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Abstract
Accumulating neuroimaging evidence shows that age estimation obtained from brain connectomics reflects the level of
brain maturation along with neural development. It is well known that autism spectrum disorder (ASD) alters
neurodevelopmental trajectories of brain connectomics, but the precise relationship between chronological age (ChA) and
brain connectome age (BCA) during development in ASD has not been addressed. This study uses neuroimaging data
collected from 50 individuals with ASD and 47 age- and gender-matched typically developing controls (TDCs; age range:
5–18 years). Both functional and structural connectomics were assessed using resting-state functional magnetic resonance
imaging and diffusion tensor imaging data from the Autism Brain Imaging Data Exchange repository. For each participant,
BCA was estimated from structure–function connectomics through linear support vector regression. We found that BCA
matched well with ChA in TDC children and adolescents, but not in ASD. In particular, our findings revealed that
individuals with ASD exhibited accelerated brain maturation in youth, followed by a delay of brain development starting at
preadolescence. Our results highlight the critical role of BCA in understanding aberrant developmental trajectories in ASD
and provide the new insights into the pathophysiological mechanisms of this disorder.

Key words: autism spectrum disorder, brain connectome age, brain connectivity, diffusion tensor imaging, resting-state
functional magnetic resonance imaging
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Introduction
Human brain development is a dynamic and complex process
involving progressive (e.g., cell growth and myelination) and
regressive (e.g., cell death and atrophy) neuronal processes (Silk
and Wood 2011). Reflecting the level of brain maturity, individu-
als with the same chronological age (ChA) might course different
trajectories of brain development, as measured by biomarkers
of brain anatomy, function, and connectivity across the lifespan
(Dosenbach et al. 2010). Such differences reflect both ChA (mea-
sured by the time running since birth) and biological age (regard-
less of birth year, the level of biological maturation at a given
time). Previous studies have reported a mismatch between the
two ages occurring in parallel with well-established age-related
anatomical and functional connectivity variations (Kleinhans
et al. 2012; Uddin et al. 2013), consolidating the fact that brain
connectivity patterns play an important role in characterizing
brain development.

Autism spectrum disorder (ASD) is characterized by impair-
ments of social communication, social reciprocity, and repetitive
and stereotyped behaviors and interests (American Psychiatric
Association 2013). Recent research has led to the theory of age-
related abnormal brain connectivity in ASD (Courchesne et al.
2007; Uddin et al. 2013), showing that functional connectivity
(FC) increases in ASD at an early age but abnormally decreases
and possibly degenerates in adolescence. Uddin et al. (2013) also
suggested that the atypically increased intrinsic FC found in
children with ASD may reverse by adulthood. Therefore, it is
clear that in ASD the level of brain connectivity abnormalities
has a strong dependence on the specific age at which individuals
are evaluated (Nomi and Uddin 2015).

Structural neuroimaging has shown a similar pattern in
young children with ASD involving widespread increases in
fractional anisotropy of white matter tracts (Billeci et al. 2012).
Courchesne et al. (2004, 2007) have found that brain development
in ASD is characterized by different phases from birth to
adulthood, reporting early brain overgrowth at the beginning
of life and abnormal slowing of growth in later developmental
stages. Taken together, these findings show that patterns of
structural connectivity (SC) and FC are associated with abnormal
brain development in ASD, and the amount of deviation from
normal aging might help with the early detection of clinical
outcomes (Ecker et al. 2015). Recently, the process of aging has
been assessed through novel computational strategies such as
machine learning. Specifically, a new paradigm for brain age
estimation has been successfully introduced and applied to
different diseases (e.g., Alzheimer’s disease and schizophrenia).
Brain age estimation has the potential to provide personalized
biomarkers of brain development by capturing deviations from
typical development based on brain structure and function
(Gaser et al. 2013; Schnack et al. 2016; Zimmermann et al. 2016;
Liem et al. 2017; Bonifazi et al. 2018). Previous studies have
reported that brain age estimation can quantify mismatches
between ChA and biological age. In particular, Zimmermann
et al. (2016) and Liem et al. (2017) reported that a combination
of structural and functional information in brain age estimation
can outperform either structural or functional information
alone. However, previous studies have reported that structural
and functional templates do not correspond to the same
physical and physiological mechanisms, despite the fact that
brain structure forms the basis of brain function and function
exerts the effects on the plasticity of structure (Hermundstad
et al. 2013; Diez et al. 2015).

