
(Knickmeyer et al. 2013) but show little convergence across
studies (Chételat and Fouquet 2013; Harrisberger et al. 2014),
likely due to the complex genetic architecture of neuroanatomy
coupled with small sample sizes that are under powered (Strike
et al. 2015a). Large-scale genome-wide association (GWA) stud-
ies provide an unbiased approach for identifying specific loci
associated with neuroanatomy (see Strike et al. 2015a for a
list). The most recent and largest GWA analyses from the UK
Biobank (Elliott et al. 2018) identified 17 loci associated with
volumetric measures across 33 regions, although only 3 of these
regions were from cortex (specifically the precentral gyrus and
intracalcarine cortices). This result is surprising given the high
heritability of cortical regions, although the level of multiple
testing correction necessary for this study may have played
a role.

Traditionally, both candidate gene and GWA studies have
used cortical phenotypes based on predetermined parcellation
schemes of the brain, the most common being the Desikan–
Killiany atlas (Desikan et al. 2006). These regional parcellations
are often constructed based on anatomical rather than func-
tional information, like sulci and gyri, and each region is treated
as an independent entity for genetic analysis. There is, however,
strong evidence for structural covariance between brain regions
(Xu et al. 2009; Segall et al. 2012; Gupta et al. 2014), part of which
is genetic in nature (Strike et al. 2015b), indicating that genetic
effects could influence subcomponents of regions or multiple
regions that are not necessarily adjacent to each other. There is
also evidence that structural covariance mirrors patterns seen
in functional brain networks (Alexander-Bloch et al. 2013), sug-
gesting that phenotypes that take into account covariance infor-
mation may provide insight into the functional and behavioral
consequences of genetic effects on neuroanatomy.

Perhaps an alternative way to probe genetic influences on
neuroanatomy may be to use structural covariance in the brain
to create network-based phenotypes that are derived from the
data itself. Such phenotypes may provide complementary infor-
mation on how genetics influence brain anatomy while avoiding
issues related to predetermined assumptions and data reduc-
tion. Source-based morphometry (SBM) (Xu et al. 2009) is a
promising method for constructing such phenotypes. SBM is a
multivariate method that uses independent component analysis
(ICA) to obtain spatially distinct anatomical networks of regions

that covary across a set of individuals. The ICA decomposition
is performed on data from voxel-based morphometry (VBM),
which considers volumetric measures at the voxel level through-
out the brain. As such, this method can pool information across
voxels and consider the relationship between them in order to
construct anatomical networks of regions in a hypothesis-free
manner. SBM networks, in particular, are also of interest because
they have been used widely in the neuroimaging literature to
understand neuroanatomic variation in psychiatric disease (Xu
et al. 2009; Kašpárek et al. 2010; Kubera et al. 2014; Ciarochi et al.
2016; Bergsland et al. 2018; Pappaianni et al. 2018) and the rela-
tionship between brain structure and function (Luo et al. 2012),
making further quantification of their genetic underpinnings a
beneficial endeavor. The goal of this paper was to validate the
possibility of using SBM networks as potential phenotypes for
genetic analyses by understanding some of their basic genetic
contributions. We aimed to do this by 1) establishing their her-
itability and understanding more about their genetic architec-
ture, primarily if they are polygenic like other complex traits,
2) evaluating their genetic relationship (or pleiotropy) with each
other at the global level and at the level of individual loci, and 3)
given their frequent use to identify neuroanatomical alterations
in disease, understanding their genetic relationship with three
psychiatric disorders commonly associated with neuroanatom-
ical disruptions (McIntosh et al. 2006; Holmes et al. 2012; Lee
et al. 2016): schizophrenia (SZ), bipolar disorder (BP), and major
depressive disorder (MDD). We expected that some genetic influ-
ences would be specific to particular SBM networks, while others
may be shared across networks, although we anticipated that
these would be different from genetic contributions to whole
brain gray matter volume (GMV). We also predicted that genetic
influences would overlap with psychiatric phenotypes that are
genetically related to brain structure.

Materials and Methods
Participants

The UK Biobank (http://www.ukbiobank.ac.uk) is a population-
based prospective cohort of ∼ 50 000 individuals, ages 40–69
recruited between 2006 and 2010 throughout Great Britain. Data
were collected on thousands of variables including those related
to physical and mental health, cognitive functioning, lifestyle,
demographics, genetics, and imaging. Recruitment procedures
for the UK Biobank are described elsewhere (Sudlow et al. 2015).
Participants in this study included 17 257 individuals (7870
males, mean age [standard deviation] = 62.5 [7.4]) with available
imaging and genetic data as of 19 October 2018 who passed our
quality control and filtering procedures for both imaging and
genetic data. The UK Biobank received ethical approval from
the Research Ethics Committee (REC reference 11/NW/0382).
The present analyses were conducted under UK Biobank data
application number 4844.

