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Abstract
The dorsolateral prefrontal cortex (DLPFC) is known to play a critical role in visuospatial attention and processing, but the
relative contribution of the left versus right DLPFC remains poorly understood. We applied multielectrode transcranial
direct-current stimulation (ME-tDCS) to the left and right DLPFC to investigate its net impact on behavioral performance
and population-level neural activity. The primary hypothesis was that significant laterality effects would be observed in
regard to behavior and neural oscillations. Twenty-five healthy adults underwent three visits (left, right, and sham
ME-tDCS). Following stimulation, participants completed a visuospatial processing task during magnetoencephalography
(MEG). Statistically significant oscillatory events were imaged, and time series were then extracted from the peak voxels of
each response. Behavioral findings indicated differences in reaction time and accuracy, with left DLPFC stimulation being
associated with slower responses and decreased accuracy compared to right stimulation. Left DLPFC stimulation was also
associated with increases in spontaneous theta and decreases in gamma within occipital cortices relative to both right and
sham stimulation, while connectivity among DLPFC and visual cortices was generally increased contralateral to
stimulation. These data suggest spectrally specific modulation of spontaneous cortical activity at the network-level by
ME-tDCS, with distinct outcomes based on the laterality of stimulation.
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Introduction
Prompt attentional shifting towards and the perception of a
stimulus within the visual field are a key component of many
aspects of human cognitive processing, and the neural dynamics
underlying such visuospatial processing includes theta, alpha,
and gamma frequency modulations, most noticeably in bilateral
occipital cortices. In the alpha range, desynchronization in the
occipital cortices has been reported in the presence of visual

input since the seminal studies of Hans Berger, and more
recently, alpha synchronization has been repeatedly associated
with inhibition of visual processing (Jensen and Mazaheri
2010; Handel et al. 2011; Heinrichs-Graham and Wilson 2015a;
Wiesman et al. 2018a). On the other hand, gamma synchroniza-
tion in occipital cortices has been linked to active visual process-
ing of stimulus properties such as motion and feature detection
(Siegel et al. 2006; Muthukumaraswamy and Singh 2013)
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and selective attention (Fries et al. 2001; Tallon-Baudry et al.
2004; Vidal et al. 2006; Doesburg et al. 2007). Finally, increases in
occipital theta activity have been implicated in visual stimulus
sampling (Landau and Fries 2012) and more recently tied to
cross-frequency coupling with the faster gamma oscillations
(Lisman and Jensen 2013).

Both bottom-up and top-down regulatory processes are criti-
cal for transforming visual input into cognitive representations.
Of note, the previous literature has highlighted the substantial
role of the prefrontal cortex in top-down modulation of visual
attention and perception (Desimone and Duncan 1995; Fox et al.
2006; Noudoost and Moore 2011; Paneri and Gregoriou 2017),
with the dorsolateral prefrontal cortex (DLPFC) specifically
implicated in visuospatial processing (Wilson et al. 1993). While
noninvasive transcranial electric and magnetic stimulation of
the DLPFC has been widely employed in the modulation of
cognitive processes like working memory and decision-making
(Mars and Grol 2007; Boggio et al. 2010; Andrews et al. 2011;
Balconi 2013), surprisingly, the effects of transcranial direct
current stimulation (tDCS) of the DLPFC on visuospatial process-
ing remain largely unexplored. tDCS is a type of noninvasive
brain stimulation and is believed to alter neuronal activity
in a polarity-dependent manner via the targeted delivery of
low-amplitude direct current (Coffman et al. 2014; Wiesman
et al. 2018b). Briefly, the administration of current leads to a
change in the underlying ionic environment, thus potentially
affecting resting membrane potential and synaptic efficacy
(Liebetanz et al. 2002; Nitsche et al. 2003a; Jang et al. 2009;
Filmer et al. 2014; Weber et al. 2014; Hunter et al. 2015; Fertonani
and Miniussi 2017). However, the net impact and mechanisms
involved remain an area of active investigation. A plethora of
literature has examined the effects of conventional (i.e., two-
sponge electrodes) tDCS on altering cognitive processes (Fregni
et al. 2005; Kuo and Nitsche 2012; Coffman et al. 2014). Far fewer
studies have utilized multielectrode tDCS (ME-tDCS; sometimes
called high-definition tDCS), but initial reports suggest that
stimulation using this technique is more focal and that the
stimulation-related effects may be longer lasting (Datta et al.
2008; Datta et al. 2009; Edwards et al. 2013; Kuo et al. 2013). Of
note, tDCS is widely considered to be safe, with side effects (e.g.,
mild skin irritation, mild tingling sensation under electrode
application site, slight fatigue, and headache) being transient
and generally reported to the same extent in the sham and
active conditions (Nitsche et al. 2003b; Poreisz et al. 2007; Bikson
et al. 2016; Woods et al. 2016).