The current study makes the use of the Brain Hierarchi-
cal Atlas at the level of 20 module representation, which
provides maximum correspondence between structure and
function (Diez et al. 2015). We built SC and FC matrices using
resting-state functional magnetic resonance imaging (rs-fMRI)
and diffusion tensor imaging (DTI) data from the Autism
Brain Imaging Data Exchange (ABIDE) database (Di Martino
et al. 2014). Based on inter- and intra-module SC and FC
matrices, we estimate brain connectome age (BCA) and assess
specific patterns of brain developmental trajectories in ASD
and typically developing control (TDC). Building upon previous
evidence, we hypothesized that brain development in ASD
would be accelerated in youth and delayed with increasing age
compared with TDC.

Materials and Methods
Participants

Data were selected from the Autism Brain Imaging Data
Exchange (ABIDE II) repository (http://fcon_1000.projects.ni
trc.org/indi/abide/) (Di Martino et al. 2014, 2017) using strict
inclusion criteria (see Supplementary Information for inclusion
criteria and diagnosis and clinical assessment details). This
selection process resulted in 97 subjects, including 47 TDCs and
50 individuals with ASD from two sites (New York University
Langone Medical Center [NYU] and San Diego State University
[SDSU]; Table 1).

Neuroimaging Acquisition

MRI data were acquired at NYU with a 3 Tesla Siemens Allegra
scanner and at SDSU with a 3 Tesla GE MR750 scanner. The two
institutions obtained structural imaging, diffusion imaging, and
rs-fMRI (see Supplementary Information for details regarding
acquisition parameters).

Image Preprocessing

Diffusion Tensor Imaging
DTI data preprocessing was performed following a similar pro-
cedure to previous studies (Bonifazi et al. 2018; Pang et al.
2019). For more details on DTI preprocessing, see Supplementary
Information.

The functional partition was generated after applying
spatially constrained clustering to the functional data following
the procedure in Craddock et al. (2012) and choosing the level of
M = 20 modules from the Brain Hierarchical Atlas, published
in Diez et al. (2015) and available for download at https://
www.nitrc.org/projects/biocr_hcatlas/. For each participant, one
2514×2514 SC matrix was obtained (Fig. 1), where the entry
(i, j) is given by the mean fractional anisotropy (FA) values along
all fibers connecting the two nodes. SC is a symmetric matrix,
where connectivity from i to j is equal to that from j to i.

Functional MRI
Functional images were processed with the DPARSF (Yan and
Zang 2010) (v4.3.0, http://rfmri.org/DPARSF) software package in
MATLAB 2013 (Math Works, Natick, MA). For more details on fMRI
preprocessing, see Supplementary Information.

One 2514×2514 FC matrix for each participant was obtained
(Fig. 1). Specifically, the element matrix (i, j) of FC was obtained
by using the pairwise Pearson correlation coefficient between
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Table 1 Participant demographics

Site Number (n) Age
(mean ± SD)

Gender
(M/F)

FIQ
(mean ± SD)

MeanFD
(mean ± SD)

PST
(mean ± SD)

ADOS
(mean ± SD)

All sites
ASD 50 11.3 ± 3.96 43/7 101.1 ± 16.27 0.19 ± 0.10 0.13 ± 0.14 13.5 ± 4.63
TDCs 47 11.3 ± 3.28 45/2 109.3 ± 14.94 0.18 ± 0.13 0.12 ± 0.18 —
P value — 0.91a 0.10b P = 0.01a 0.82a 0.95 a —

NYU
ASD 22 8.4 ± 2.98 21/1 103.3 ± 18.18 0.22 ± 0.11 0.17 ± 0.16 11.9 ± 4.19
TDCs 23 9.2 ± 1.91 23/0 116.0 ± 14.99 0.20 ± 0.13 0.15 ± 0.18 —
P value — 0.28a 0.30b P = 0.01a 0.58a 0.67 a —

SDSU
ASD 28 13.5 ± 3.07 22/6 99.4 ± 14.70 0.16 ± 0.09 0.09 ± 0.11 14.8 ± 4.64
TDCs 24 13.4 ± 3.02 22/2 102.8 ± 11.90 0.16 ± 0.12 0.10 ± 0.19 —
P value — 0.87a 0.19b 0.36a 0.95a 0.68 a —

Note: PST, proportion of scrubbed time points (number of “bad” time points/total time points); SD, standard deviation; M, male; F, female; ADOS, total score of the
Autism Diagnostic Observation Schedule. “Bad” time points denote time points with frame-wise displacement >0.5 mm, including the preceding time point and the
two succeeding time points.
aP value was obtained by two-sample t-test, two-tailed.
bP value was obtained by Kruskal–Wallis test.

pairs of resting fMRI time series. The correlation coefficients
were normalized by the Fisher’s Z transformation:

Z = 1
2

√
n − 3 × ln

(
1 + r
1 − r

)
(1)

where n represents the number of time points and r represents
the correlation coefficients between regions of interest (ROIs).