Phenotypic Analysis

Acquisition of MRI Images
Imaging protocols were designed by the UK Biobank Imaging
Working Group (www.ukbiobank.ac.uk/expert-working-groups)
(see Alfaro-Almagro et al. 2018 for additional details). Imaging
datasets were collected at one of three dedicated imaging cen-
ters with identical scanners (3T Siemens Skyra [software plat-
form VD13]), which refrained from major software or hardware
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updates during the study. Each center was equipped with a 32-
channel head coil and used the following 3D MPRAGE protocol
to quantify brain structure: T1-weighted, TI/TR = 880/2000 ms,
sagittal acquisition, resolution = 1.0 × 1.0 × 1.0 mm, FOV = 208 ×
256 × 256, in-plane acceleration factor = 2, 4 min 54 s scan
duration.

Image Preprocessing
Datasets were part of the first two imaging releases by the UK
Biobank. All image preprocessing was performed with FMRIB
Software Library v10.0 (FSL) (Jenkinson et al. 2012). Segmented
gray matter images, which were part of the structural T1
processing pipeline by the UK Biobank (Alfaro-Almagro et al.
2018), were input into a customized VBM pipeline based on
the protocol used in FSL (Ashburner and Friston 2000). A
study-specific template was created using an average T1-
weighted image (provided by the UK Biobank) from 5000
subjects. To generate the template, brain extraction and tissue
segmentation was performed on the average T1-weighted
image. The gray matter image from the segmentation was
then registered to the avg152T1_gray template available in
FSL. Segmented gray matter images from each subject were
nonlinearly registered to the study-specific template. Each
registered gray matter image was also multiplied by the Jacobian
of the warp field as a compensation (or “modulation”) for the
contraction/enlargement due to the nonlinear component of
the transformation. The resulting gray matter image was then
smoothed with a 6 mm Gaussian kernel. Twenty-one thousand
three hundred eighty-eight subjects were run through our
preprocessing protocol. For quality assurance, the unmodulated
registered T1 image for each subject was correlated with the
study-specific template. After visual inspection of 80 individuals
around the border of our cutoff (r = 0.78), subjects with a
correlation less than or equal to the cutoff were eliminated from
further analysis (N = 1083), resulting in analyzable imaging data
for 20 306 subjects. Lastly, for subjects passing the 0.78 cutoff,
we calculated an estimate of GMV. An average gray matter mask
(generated automatically as part of the VBM pipeline from our
subjects) was applied to each subject’s output image from the
preprocessing pipeline. GMV estimates were the average value
across voxels included in this mask.

Source-Based Morphometry
SBM was performed on 20 306 subjects using the GIFT toolbox
(http://mialab.mrn.org/software/gift/). Segmented gray matter
images output from the preprocessing pipeline were flattened
into row vectors and stacked to form a subjects-by-voxel matrix
in preparation for spatial ICA decomposition (Xu et al. 2009; Cal-
houn et al. 2001; Gupta et al. 2018). ICA decomposes the gray mat-
ter matrix into a mixing matrix (subjects-by-components), rep-
resenting the relative strength (weight) of each subject on every
component, and the source matrix (components by voxels),
representing the maximally spatially independent gray matter
regions. This results in networks of anatomical regions that
covary across the brain and subject-level loading coefficients
for each network, which indicate how representative that sub-
ject is on that component pattern. ICA was performed with
the infomax algorithm with a model order of 25, to stay con-
sistent with previous work and focus on large-scale networks
(Xu et al. 2009).

Genetic Analyses

Phenotypes
Phenotypes for all analyses were subject loadings on each of the
25 SBM networks and GMV. For all genetic analyses, we applied
an inverse-normal transformation to all phenotypes and used
the following covariates—age, age2, sex, age × sex, age2 × sex,
genotype array (UK BiLEVE or UK Biobank Axiom)—and 20
genetic principal components calculated by the UK Biobank
to account for population stratification.