In the current study, we utilized ME-tDCS, an established
visuospatial discrimination task, and magnetoencephalography
(MEG) to investigate the effects of offline stimulation targeted
to the left and right DLPFC on visuospatial processing and
the underlying neural dynamics. Importantly, in earlier stud-
ies, this task has been shown to trigger strong theta, alpha,
and gamma oscillatory responses in bilateral occipital cortices
(Wiesman et al. 2017, 2018b, 2018c). In line with our previous
findings, as well as the emerging literature showing network-
level effects of transcranial electrical stimulation, we hypothe-
sized that ME-tDCS applied to the left and right DLPFC would
distinctly alter behavioral performance and neural activity in
the theta, alpha, and gamma range in bilateral visual cortices,
as well as connectivity with the prefrontal cortices (Keeser et al.
2011; Peña-Gómez et al. 2012; Wang et al. 2014; Heinrichs-Gra-
ham et al. 2017b; Wilson et al. 2018; Wiesman et al. 2018b;
McDermott et al. 2019).

Materials and Methods
Participants

Twenty-five healthy adults (10 females, 1 left-handed) with
a mean age of 23.4 years (range: 19–32 years) were enrolled.
Exclusionary criteria included any medical illness effecting
CNS function (e.g., HIV/AIDS), any neurological or psychiatric
disorder, history of head trauma, current substance abuse, and
the MEG laboratory’s standard exclusion criteria (e.g., ferromag-
netic implants). Written informed consent was obtained from
each participant after a thorough description of the study was
provided, following the guidelines of the University of Nebraska
Medical Center’s Institutional Review Board, which approved
the study protocol.

Multielectrode Transcranial Electrical Stimulation

A 4 × 1 electrode configuration (four cathodes surrounding a
central anode; Soterix Medical, New York, New York) was used to
deliver ME-tDCS to the left and right DLPFC, using the interna-
tional 10/20 system (Jasper 1958; Klem et al. 1999). Each electrode
had a diameter of 12 mm and was comprised of Ag/AgCl. Cz was
determined by the intersection of the inion/nasion plane and the
preauricular plane following the procedures of the international
10/20 system. The central anode was placed on F3 and F4, which
correspond to the left and right DLPFC, respectively, based on the
Okamoto et al. transformations of the scalp-based international
10/20 system into MNI space (Okamoto et al. 2004; Okamoto
and Dan 2005). The cathodes for the F3 anode condition were
AF3, F1, F5, and FC3, while those for the F4 anode were AF4, F2,
F6, and FC4. To identify the focality and intensity of our ME-
tDCS configurations, current density modeling was conducted
with the Soterix HD Explore software and tissue conductivities
from the literature (gray matter = 0.276, white matter = 0.126,
CSF = 1.65, skull = 0.01, skin = 0.465, air = 1 × 10−7, gel = 0.3, elec-
trodes = 5.8 × 107 (Datta et al. 2009; Huang et al. 2013, 2018).

Each participant completed three separate visits, each
separated by at least 1 week (M = 10.8 days, SD = 7.2 days;
Fig. 1). Stimulation conditions were pseudorandomized to
include two anodal (one left DLPFC active and one right DLPFC
active) and one sham (right or left DLPFC, counterbalanced
across participants) ME-tDCS sessions. Participants were kept
blind as to which visits encompassed active stimulations and
sham.

During the active visits, participants underwent 20 min of
2.0-mA direct-current stimulation, plus a 30-s ramp-up period.
During the period of stimulation, a battery of cognitive tasks
was administered to each participant, which was designed to
assess multiple domains of function and keep the participant
mentally engaged. These tests included a visual memory task,
verbal fluency test, and an attention task. All of these tasks
were part of the NIH Toolbox (Hodes et al. 2013; McDonald 2014).
The same protocol was followed in the sham visit, but no actual
stimulation was applied outside of the ramping procedure. This
approach was adopted so that the participant would not know if
he/she was being stimulated during any given session. Following
active/sham stimulation, participants were prepared for MEG
recording and seated with their heads positioned within the
MEG helmet. About 45 min elapsed from the end of the stim-
ulation to the initiation of this MEG experiment, which places
the experiment well within the time window for offline effects
(Kuo et al. 2013). Briefly, this study found that the level of cortical
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Figure 1. Experimental paradigm. Participants received 20 min of anodal and sham ME-tDCS over the left and right DLPFC. Stimulation montages were pseudoran-
domized across three visits, each separated by at least 1 week. Current distribution modeling revealed focused field intensity values of the left and right DLPFC (left).
Following ME-tDCS participants completed a visuospatial paradigm during MEG recording (right). The total visit time from the beginning of stimulation to the end of

the MEG task was approximately 77 min, which places the MEG experiment well within the peak sensitivity period for detecting offline effects of ME-tDCS (see Kuo
et al. 2013). ME-tDCS, multielectrode transcranial direct current stimulation; DLPFC, dorsolateral prefrontal cortex; MEG, magnetoencephalography.

excitability peaks about 30 min after cessation of multielectrode
tDCS and then slowly dissipates over the next 70–90 min. Thus,
we aligned our MEG recording session to coincide with this
period of neuronal excitability, which has proven effective in
previous studies from our lab (Heinrichs-Graham et al. 2017b;
Wilson et al. 2018; Wiesman et al. 2018b; McDermott et al. 2019).