Age Estimation Analysis

Feature Selection
From the original SC and FC matrices for each participant, four
different classes of features were generated (Bonifazi et al. 2018):
structural internal connectivity (SIC), functional internal con-
nectivity (FIC), structural external connectivity (SEC), and func-
tional external connectivity (FEC, Fig. 1). Given that a module
was composed of a set of n ROIs and 20 modules were generated
from the 2514 ROIs, each participant had 20 × 2 [SIC,FIC] and
190 [20 × (20–1)/2] × 2 (SEC,FEC). After combination of the four
classes of features and normalization, the structure–function
feature matrix had N × 420 dimensions (N number of individuals
times 420 features). To obtain the age-related features, recur-
sive feature elimination with cross-validation (RFECV) was per-
formed (Guyon et al. 2002). In addition, the effect of head motion
was controlled for by excluding features that correlated with
mean frame-wise displacement (meanFD). As shown in Fig. 1,
the feature selection was performed before the cross-validation
(see Supplementary Information).

Brain Connectome Age
Linear support vector regression (SVR) is a supervised learning
technique based on the concept of support vector machines—
used for categorical classification—and generalized for the pre-
diction of continuous variables such as age (Drucker et al. 1997).
Of note, SVR has been successfully used in prior studies for
assessing brain aging patterns (Dosenbach et al. 2010; Liem et al.
2017). BCA was defined as brain maturation characterized by the
brain connectome, and it was estimated in TDC using leave-one-
out cross-validation (LOOCV). For the LOOCV, predicted values

from “left-out” participants were obtained by taking the training
data from all other healthy participants. This procedure was
repeated until all healthy participants had a predicted value
(Yip et al. 2019). Data from ASD participants were used for
testing using the SVR trained in the TDC group (Fig. 1). The
numeric value of the BCA indicates if brains appear younger
(negative score) or older (positive score) than their ChA, and
the numeric value specifies the magnitude of the difference
(in years) between BCA and ChA (Luders et al. 2016). In line
with previous studies, the predictive model (i.e., SVR) for BCA
estimation was built with the hypothesis that no significant
difference between BCA and ChA would appear in TDC (Franke
et al. 2012, 2014).

Statistical Analysis

Two-sample t-tests were performed for the assessment of
group differences in age, full-scale intelligence quotient (FIQ),
and meanFD. The Kruskal–Wallis test was applied for the
assessment of gender differences. Since both childhood and
adolescence are periods of brain development during which the
autistic brain has shown varying developmental patterns
(McGovern and Sigman 2005; Courchesne et al. 2007), differences
between BCA and ChA were examined with two-sample
t-tests, and Pearson’s correlation analyses between BCA and ChA
were calculated separately in the two groups (ASD and TDC).
The general linear model was used to compare the ΔAGE (i.e.,
the difference between BCA and ChA) between ASD and TDC
separately in childhood and adolescence. Site, FIQ, sex, and head
motion served as nuisance covariates. To examine whether the
correspondence between BCA and ChA was influenced by head
motion, Pearson’s correlation analyses between distance (i.e.,
the distance of each dot from the linear fitting curve between
BCA and ChA) and mean meanFD were further conducted.

Reproducibility Analysis

The robustness of our findings was firstly examined using only
morphological information (i.e., 101 SEC and 6 SIC) and sepa-
rately using the data from SDSU and NYU datasets. Next, in order

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa098#supplementary-data
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Figure 1. Methodological sketch. (1) Networks construction based on BHA: 2514 ROIs constitute 20 modules selected from the BHA, and 2514 × 2514 SC (FC) matrices

for each participant were generated after image preprocessing. (2) Features obtained from networks: SIC, SEC, FIC, and FEC features were generated from the SC and
FC networks. (3) Age-related feature selection: After the method RFECV and eliminating the effect of head motion, feature selection was performed. (4) Framework
for BCA estimation: The BCA of each participant was generated by SVR and then compared with ChA. meanFA, mean of fractional anisotropy; BHA, Brain Hierarchical