Genotyping and Imputation
All genetic analyses performed in this study used the imputed
genotypes provided by the UK Biobank. Blood sample handling
and storage details are in Peakman and Elliot (2008). DNA was
extracted at one of the UK Biobank assessment centers and
sent to Affymetrix Research Services Laboratory in 96-well
plates containing 94 UK Biobank samples. Special attention
was paid to ensure that plates or timing of extraction did not
correlate systematically with baseline phenotypes (age, sex,
ethnic background, or time and location of sample collection).
Details of SNP genotyping, extensive QC of genotyped data,
and SNP phasing and imputation from the genotype panel
are described in detail elsewhere (Bycroft et al. 2017). In short,
participants were genotyped on either the UK BiLEVE Axiom
Array by Affymetrix1 (807 411 markers) or the closely related
Applied Biosystems UK Biobank Axiom Array (825 927 markers).
Both arrays were specifically designed for the UK Biobank and
have a 95% marker overlap. Genotyping was performed with
a GeneTitan® Multi-Channel (MC) Instrument using batches
(106 total) of multiple plates (∼4700 samples each); this was
an optimized genotype calling pipeline that takes advantage
of the multiple batch design and is suited for biobank-scale
genotyping. The Biobank performed six marker QC tests, four
within batch (batch effect, plate effect, departures from Hardy–
Weinberg equilibrium, and sex effect) and two across batch
(array effect and discordance across controls). If a marker failed
one within batch test, it was set to missing for that batch;
markers that failed any one of the four within batch tests in
every batch or any one of the across batch tests were excluded
from the dataset, resulting in 805 426 unique markers (bi-allelic
SNPs and indels) from both arrays. For imputation, phasing
on the autosomes was carried out using SHAPEIT3 (https://
mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html)
with the 1000 Genomes Phase 3 dataset (Consortium 2015) as
a reference panel. SNPs were imputed with IMPUTE4 (https://
jmarchini.org/software/) for the Haplotype Reference Consor-
tium (McCarthy et al. 2016), UK10K (Consortium UK 2015), and
1000 Genomes Phase 3 reference panels, resulting in 92 693 895
autosomal SNPs, short indels, and large structural variants in
487 409 individuals. SNP (rs) IDs were assigned where possible
from the UCSC genome annotation database for the GRCh37
assembly of the human genome; otherwise they are notated as
such chr: position_allele1_allele2.

Sample and Variant Filtering
Subjects with genetic data were initially excluded from our
analysis if they were of non-British ancestry (N = 78 674), had
a mismatch between reported and genotypic sex (N = 378), sex
chromosome aneuploidy (N = 652), and/or high rates of heterozy-
gosity or missingness (N = 968), resulting in 80 121 exclusions
(some subjects belonged to more than one category of exclu-
sion). These measures were calculated as part of the quality

http://mialab.mrn.org/software/gift/
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control procedure for genotype data by the UK Biobank and
provided as a list to researchers. We then took the intersection
between the remaining subjects (N = 407 288) and our subjects
who had analyzable imaging data (N = 20 306), resulting in 17 396
subjects. Using IBD estimation in PLINK v1.9 (http://pngu.mgh.
harvard.edu/purcell/plink/) (Purcell et al. 2007) and the avail-
able genotype data, we eliminated a further 139 individuals
for genetic relatedness with other subjects (PI-HAT > 0.2). The
final sample size was 17 257 subjects with acceptable imaging
and genetic data. Within our final sample, we also filtered
out variants in the imputed data based on the following cri-
teria using qctool v2 (https://www.well.ox.ac.uk/&#x007E;gav/
qctool_v2/): MAF < 0.01, Hardy–Weinberg Equilibrium (HWE) P-
value ≤ 0.001, missingness > 0.05, INFO < 0.3. The final number
of imputed variants was 9 777 841.

Heritability and Genetic Architecture of SBM Networks
Heritability was estimated with the genome-wide complex
trait analysis (GCTA) package (Yang et al. 2011). GCTA uses
a genomic relatedness matrix (GRM) (a pairwise measure of
genetic similarity between individuals) and a genome-based
restricted maximum likelihood (GREML) procedure to estimate
the total contribution of SNPs to the phenotypic variance of
a trait and is termed SNP-based heritability (h2

SNP). To further
understand the genetic architecture of SBM networks, we aimed
to determine whether genetic contributions were preferentially
located on a particular chromosome or distributed evenly across
the genome like other highly polygenic traits (Yang et al. 2010;
Shi et al. 2016). In highly polygenic traits, the chromosome-
based h2

SNP is roughly proportional to chromosomal size,
whereas for less polygenic traits, smaller fractions of the
genome can contribute disproportionately to the total h2

SNP

(Shi et al. 2016). We therefore partitioned the total h2
SNP across

chromosomes, performed a regression between the fractional
of h2

SNP of a particular chromosome and its size, and noted
whether any chromosomes fell appreciably above the regression
line.