MEG Experimental Paradigm

We used an established visuospatial discrimination task, termed
Vis-attend (Wiesman et al. 2017, 2018b, 2018c; Wiesman and
Wilson 2019). During this task, the participants were seated in
a magnetically shielded room and told to fixate on a cross hair
presented centrally. After a variable ISI (range: 1900–2100 ms),
an 8 × 8 checkerboard grid was presented for 800 ms at one
of four positions, relative to the fixation (i.e., one of the four
visual quadrants; Fig. 1). Participants were instructed to respond
via button press with their right hand whether the grid was
positioned to the left (index finger) or right (middle finger) of
the fixation point upon presentation of the grid. Each partic-
ipant performed 240 trials (60 per checkerboard location) in a
pseudorandomized order during each MEG recording.

MEG Data Acquisition

All recordings were conducted in a one-layer magnetically
shielded room with active shielding engaged for environmen-
tal noise compensation. With an acquisition bandwidth of
0.1–330 Hz, neuromagnetic responses were sampled

continuously at 1 kHz using an Elekta MEG system (Helsinki,
Finland) with 306 sensors, including 204 planar gradiometers
and 102 magnetometers. During data acquisition, participants
were monitored via real-time audio–visual feeds from inside the
shielded room. Each MEG dataset was individually corrected for
head motion and subjected to noise reduction using the signal
space separation method with a temporal extension (Taulu and
Simola 2006).

Structural MRI Processing and MEG Coregistration

Prior to MEG measurement, four coils were attached to the
subject’s head and localized, together with the three fiducial
points and scalp surface, with a 3D digitizer (FASTRAK 3SF0002,
Polhemus Navigator Sciences, Colchester, VT, USA). Once the
subjects were positioned for MEG recording, an electric current
with a unique frequency label (e.g., 322 Hz) was fed to each
of the coils. This induced a measurable magnetic field and
allowed each coil to be localized in reference to the sensors
throughout the recording session. As coil locations were also
known with respect to head coordinates, all MEG measurements
could be transformed into a common coordinate system. With
this coordinate system, each participant’s MEG data were co-
registered with a high-resolution structural T1-weighted tem-
plate brain prior to source space analysis using BESA MRI (Ver-
sion 2.0). The structural MRI was in standardized Talairach space
and aligned parallel to the anterior and posterior commissures.
Following source analysis, each participant’s 4.0 × 4.0 × 4.0-mm
MEG functional images were spatially resampled.
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MEG Preprocessing, Time-frequency Transformation,
and Sensor-Level Statistics

Eye blinks and cardio-artifacts were removed from the data
using signal space projection (SSP), which was accounted for
during source reconstruction (Uusitalo and Ilmoniemi 1997).
The continuous magnetic time series was divided into epochs
of 2700-ms duration, with 0 ms defined as the onset of the
checkerboard stimulus and the baseline being the −400 to 0-ms
window before stimulus onset. Epochs containing artifacts were
removed based on a fixed threshold method, supplemented
with visual inspection. Briefly, the amplitude and gradient
distributions across all trials were determined per participant,
and those trials containing the highest amplitude and/or
gradient values relative to this distribution were rejected based
on participant-specific thresholds (Spooner et al. 2020; Wiesman
and Wilson 2020). Importantly, we used participant-specific
amplitude and gradient thresholds because interindividual
differences in head size, proximity to the sensors, and related
variables strongly affect the amplitude of MEG signals, as
magnetic field strengths decrease exponentially as the distance
between the electric current source (brain) and the detector
(MEG) increases. Across all conditions and participants, the
average amplitude threshold was 1143.38 fT (SD = 524.22),
and the average gradient threshold was 404.34 fT/epoch
(SD = 142.75). On average, 214.36 (SD = 12.82) trials per partic-
ipant per stimulation condition were used for further analysis,
and the number of trials per participant did not significantly
differ by stimulation condition, F(2,44) = 0.869, P = 0.427. The
percentage of included trials per condition is as follows:
left: 212.47 (88.53%), right: 214.87 (89.53%), and sham: 215.74
(89.89%).