Atlas.

to test the robustness of our results against nuisance variances,
BCA was estimated using an SVR model with the age-related
features controlling for nuisance variances (i.e., site, FIQ, and
sex). In addition, we used ridge regression (Chung et al. 2018)
by minimizing the sum of squared prediction error and L2-
norm regularization term to demonstrate that the reported find-
ings are not model-dependent. Finally, to further examine the
potential effect of global signal regression (GSR) on our findings,
reproducibility analysis with GSR was conducted. Since the use
of GSR in rs-fMRI studies has sparked a great deal of controversy
and some investigators argue strongly against its use (Fox et al.

2009; Liu et al. 2017), the findings with GSR in this study are
presented in Supplementary Information. For more details on
reproducibility analyses, see Supplementary Information.

Results
Characterization of Age-Related Features

Of the 420 possible descriptors, 131 connections (Fig. 2 and
Supplementary Fig. S1) had a greater SVR performance in the
TDCs dataset and were used for BCA estimation. Among these

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa098#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa098#supplementary-data
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Figure 2. Selected features for BCA estimation in TDCs. A total number of 131 connections were selected as features for the estimation of BCA in TDCs. Twenty modules
with different colors were used to calculate the different connectivity metrics FEC, FIC, SEC, and SIC. The arc length of each module is proportional to the number of

ROIs within that module. Orange lines correspond to structural connections and blue lines to functional ones. The thickest lines represent the top 10 connections after
ranking the weight in SVR.

connections, 101 connections were SEC, 6 SIC, 18 FEC, and
6 FIC (Supplementary Fig. S2). After ranking the weights of
all connections in SVR, the 10 best descriptors included the
thalamus (i.e., participating in modules 7 and 15), putamen
(modules 7, 8, and 15), pallidum (modules 7 and 15), caudate
nucleus (modules 7, 8, 11, and 12), nucleus accumbens (modules
7, 11, and 15), insula (module 15), hippocampus and amygdala
(modules 15 and 18), anterior cingulate (modules 11 and 12),
posterior cingulate (module 1), superior temporal gyrus (module
17), superior frontal gyrus (module 12), precentral gyrus (module
5), and lateral frontal orbital gyrus (modules 11 and 12). A
complete anatomical description for all the 20 modules is given
in Table S1 in Diez et al. (2015). Taken together, these descriptors
were mainly involved in two circuits including the cortico-
limbic-striatal (CLS) circuit and the fronto-insula-temporal (FIT)
circuit, which play a central role in the BCA estimation. The
core regions of the CLS circuit encompass temporal and frontal
lobes, limbic structures (including a group of subcortical nuclei
and cortical structures such as hippocampus and amygdala)
and striatum, while the cortical regions of FIT circuit involve the

orbitofrontal cortex, the medial temporal lobe (including the
amygdala and hippocampus), and insula.

Relationships between BCA and ChA in Childhood and
Adolescence in ASD versus TDC

Significant differences between BCA and ChA were observed in
childhood (age range, 5–12 years) and adolescence (age range,
12–18 years) in ASD (Fig. 3, left). In childhood ASD, BCA was
significantly higher than ChA (Fig. 3a). Moreover, BCA was
positively correlated with ChA (Fig. 3c; r = 0.56, P = 0.001). In
adolescent ASD, BCA was significantly lower than ChA (Fig. 3a),
and notably BCA had no correlation with ChA (Fig. 3c; r = 0.10,
P = 0.69). When performing the same analysis on the group
of TDC, no significant differences were found in childhood
or in adolescence (Fig. 3b). Moreover, TDC showed significant
correlations between BCA and ChA in the two regimes (Fig. 3d;
childhood: r = 0.50, P = 0.004; adolescence: r = 0.75; P < 0.001).
Accordingly, ΔAGE of childhood ASD was significantly higher
than that of childhood TDC, but ΔAGE of adolescent ASD was

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa098#supplementary-data
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smaller than that of adolescent TDC, though this decrement
was not significant (Fig. 3e). This finding may be associ-
ated with atypical brain connections in ASD. No significant
correlation between distance and mean FD was observed,
suggesting that the correspondence between BCA and ChA
is not trivially dependent on head motion (Supplementary
Fig. S3).