Pleiotropy Between SBM Networks
To determine whether SBM networks shared genetically mean-
ingful information with each other, we adopted two approaches.
The first was a global approach, by which we applied bivariate
GREML analyses (an extension of the univariate GREML analysis
used for calculating h2

SNP) to estimate the co-heritability or
genetic correlation between each pair of SBM networks (Lee et al.
2012). This is considered a global measure as the correlation
involves genetic effects from across the genome, rather than
information about a specific variant. In addition to pairwise
genetic correlations between SBM networks, we also calculated
the genetic correlation between each SBM network and GMV to
understand how genetic contributions to SBM networks may be
similar or unique to genetic influences on whole brain mea-
sures. We additionally applied agglomerative hierarchical clus-
tering (using the corrplot package in R v3.5.1) to the resulting
symmetric genetic correlation matrix between each pair of phe-
notypes and GMV in order to define genetic modules or groups
of brain phenotypes that were most similar in their genetic
correlation pattern.

Our second approach was more targeted and focused on
identifying genomic regions that may influence one or more
SBM networks and/or GMV. We performed genome-wide associ-
ation (GWA) analysis for each phenotype (N = 26, 25 components,

and GMV) to see if genetic loci were shared across, or unique to, a
particular brain phenotype. Genome-wide tests were performed
on the filtered imputed genotypes (N = 9 777 841 variants) with
17 257 individuals using BGENIE v1.3 (Bycroft et al. 2017). Bon-
ferroni correction was used for multiple comparison correction
(0.05/[26 × 9 777 841]), resulting in a P < 1.96 × 10−10 threshold for
significance.

Pleiotropy Between SBM Networks and Psychiatric Disease
We evaluated the genetic relationship between SBM networks
and three psychiatric disorders (SZ, BP, and MDD) using cross-
trait LD score regression (LDSC). LDSC is an extension of single-
trait LD score regression and tests the genetic correlation
between two traits using GWA summary statistics rather than
individual-level genotype data (Bulik-Sullivan et al. 2015). We
used GWA results from the 25 SBM networks generated in our
study and the GWA results from three studies available for
download from the Psychiatric Genetics Consortium (PGC), one
for each psychiatric disorder of interest. There were multiple
datasets per diagnosis available from the PGC; we chose the
dataset with the largest number of individuals and the larger
number of variants in order to maximize overlap with variants
in the UK Biobank. False discovery rate (FDR) (Benjamini and
Hochberg 1995) was applied to the LDSC results across all
25 networks within a disorder to account for false positives
due to multiple testing. The SZ sample was a meta-analysis
across 36 989 cases and 113 075 controls with 9 444 230 variants
(Schizophrenia Working Group of the Psychiatric Genomics
2014). The BP sample was part of a larger study evaluating the
genetic commonalities/uniqueness between bipolar disorder
and schizophrenia and included 20 129 bipolar cases and 54 065
controls with 8 958 989 variants (Consortium 2018). Lastly, the
MDD sample was part of a mega-analysis of MDD and included
9240 cases and 9519 controls and 1 235 109 variants (Ripke et al.
2013). All three samples were collected in those with European
ancestry, although 6% of the sample for the SZ study was
Asian.

Results
SBM Networks

SBM identified 25 components, each representing a spatially
distinct covarying anatomical network in the cortex and/or cere-
bellum (see Fig. 1 and Supplementary Figure 1 for subject loading
distributions for each component). Network maps were thresh-
olded at |Z| > 2.5 for visualization purposes, although subject
loadings refer to a pattern of voxel-wise coefficients across the
whole brain. Each of the 25 networks was assigned to a func-
tional module based on their similarity to functional networks
from resting state or task-based fMRI as defined in Abrol et al.
(2017): 7 networks were assigned to a cognitive control (CC)
module (components 1, 3, 4, 9, 15, 23, and 24), 6 networks to a
default mode (DMN) module (components 5, 8, 10, 12, 17, and
20), 5 networks to a sensory module (Sens) module (components
2, 14, 16, 18, and 21), and 7 networks to a cerebellar (Cereb)
module (components 6, 7, 11, 13, 19, 22, and 25). Regions with
the highest loading voxels for each network along with peak
MNI coordinates are listed in Supplementary Table 1. Networks
are subsequently referenced with their functional module and
component number (e.g., CC1, DMN5, Sens2, and Cereb6).

http://pngu.mgh.harvard.edu/purcell/plink/
http://pngu.mgh.harvard.edu/purcell/plink/
https://www.well.ox.ac.uk/&#x007E;gav/qctool_v2/
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Figure 1. Anatomical brain networks from SBM. Networks are color coded by functional module. Although subject loadings correspond to a whole brain pattern of
voxel-wise coefficients, we threshold maps at |Z| > 2.5 to indicate voxels that most highly contribute to the component pattern. Warm colors indicate positive loadings;
cool colors indicate negative loadings. Numbers are z, y, and x coordinates in MNI space.