Epochs remaining after artifact rejection were transformed
into the time–frequency domain using complex demodulation
(Kovach and Gander 2016) 2.0 Hz, 25 ms; range: 4–100 Hz),
and the resulting spectral power estimations per sensor were
averaged over trials to generate time–frequency plots of mean
spectral density. These sensor-level data were normalized using
the respective bin’s baseline power, which was calculated as
the mean power during the −400 to 0 ms-time period. This
baseline period was selected to avoid possible contamina-
tion by the post-movement beta rebound (PMBR) response
(Heinrichs-Graham et al. 2017a), which was confirmed by
assessing this time window in the nonnormalized spectrograms.
The specific time–frequency windows used for source recon-
struction were determined by statistical analysis of the sensor-
level spectrograms across all participants and conditions using
the entire array of 204 gradiometers. Briefly, paired-sample t-
tests against baseline were initially conducted on each data
point, and the output spectrogram of t-values was thresholded
at P < 0.05 to define time–frequency bins containing potentially
significant oscillatory deviations across all participants and
stimulation conditions. Time–frequency bins that survived the
threshold were then clustered with temporally and/or spectrally
neighboring bins that were also above the threshold (P < 0.05),
and a cluster value was derived by summing the t-values of all
data points in the cluster. Nonparametric permutation testing
(10 000 permutations) was then used to derive a distribution of
cluster values, and the significance level of the observed clusters
was tested directly using this distribution (Ernst 2004; Maris and
Oostenveld 2007). Further methodology details can be found
in our recent papers (Spooner et al. 2019, 2020; Wiesman and
Wilson 2020).

MEG Source Imaging and Statistics

Cortical networks were imaged through an extension of the lin-
early constrained minimum variance vector beamformer known
as the dynamic imaging of coherent sources (DICS) approach
(Van Veen et al. 1997; Groß et al. 2001). This beamformer cal-
culates single images based on the cross-spectral densities of
all combinations of MEG gradiometers averaged over the time–
frequency range of interest and the solution of the forward prob-
lem for each location on a grid specified by input voxel space.
Following convention, the source power in these images was
normalized per participant using a separately averaged prestim-
ulus noise period of equal duration and bandwidth (Hillebrand
et al. 2005). Such images are typically referred to as pseudo-t
maps, with units (pseudo-t) that reflect noise-normalized power
differences per voxel between a baseline or passive period and
an active task-based period. MEG preprocessing and imaging
used Brain Electrical Source Analysis (Version 6.1; BESA) soft-
ware.

Average maps across all participants were computed per
condition (left active, right active, and sham) using the pseudo-
t images. These average maps were used to identify the peak
voxel (i.e., the voxel with the maximum amplitude value) per
time–frequency response, which in all instances occurred within
the left and right occipital cortices. Time series data (i.e., virtual
sensors) were then extracted from these peak voxels per par-
ticipant. Virtual sensors were computed by applying the sensor
weighting matrix derived through the forward computation to
the preprocessed signal vector, which yielded a time series
for the specific coordinate in source space. Given our previous
findings (Heinrichs-Graham et al. 2017b; Wilson et al. 2018;
Wiesman et al. 2018b; McDermott et al. 2019), we aimed to
quantify changes in both spontaneous and oscillatory neural
activity per stimulation condition. Thus, we computed both
relative power (i.e., relative to baseline) and absolute power
time series for each peak. To examine spontaneous activity,
values from the absolute power time series from each peak
were averaged across the baseline period (i.e., from −400 to
0 ms). The computed values were then collapsed across hemi-
spheres by averaging the data from the left and right occipital
cortices per condition and participant. Of note, previous studies
have shown that estimating local spontaneous power from such
baseline periods provides very similar results to using a dedi-
cated resting-state period (Wilson et al., 2014; Heinrichs-Graham
and Wilson 2016). To examine whether ME-tDCS affected task-
related oscillations, we used the relative time series data and
averaged the values across the active time period used in the
beamforming analyses. As with the spontaneous analysis, the
computed values were averaged across hemispheres per con-
dition and participant prior to statistical analysis. Finally, we
used repeated measures 1 × 3 ANOVAs to identify differences
between the conditions for the task-based oscillations and spon-
taneous activity. Any value ±3 SD from the mean was considered
an outlier and removed prior to statistical analyses.

Functional Connectivity Analyses

To probe dynamic functional connectivity between the site of
DLPFC stimulation and the occipital cortical regions identified in
our main analyses, phase coherence was computed within the
same theta, alpha, and gamma time-frequency windows derived
from our sensor-level statistical analyses. Specifically, we esti-
mated the phase locking value, PLV (Lachaux et al. 1999) between
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Figure 2. Behavioral performance on the visuospatial task. Stimulation montage
(i.e., left and right active stimulation conditions and sham) is denoted at the
bottom with the mean behavioral metrics displayed on the y-axes, with reaction
to the left in ms and accuracy to the right in percentage incorrect. Following

left DLPFC stimulation, participants were slower and less accurate on the task
compared to performance following ME-tDCS of the right DLPFC. Error bars
show the SEM. ∗P < 0.05. ME-tDCS, multielectrode transcranial direct current
stimulation; DLPFC, dorsolateral prefrontal cortex; SEM, standard error of the

mean.