Genetic Contributions to SBM Networks

All brain phenotypes were significantly and moderately heri-
table with total h2

snp estimates ranging from 0.14 to 0.38, with
most exceeding 0.30 (see Table 1). Relationships between frac-
tional h2

snp and chromosome length were generally positive

for all SBM networks and GMV (see Supplementary Figure 2).
The level of polygenicity of the phenotype is represented by
how close each chromosome is to the regression line. Some
networks were highly polygenic (e.g., Cereb22 and Sens18) in
that there was a strong relationship between the amount of

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa082#supplementary-data
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Table 1 SNP-based heritability of SBM networks

Phenotype Total h2
SNP P

CC1 0.14 6.61 × 10−12

CC3 0.14 7.78 × 10−12

CC4 0.27 8.88 × 10−31

CC9 0.34 5.45 × 10−49

CC15 0.32 1.77 × 10−50

CC23 0.34 4.23 × 10−51

CC24 0.26 8.68 × 10−34

DMN5 0.33 6.29 × 10−49

DMN8 0.25 1.25 × 10−29

DMN10 0.20 3.44 × 10−20

DMN12 0.21 7.53 × 10−21

DMN17 0.33 9.09 × 10−50

DMN20 0.16 5.80 × 10−15

Sens2 0.19 5.50 × 10−18

Sens14 0.22 4.57 × 10−24

Sens16 0.30 1.20 × 10−39

Sens18 0.29 3.97 × 10−38

Sens21 0.28 6.84 × 10−42

Cereb6 0.38 1.43 × 10−63

Cereb7 0.32 2.60 × 10−46

Cereb11 0.30 5.60 × 10−39

Cereb13 0.32 3.02 × 10−46

Cereb19 0.23 3.58 × 10−24

Cereb22 0.33 2.86 × 10−48

Cereb25 0.26 2.41 × 10−32

GMV 0.35 3.20 × 10−55

Notes: Values calculated with GCTA. CC, cognitive control; DMN, default mode;
Sens, sensory; Cereb, cerebellum; GMV, gray matter volume.

heritability accounted for and chromosome size (R2 = 0.73 and
R2 = 0.72, respectively). For other networks, there were noticeable
deviations from the regression line, even though there was still
a significant relationship between chromosome size and frac-
tional h2

snp. This was particularly true for DMN17 and Sens21,
although less extreme cases were present in other SBM networks
(e.g., Sens16 and CC9).

Genetic Overlap Among SBM Networks

Genetic correlations between brain phenotypes were both pos-
itive and negative and can be seen in Figure 2a. Hierarchical
clustering of genetic correlations across phenotypes identified
several clusters or genetic modules (GM) comprised of phe-
notypes that shared similar genetic correlation patterns (see
Fig. 2b). Some of these genetic modules were dominated by
phenotypes from the same functional category; this was espe-
cially true for GM4 which was almost completely composed of
cerebellar networks. Other genetic modules were more varied
in their composition of functional categories, particularly GM2
which included a wide range of SBM networks from cortex as
well as GMV.

In order to identify individual loci that may contribute to
the overlap (or non-overlap) in genetic variance found using
GCTA, we performed individual GWA analyses on each SBM
network and GMV. After multiple comparison correction, 27 LD-
independent (Machiela and Chanock 2017) SNPs were signifi-
cantly associated with one or more of our brain phenotypes (see
Table 2). Each SNP was assigned to a locus (defined as a win-
dow 250 kb above and below the tagging SNP). The phenotype-
wide Manhattan plot (see Fig. 3) shows that loci were scattered

across the genome, although there was a large concentration of
significant associations on chromosomes 7 and 14 (4 loci each).
There were three loci where the same SNP was associated with
more than one phenotype. This included locus 1 (rs6658111)
for Sens21 and Cereb25, locus 5 (rs13107325) for DMN12 and
Cereb19, and locus 16 (rs12146713) for CC4, DMN17, and Cereb25.
Additionally, there were phenotypes that were associated with
the same locus but were identified by different SNPs that were
in LD with each other. These included GMV and DMN17 (locus
2); Cereb6 and Cereb13 (locus 19); DMN12, Sens16, and Sens18
(locus 20); and DMN8, DMN10, and DMN17 (locus 25). Individual
Manhattan plots and corresponding quantile–quantile plots for
each phenotype are in Supplementary Figure 3.

To better visualize each locus’ contribution to each SBM
network, we plotted the minimum P-value within each locus
for each brain phenotype (see Fig. 4 and Supplementary Table
2). While it was clear that there was overlap across all brain
phenotypes (mostly mid-dark-shaded green cells), there were
loci with more specific contributions to particular phenotypes
including locus 3, locus 9, locus 21, and locus 23. Figure 4 also
shows that loci significantly associated with a particular SBM
network were not necessarily associated with GMV, indicating
some distinction in their genetic influences.

Genetic Overlap Between SBM Networks and
Psychiatric Disorders

LDSC analysis between each component and three psychiatric
disorders including schizophrenia (SZ), bipolar disorder (BPD),
and major depressive disorder (MDD) yielded seven nominally
significant associations (see Fig. 5 and Supplementary Table 3):
three for SZ, four for BP, and one for MDD. However, only the
correlation between DMN10 and SZ (rg = 0.18 (0.06), P = 0.002)
survived FDR correction.

Discussion
Using multivariate methods to derive novel neuroanatomic
phenotypes in 20 306 individuals from the UK Biobank, we
demonstrated that network-based phenotypes were heritable,
shared genetic overlap with each other, and in a specific
instance, were genetically associated with a psychiatric disorder
(SZ) where neuroanatomical alterations are considered a
hallmark of disease. Although there are many possible ways
to parse the brain into neuroanatomical traits, we contend that
network-based phenotypes can provide additional information
about the genetic underpinnings of neuroanatomic variability
and are supported by what we know about the brain from
previous studies.

First, SNP-based heritability for all SBM networks was mod-
erate and significant albeit variable from network to network.
This is consistent with studies showing that heritability esti-
mates vary across and within cortical, subcortical, and cerebellar
regions (Thompson et al. 2001). Our estimates were also consis-
tent with values obtained for regional volumes in GWA analyses
from the UK Biobank (Elliott et al. 2018), which were likewise
variable, with heritability estimates ranging between 0.009 and
0.57 and an average heritability of 0.28. However, regions in the
UK Biobank analysis with relatively low heritability (h2

snp esti-
mates around 0.05), including parts of the inferior frontal cortex
and supramarginal gyrus, were captured by some of our SBM
networks, primarily in CC (4, 9, 23, and 24) and DMN networks

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa082#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa082#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa082#supplementary-data
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Figure 2. Genetic overlap between SBM networks and GMV. (a) Plot shows genetic correlations between each pair of SBM networks ordered and color coded by functional

module. (b) The same as a but ordered by agglomerative hierarchical clustering; lines represent the clustering dendrogram. The clustering algorithm identified six
genetic modules (GM) outlined by the black squares and numbered in the dendrogram. CC, cognitive control; DMN, default mode; Sens, sensory; Cereb, cerebellar;
GMV, gray matter volume.

(5, 17, and 25), where heritability was often above 0.25, indicating
that genetics do indeed play a role in these regions.

As expected, there was some genetic overlap between
networks, although this, like SNP-based heritability, was also
variable with correlation coefficients ranging from −0.57 to
0.56. This wide range suggests that while some networks share
over half their additive genetic influence, none show complete
genetic overlap. Hierarchical clustering of genetic correlations
also revealed an interesting pattern of genetic similarity across
networks. Some clusters or genetic modules (GMs) contained
networks from the same functional module. For example,
GM4 included 5/7 of the cerebellar networks, consistent with
known gene expression patterns which are more similar
within the cerebellum than between the cerebellum and cortex
(Hawrylycz et al. 2015). GM5 was composed of two visual-
dominant networks, which likewise share high levels of gene
co-expression (Anderson et al. 2018). In contrast, there were
some GMs composed of networks from multiple functional
modules (e.g., GM2 and GM6). Similar genetic contributions to
networks with seemingly disparate functions could arise from
similarity in functional connectivity profiles, which correlates
with gene expression patterns (Krienen et al. 2016; Anderson
et al. 2018). Correlation in gene expression is primarily observed
across regions within the same network, although co-expression
between networks is also apparent, especially for default mode
and control networks, which composed the majority of our GM2.
While our networks were constructed from anatomical images,
they are not independent from spatially similar networks
identified with functional connectivity analyses (Segall et al.
2012). Spatial proximity could also contribute to genetic overlap
in that genetic contributions may be partially constrained by
factors that are similar in neighboring locations, such as laminar
organization and/or developmental origin (Zapala et al. 2005;
Bernard et al. 2012; Chen et al. 2012). This may be true for

CC1 and Cereb25 which include proximal regions that span
the cerebellum and cortex.