the prefrontal sites of electrical stimulation (i.e., left and right
DLPFC) and the peak voxels per time–frequency response within
the left and right occipital cortices. The PLV reflects the intertrial
variability of the phase relationship between pairs of brain
regions as a function of time. Values close to 1 indicate strong
synchronicity (i.e., phase locking) between the two brain regions
within the specific time window across trials, whereas values
close to 0 indicate substantial phase variation between the two
signals and, thus, weak synchronicity (connectivity) between the
two regions. To investigate the differential impact of stimula-
tion montages on prefrontal–visual connectivity, we extracted
the max and mean PLV per participant and condition within
the time–frequency windows used for beamforming. The com-
puted values were then averaged across occipital nodes per
condition and participant, and these values were compared via
2 × 3 repeated measures ANOVA, with prefrontal node (left/right
DLPFC) and tDCS condition (i.e., left and right anodal DLPFC and
sham) as within-subject factors.

The data that support the findings of this study are avail-
able from the corresponding author, Dr Tony W. Wilson, upon
reasonable request.

Results
All the participants successfully completed the study, but two
were excluded due to MEG artifacts. The remaining 23 partici-
pants were 19–32 years old, with a mean age of 23.5 years.

Behavioral Effects

All participants performed in the normal range on the cogni-
tive tests (i.e., NIH Toolbox) administered during the stimula-
tion sessions, and there were no differences between the three
stimulation conditions. In regard to the MEG task, a repeated
measures 1 × 3 ANOVA revealed significant differences in reac-
tion time by stimulation condition F = 3.981, P = 0.031, such that
participants were slower following ME-tDCS of the left DLPFC
compared to the right DLPFC (Fig. 2). A second within-subject
1 × 3 ANOVA probing accuracy showed that participants were
also significantly less accurate, F = 4.218, P = 0.038, following ME-
tDCSs of the left DLPFC compared to the right DLPFC. Thus,
following active ME-tDCS of the left DLPFC, participants had
longer reaction times and were less accurate (Fig. 2).

Figure 3. Neural responses to the visuospatial task. (Left): Grand-averaged time–
frequency spectrograms of MEG sensors exhibiting one or more significant

responses, with gamma activity at the top, alpha and beta below, and theta at the
bottom. In each spectrogram, time (ms) is denoted on the x-axis and frequency
(Hz) is shown on the y-axis. All signal power data are expressed as percent
difference from baseline, with color legends shown below each respective spec-

trogram. Dashed lines indicate the time–frequency windows that were subjected
to beamforming. (Right): Grand-averaged beamformer images (pseudo-t) across
all participants and ME-tDCS montages for each time–frequency component.
Axial slices are as follows: Gamma (z = 1), beta (z = 45), alpha (z =−7), and theta

(z =−9), from top to bottom. MEG, magnetoencephalography.

Sensor-Level Analysis

Statistical analysis of the time–frequency spectrograms revealed
significant clusters for four spectrally specific oscillatory
responses (P < 0.001, corrected; Fig. 3). A large synchronization
in the theta range (4–8 Hz; 0–250 ms) was observed in an array of
sensors near parietal and occipital regions immediately follow-
ing stimulus presentation. This response partially overlapped
in time with a robust desynchronization in the beta range
(18–24 Hz; 200–500 ms) and a slightly later desynchronization
in the alpha band (8–14 Hz; 300–600 ms). These responses
partially overlapped in space across a number of parietal and
occipital sensors. Finally, a strong synchronization was observed
in the gamma range (64–90 Hz; 100–500 ms), which was most
prominent in MEG sensors near the occipital cortices (Fig. 3). Of
note, the beta desynchronization is known to be tightly linked
to motor execution (Heinrichs-Graham and Wilson 2015b, 2016;
Heinrichs-Graham et al. 2016, 2017a, 2018), and thus it was
imaged to confirm that its origin was the primary motor cortex
(Fig. 3), but otherwise it was not further examined.

Beamformer Analysis

To localize the spatial origin of the sensor-level oscillatory
responses, the aforementioned time–frequency windows of
interest were imaged using a beamformer, and grand average
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Figure 4. Spontaneous theta, alpha, and gamma activity in occipital cortices during the baseline period. Mean absolute power (nAm2) is represented on the y-axes.
Repeated measures 1 × 3 ANOVA were computed on spontaneous power averaged over the baseline period (−400 to 0 ms), with active conditions and sham collapsed

across the hemispheres. (Left): Elevated theta power was observed following left versus right active and sham stimulation. (Middle): No significant differences were
observed in spontaneous alpha power for the three conditions. (Right): Left active stimulation resulted in weaker spontaneous gamma power compared to right active
and sham conditions. Error bars reflect the SEM. ∗P < 0.05. ∗∗P < 0.01. SEM, standard error of the mean.

maps were computed. Bilateral parieto-occipital regions showed
a robust decrease in alpha power, while increases in theta and
gamma power were more confined to inferior and posterior
occipital cortices, bilaterally (see Fig. 3). Virtual sensors were
then extracted from the peak voxels bilaterally to examine
the temporal evolution of these responses for each condition.
These time series were used to compute the mean absolute
power spanning the baseline period, as well as the relative
power during stimulus processing. In both cases, the computed
values were collapsed across hemispheres per response and
condition. These values were then subjected to repeated
measures 1 × 3 ANOVA to identify the offline effects of ME-tDCS
on spontaneous and task-related oscillatory activity.

A significant effect of condition was found for spontaneous
theta power, F = 9.135, P = 0.002. Post hoc testing revealed that
participants exhibited stronger baseline theta power following
left DLPFC stimulation compared to both right DLPFC stimula-
tion (P = 0.004) and sham (P = 0.002). In contrast, no main effect
of tDCS condition was observed for baseline (basal) alpha power,
F = 2.461, P = 0.098. Finally, a significant effect of condition was
found for spontaneous gamma power, F = 4.697, P = 0.027. Post
hoc analysis showed that participants exhibited significantly
weaker baseline gamma power in occipital cortices following left
compared to right stimulation of the DLPFC (P = 0.005) and sham
(P = 0.015; Fig. 4).

Next, we repeated these analyses using the relative time
series data to identify whether ME-tDCS affected task-related
oscillatory power. Briefly, we ran three 1 × 3 ANOVAs (theta,
alpha, and gamma), and our results indicated no significant
effects for any of the three time–frequency components in occip-
ital cortices.

Finally, we extended this approach to regions underneath the
anode (F3 and F4; Okamoto et al. 2004; Okamoto and Dan 2005)
and found differences in task-related alpha oscillations in the
left DLPFC, F = 4.249, P = 0.021, with post hoc testing showing
a significant increase in this region during left DLPFC stim-
ulation compared to sham (P = 0.01). No other task-related or
spontaneous differences were observed in regions underneath
the anode.3.4.

Dynamic Functional Connectivity

Alterations in fronto-visual connectivity as a function of stimu-
lation montage were evaluated using phase coherence between
prefrontal sites of ME-tDCS and peak task-related activity in
the bilateral occipital cortices. Briefly, we averaged the PLV
between the DLPFC node (left or right) and each of the bilateral
peaks (see Fig. 5) per stimulation condition and participant and
then conducted a 2 × 3 repeated measures ANOVA per time–
frequency window. We focus our results on the max PLV data,
but the findings were virtually identical using the mean PLV
data. For theta, there were no significant effects of stimula-
tion condition, DLPFC node, or the interaction. In contrast, the
stimulation condition by DLPFC node interaction effect was
significant for alpha, F = 3.16, P = 0.05, and post hoc analyses
revealed that participants exhibited stronger phase coherence
between the left DLPFC and bilateral visual cortices following
right stimulation relative to sham (P = 0.025) and marginally
left stimulation (P = 0.059). Likewise, following left stimulation,
alpha phase coherence between the right DLPFC and bilateral
visual cortices was higher relative to sham (P = 0.049; Fig. 5).
As per gamma connectivity, the stimulation by DLPFC node
interaction effect was also significant, F = 5.09, P = 0.01, and post
hoc analyses showed greater phase locking between the left
DLPFC and bilateral visual cortices following right DLPFC stim-
ulation relative to sham (P = 0.012). In addition, gamma connec-
tivity between the right DLPFC and bilateral visual cortices was
stronger following left stimulation relative to sham (P = 0.03) and
marginally right stimulation (P = 0.06). Lastly, the stimulation
main effect was significant for gamma (F = 3.54, P = 0.04), and
follow-up tests indicated that fronto-visual connectivity was
marginally stronger (both P’s = 0.08) following both stimulation
conditions relative to sham. No other effects were significant.

Discussion
Herein, we provide evidence for the offline neuromodulatory
effects of ME-tDCS on behavioral performance (i.e., reaction time
and accuracy); spontaneous (baseline) levels of theta, alpha,
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Figure 5. Differential modulation of strength of fronto-visual connectivity by stimulation montages. The glass brains represent functional connections interrogated.
Phase locking value (PLV) is represented on the y-axes. Stronger alpha phase coherence was observed between left DLPFC and bilateral visual cortices versus sham
following right stimulation. Left active stimulation resulted in higher phase coherence between the right DLPFC and bilateral visual cortices versus sham in alpha and
gamma bands. Error bars reflect the SEM. ∗P < 0.05. SEM, standard error of the mean.

and gamma activity in the occipital region; and fronto-visual
connectivity during a visuospatial discrimination task. By com-
bining ME-tDCS with MEG and using a well-established cognitive
paradigm, we were able to examine the differential behavioral
and neural effects generated by left versus right DLPFC stimula-
tion. Our results generally indicated differences in prestimulus
theta and gamma power in bilateral visual cortices following
targeted stimulation of the left DLPFC. We also observed dif-
ferential left/right ME-tDCS effects on behavioral performance,
altered alpha oscillations underneath the anode during left
DLPFC stimulation, and increased alpha and gamma fronto-
visual connectivity contralateral to the DLPFC being stimulated.
These results and their implications are discussed in detail
below.