Genetic overlap among networks was also reflected in the
loci identified via GWA analyses. We detected seven loci signif-
icantly associated with more than one anatomical phenotype.
There was also evidence that most loci impacted at least two
phenotypes, as the statistical support for some associations was
quite strong despite not exceeding our multiple comparison
correction threshold (see dark green squares in Fig. 4). This
one-to-many mapping, in addition to our genetic correlation
results, suggests there are nontrivial pleiotropic effects on neu-
roanatomic variation. These shared genetic influences could
arise from processes that have brain-wide effects, including gli-
ogenesis, (Lim et al. 2000), astrocyte proliferation and branching
(D’Alessandro et al. 1994; Gomes et al. 2003), and blood–brain
barrier formation (Araya et al. 2008). In fact, some loci identified
via our GWA analyses included genes that play a role in sim-
ilar brain-wide events such as axon elongation and branching
(NUAK1 and FXBO31) (Courchet et al. 2013; Vadhvani et al. 2013)
and cellular senescence (NFKB1) (Bernal et al. 2014), although
these findings will need to be replicated in an independent
sample.

Although pleiotropic effects were evident, they did not seem
to be completely accounted for by overlap with GMV. Only one
locus was significant for both GMV and an SBM network, and
many remaining loci were not strongly associated with GMV.
Furthermore, most SBM networks did not show strong genetic
correlations with GMV. Additionally, some loci were specific to a
particular network (see lack of multiple dark green squares for
loci 3, 9, 21, and 23 in Fig. 4), suggesting that network-specific
genetic influences are also important. This balance between
overlap and specificity is also reflective of genetic modeling
of subcortical volumes, which show both common and unique
genetic effects across structures (Rentería et al. 2014).
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Figure 3. GWA analyses results. Circular Manhattan plot of all GWA analyses (n = 26). Blue dots are variants exceeding the nominal GWA significance threshold (blue

dashed line; P < 5.0 × 10−8); red dots are variants exceeding the Bonferroni corrected threshold (solid red line; P < 1.96 × 10−10). Locus peaks are labeled with their
respective SBM networks. Some loci were identical for multiple networks, whereas other loci had overlapping windows (particularly in chromosomes 14 and 16). The
GWA analyses identified 27 unique loci across 18 SBM networks and GMV. Scale is in log10. CC, cognitive control; DMN, default mode; Sens, sensory; Cereb, cerebellar;
GMV, gray matter volume; Chr, chromosome.

In addition to pleiotropic effects, SBM networks were
also highly polygenic. Half of all phenotypes with significant
genome-wide associations (9 of 18) were associated with more
than one locus, and loci themselves were scattered throughout
the genome both within and across traits. Additionally, we
observed a linear relationship between chromosome length and
proportion of heritability accounted for by each chromosome
(see Supplementary Figure 2), similar to the polygenic architec-
ture of other complex traits like height, BMI, and schizophrenia

(Yang et al. 2013; Shi et al. 2016), where there appears to be small
contributions from common SNPs across the genome. While
present, the strength of the relationship between chromosome
length and variance explained was variable across networks.
Furthermore, there was a disproportionate amount of variance
accounted for by chromosome 1 compared with others for
DMN17 and Sens21, suggesting that there may be variants with
larger effects on this chromosome for these networks. Indeed,
we located genome-wide significant hits on chromosome 1 for

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa082#supplementary-data
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Figure 4. Overlap in genetic loci across SBM components. Plot shows the minimum P-value within each of the 27 unique GWA loci for all 25 SBM networks and GMV.

X-axis shows SBM networks and GMV; y-axis shows significant GWA loci (Bonferroni corrected P < 1.96 × 10−10) ordered by chromosome. Asterisks indicate which
phenotype the locus was associated with. Loci in black were significantly associated with two phenotypes; loci in black and bolded were significantly associated with
three phenotypes. CC, cognitive control; DMN, default mode; Sens, sensory; Cereb, cerebellar; GMV, gray matter volume; Chr, chromosome.

both networks. It could be that using variance component and
GWA analyses jointly could prioritize genomic locations for
mapping at a finer scale.