Interestingly, behavioral performance, measured in terms of
both accuracy and reaction time, significantly declined follow-
ing left compared to right DLPFC stimulation. In other words,
participants were less accurate in identifying the precise loca-
tion of the visual stimulus and were slower in responding to
the location following stimulation of the left DLPFC. Since the
effect extended across both reaction time and accuracy met-
rics, it cannot be attributed to a speed-accuracy tradeoff and
thus appears to be a broad decline in visuospatial function.
Upon close inspection, the actual effect appears to be driven
by participants responding slightly faster following right DLPFC
stimulation compared to sham and much slower following left
DLPFC compared to sham. This effect may be attributable to the
right prefrontal cortex being more involved in spatial processing,
whereas the left DLPFC is considered to be more involved in
cognitive processes that lack a spatial component (van Asselen
et al. 2006). However, this alone does not fully explain why left
stimulation would negatively affect overall performance, which
as stated above seemed to be the proportionally larger effect.
While further work is needed, we propose that the increase in
alpha and gamma functional connectivity between right DLPFC
and bilateral visual cortices following left stimulation could be
central to this effect. Presumably, fronto-visual connectivity in
healthy adults is relatively optimized for performance, and thus
increasing such connectivity could have a negative impact on
behavioral performance. As discussed below, the right stimula-
tion tended to increase alpha and gamma connectivity between

the left DLPFC and bilateral visual cortices, but given the weaker
role of left DLPFC in visuospatial processing, the overall impact
may be more limited. Nonetheless, this framework is specula-
tive, and additional studies are certainly needed to explore this
effect in greater detail.

Occipital theta oscillations have been intimately tied to
visual processing, and previous findings have signified the
pivotal role of theta oscillations in the temporal organization
of information transfer within the visual attention system (Fries
et al. 2001; Busch et al. 2009). Herein, we found that stimulation
of the left DLPFC was associated with stronger spontaneous
theta activity during the baseline in bilateral occipital cortices
relative to both right stimulation and sham and that left DLPFC
stimulation was associated with a decline in performance.
Such a pattern of results agrees with two recent studies where
we linked increased spontaneous (baseline) theta activity to
significantly reduced performance in a visual attention task
(Lew et al. 2018; McDermott et al. 2019). In light of this literature,
we propose that the modulation of baseline occipital theta
following stimulation of the DLPFC likely impacted individuals’
higher-order temporal decision-making processes, with the
stimulation site-specific effects capturing the different roles
played by the left and right DLPFC in cognitive processing
(Kaller et al. 2010; Barbey et al. 2013). Of note, ME-tDCS did
not strongly affect theta range functional connectivity between
prefrontal and occipital cortices. Thus, the mechanism of
increased spontaneous theta following left DLPFC stimulation is
not entirely clear, although the concomitant changes in gamma
range spontaneous activity and functional connectivity may
suggest that cross-frequency coupling was involved and future
studies should closely evaluate this (Lisman and Jensen 2013).

In contrast to findings in the theta range, basal gamma
power in the occipital cortices was generally weaker follow-
ing stimulation of the left DLPFC compared to the right and
sham stimulation. Increases in gamma power, put simply, are
thought to enhance the processing of visual input (Doesburg
et al. 2007; Jensen and Mazaheri 2010), and it is interesting to
note that the reduced occipital gamma power following left
DLPFC stimulation coincided with diminished behavioral per-
formance and increased right fronto-visual connectivity during
that session. This behavioral pattern was present when utilizing
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a low-level visuospatial discrimination task, and stimulation of
the left DLPFC may have even greater implications for higher-
order visual attention processes. Thus, the overall pattern of
increased theta, decreased gamma, altered fronto-visual con-
nectivity, and impaired behavioral performance agrees with pre-
vious literature and suggests that the stimulation of the left
DLPFC had a negative impact on perceptual and neural pro-
cessing. However, it should be noted that the effect of ME-
tDCS on gamma (and alpha) functional connectivity was not
unitary. Essentially, while left stimulation altered right fronto-
visual connectivity and the right DLPFC is thought to have a
larger role in spatial processing, right DLPFC stimulation was
followed by increased left fronto-visual connectivity. Thus, the
overall effect of ME-tDCS on functional connectivity appeared to
be an increase in fronto-visual interactions involving the DLPFC
that was not stimulated. Based on the behavioral data, left DLPFC
stimulation was associated with prolonged reaction times and
less accuracy, which could indicate that the increased gamma
connectivity between the right DLPFC and bilateral visual cor-
tices had a negative effect on spatial processing, while the
increases in connectivity between the left DLPFC and bilateral
visual cortices following the right stimulation had a negligible
effect. However, this interpretation of the net impact of these
connectivity changes is speculative, and connectivity metrics
were not directly related to performance; thus, future work is
needed.