We also found evidence of genetic overlap between one
of our SBM networks and psychiatric disease. Alteration of
brain structure is a hallmark of mood and psychotic disorders
(Turetsky et al. 1995; Dotson et al. 2009), with genetic links
between the two proposed (McIntosh et al. 2006; Lee et al.
2016). Indeed, reduced regional volumes are found in unaffected
first-degree relatives of people with these disorders, although
evidence in purely affective disorders is mixed (Campbell and
MacQueen 2006; McDonald et al. 2006; Hajek et al. 2013). We
found a significant genetic correlation between SZ and a DMN-
related SBM network composed of the paracentral lobule and
precuneus (DMN10). This association was positive meaning that
the same genetic factors that contribute to disease status also
contribute to larger volume in these regions. While volume
reductions are more common in psychosis, studies primarily
focus on frontal and temporal regions, whereas this component
encompasses primarily posterior parts of the parietal lobe. This
same network was also nominally significant for bipolar disor-
der but not MDD, supporting findings of greater genetic overlap
between SZ and BPD than between SZ and MDD (Purcell et al.

2009; Lee et al. 2013; Bulik-Sullivan et al. 2015). However, this
result should be interpreted with caution given that the bipolar
association failed to reach the FDR significance threshold.

It should be noted that SNP-based heritability is a lower
bound estimate, given that only the variance accounted for
by common SNPs is estimated. This limitation extends to our
genetic correlation analyses as well. It is possible that this short-
coming is reduced somewhat by the large number of imputed
variants available (∼9.7 million variants). We did not attempt to
replicate our GWA analyses as the identification of individual
SNPs was not the central focus of this work; it was, in principle,
a way to look at more localized overlap among components. We
did, however, replicate some SNP-level associations (rs13107325,
rs72754248, and rs74826997) identified by the UK Biobank, which
included approximately half of our current sample size. Yet,
we refrain from making targeted claims about specific genes
and limit our interpretation to genetic loci and patterns of
pleiotropy and polygenicity within and across networks. We
are also aware that the dimensionality of our ICA may impact
our results, including our ability to capture subcortical net-
works. We were interested in large-scale brain networks that
have been identified in other studies using a similar number of
ICA components (Xu et al. 2009; Gupta et al. 2014; Abrol et al.
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Figure 5. Results of the LDSC analysis. Plot shows genetic correlations between
SBM networks and three psychiatric illnesses. Gray asterisks show significant
association at the uncorrected threshold of P < 0.05. Black asterisk shows sig-

nificant association after FDR correction. SZ, schizophrenia; BP, bipolar disorder;
MDD, major depressive disorder; CC, cognitive control; DMN, default mode; Sens,
sensory; Cereb, cerebellar.

2017). Furthermore, large-scale networks would more closely
approximate functional brain networks than individual regions
identified with a higher-order ICA dimensionality and reduce

the burden of multiple comparisons. Exploration of the genetic
influences on such higher-order components, or how genetic
influences change with changing ICA dimensionality, should
be considered in future research. Finally, we acknowledge that
volumetric SBM networks are only one of many phenotypes that
could be used to probe the genetic effects on neuroanatomic
variation, and other measures, such as surface area and cortical
thickness (which are generated from surface-level data), should
be examined in greater detail. However, a recent study from the
UK Biobank showed that there is substantial overlap in variants
contributing to surface area and cortical thickness (van der
Meer et al. 2019). Additionally, although a surface-based strategy
would undoubtedly contribute to understanding the genetic
basis of neuroanatomy, our primary goal was to demonstrate
that there are meaningful genetic contributions to volumetric
SBM phenotypes, not only because of their potential to add
to the information we know about the genetic underpinnings
of neuroanatomy but also because these networks have been
shown to be replicable and are linked to functional networks in
addition to their growing use in neuroimaging (see Gupta et al.
2019 for a review).

We believe SBM phenotypes are well balanced between
more commonly used aggregate phenotypes, which are likely
an oversimplification of brain structure, and voxel-wise
phenotypes (Hibar et al. 2011), which quickly become intractable
given the required computational intensity and the need for
multiple testing correction. Genetic influences on SBM networks
also seem to reflect evidence of heterogeneity in heritability
(Thompson et al. 2001) and gene expression (Hawrylycz et al.
2015) throughout the brain. Our study showed that this approach
to phenotype generation can be successfully used to probe
genetic influences on neuroanatomic variation and that some of
these influences may or may not overlap with those discovered
using traditional neuroanatomic phenotypes. Such an approach
could enhance our ability to identify genetic factors that
contribute to both brain structure and function, given the close
relationship between SBM networks and networks identified
by resting state and task-based MRI (Segall et al. 2012). This in
turn may provide new avenues by which to find genetic overlap
between neuroanatomic variation and other phenotypes that
are commonly associated with it like cognitive ability and
psychiatric diagnoses.
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