Beyond the modulation of spontaneous theta and gamma
activity, we observed changes in alpha range functional con-
nectivity following ME-tDCS of the left and right DLPFC, and
stimulation of the right DLPFC was also marginally linked to
increased occipital alpha power during the baseline compared to
left stimulation. These findings may be pertinent to future work,
as a myriad of literature has shown that alterations in occipital
alpha activity affect visual processing. For example, it has been
shown that an elevation in occipital alpha activity leads to
endogenous inhibition of visual transmission and can cause
a reduction in visual discrimination efficacy if the heightened
alpha stretches into the period of stimulus processing (Worden
et al. 2000; Fox et al. 2006; Kelly et al. 2006; Klimesch et al.
2007; Van Dijk et al. 2008; Handel et al. 2011; Spaak et al. 2014;
Wiesman et al. 2018a, 2018b). Of note, in our study, spontaneous
alpha power was not predictive of task performance. Perhaps
this was due to our visuospatial discrimination task being more
low level (basic) in nature, whereas this pattern of modulation
would have strong implications for higher-order cognitive tasks
that rely on alpha-associated inhibition (e.g., working memory;
see (Embury et al. 2019; Heinrichs-Graham and Wilson, 2015a,
2015b; Proskovec et al. 2016; Wilson et al. 2018). Moreover, in
previous work using conventional tDCS, we found a significant
elevation in occipital alpha power during the baseline using
a two-sponge occipital/right prefrontal montage (Wilson et al.
2018; Wiesman et al. 2018b; McDermott et al. 2019). Thus, our
finding here of a marginal increase in alpha baseline power
following right DLPFC stimulation is largely consistent with this,
and the reduced magnitude of the effect could be due to our
use of a multielectrode montage (vs. conventional tDCS) and/or
the location of stimulation in the current study. In addition,
we also observed increased alpha oscillatory power in the left
DLPFC following ME-tDCS of this region, although our prior
findings (Wilson et al. 2018; Wiesman et al. 2018b; McDermott
et al. 2019) were specific to increased spontaneous alpha during
the baseline. This discrepancy could simply reflect differential
effects following occipital tDCS in our prior studies versus DLPFC

stimulation in the current study. Given the vast differences in
cytoarchitecture between these regions (i.e., at least 2.5 times
more cells per unit volume in occipital cortex relative to the
DLPFC), such differential effects are not surprising. Regardless,
future work in this area is needed. Finally, our alpha functional
connectivity results were very similar to those observed in the
gamma range. Essentially, left DLPFC stimulation was associ-
ated with increased connectivity during visuospatial processing
between the right DLPFC and bilateral visual cortices relative to
sham, while right DLPFC stimulation was associated with signif-
icantly increased connectivity between the left DLPFC and bilat-
eral visual cortices relative to sham. In short, we found that con-
nectivity was stronger between the DLPFC and bilateral visual
cortices in the prefrontal node not being stimulated, which is
similar to our observations in the gamma range. The impact of
such alterations in connectivity on visuospatial processing is not
entirely clear and should be the focus of future investigations.
Further, the current findings could be extended by targeting the
DLPFC with transcranial alternating current stimulation (tACS)
to illuminate its effects on the neural dynamics of visuospatial
attention.

In conclusion, we examined the offline neurophysiological
effects of applying ME-tDCS to the left and right DLPFC, focusing
on behavioral performance and neurophysiology. In agreement
with previous work, we found that our visuospatial processing
task elicited significant theta, alpha, and gamma oscillations
in bilateral occipital cortices across all stimulation conditions
(Wiesman et al. 2017, 2018b, 2018c). Importantly, we also found
that spontaneous occipital theta and gamma activity during the
baseline and fronto-visual alpha and gamma connectivity was
altered following ME-tDCS of the DLPFC. Specifically, ME-tDCS
of the left DLPFC was associated with increased occipital theta
and decreased occipital gamma activity relative to sham and
stimulation of the right DLPFC, whereas fronto-visual connec-
tivity in the gamma and alpha range was generally stronger
in the left DLPFC when stimulation was applied to the right
DLPFC, suggesting network-level effects. Lastly, our finding of
impaired task performance following ME-tDCS of the left DLPFC
implies that these network effects were potentially detrimental
to visuospatial function in the healthy adult brain, although
it should be noted that our behavioral effects were relatively
weaker than our neural effects and future studies would benefit
from larger samples and greater statistical power. Such larger
samples would also enable more advanced time-lag connectivity
analyses, which may provide novel insight on the mechanisms
of altered spontaneous activity in the visual cortices following
DLPFC stimulation.
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