Reproducibility of Findings

When repeating the entire analysis separately using the SDSU
dataset (Supplementary Fig. S4), the NYU dataset with sample
limitations (Supplementary Fig. S5), and only structural connec-
tions showing poor SVR performance of BCA estimation (i.e., 101
SEC and 6 SIC) (Supplementary Fig. S6), the same patterns of
developmental trajectories in ASD can be observed. In addition,
the same developmental patterns were also found separately
by SVR using the features mitigating the effect of nuisance
variances (i.e., site, FIQ, and sex) (Supplementary Fig. S7) and
ridge regression (Supplementary Figs S8 and S9). Furthermore,
the same developmental patterns were obtained from the data
with GSR (Supplementary Fig. S10). Therefore, taken together,
these analyses performed well with different conditions. Our
findings are robust, showing that BCA was not significantly
different from ChA in TDC, but they were differentiated in ASD
(BCA > ChA in childhood and BCA < ChA in adolescence). For
more details on reproducibility of findings, see Supplementary
Information.

Discussion
To the best of our knowledge, this study is the first to identify
discrepancies between ChA and BCA in ASD based on structure–
function connectomics. ASD as compared with TDC is character-
ized by BCA being significantly higher than ChA in childhood,
whereas BCA is significantly lower than ChA in adolescence.
These results suggest that brain development in ASD seems to
be accelerated in younger subjects but delays with increasing
age (Fig. 4). Measurements of BCA on single subject might serve
as potential biomarkers for characterizing brain developmental
trajectories in ASD.

Methodological Considerations

Recent studies have measured brain age based on biological
information, but few have combined SC and FC features to
implement the estimation (Franke et al. 2012; Gaser et al. 2013;
Cole et al. 2015). Combined features are of crucial importance,
as structural connections provide support to functional connec-
tions, while functional connections exert effects on the plastic-
ity of structural connections in the course of brain development
(Hermundstad et al. 2013). Liem et al. (2017) have reported that
the error of brain age estimation was 4.29 years by combining
morphological information with FC. Bonifazi et al. (2018) have
achieved high performance of brain age by combining SC and
FC metrics at different spatial scales along a hierarchical tree.
Here, we have shown that a combination of SC and FC metrics
might allow for the sensitive detection of aberrant patterns in
brain development.

Although the functional and structural datasets were
obtained from the same subject, SC and rsFC networks were
acquired by using different prior structural and functional
templates, respectively (Zhang et al. 2011; Hermundstad et al.

2013; Jimenez-Marin et al. 2019). Thus, the two modalities
consist of two separate and autonomous datasets related to
different physical and physiological mechanisms. However,
specific functional connections between distinct regions are
necessarily constrained by the underlying wiring structure,
and functional connections rely on existing structural ones
(Hermundstad et al. 2013). In the current study, to ensure
correspondence between function and structure, the brain
was partitioned into 20 modules relevant for both structure
and function, as shown in Diez et al. (2015). In addition,
linear SVR was selected to avoid the potential effect of
overfitting between brain connectomics and ChA, and ridge
regression was applied to demonstrate that our results are not
model-dependent.

The CLS Circuit Has a Major Role in BCA Estimation

Our findings demonstrate that the CLS circuit plays a major
role in BCA estimation. CLS involves temporal and frontal lobes,
limbic structures such as the hippocampus and amygdala, and
striatum (Jiang et al. 2017). CLS is well known to play an impor-
tant role in emotion processing (Cardinal et al. 2002), during
which cortical regions such as the frontal lobe integrate signals
received from limbic structures to be sent back to limbic struc-
tures and striatum (Braun 2011). Importantly, emotion process-
ing ability improves with age and, when it fails, pathological
social behaviors can emerge (Custrini and Feldman 1989). In the
transition from childhood into adolescence, children’s capacity
to regulate their emotion increases with age and is seriously
affected by social–contextual factors (Gnepp and Hess 1986). Our
findings of BCA and ChA differences in ASD indicate that the
functioning of the CLS circuit in regulating emotion processing
is one that may be altered when autistic children age.

The FIT Circuit Is Also Relevant for the BCA Estimation

Our findings also show that the insula participates in BCA esti-
mation, together with the orbitofrontal cortex and the medial
temporal lobe (including the amygdala and hippocampus) form
the FIT circuit (Gleichgerrcht et al. 2010). The FIT circuit is
responsible for decision-making (Gleichgerrcht et al. 2010),
an extremely complex human behavior involving stimulus
encoding, action selection, and expected reward (Gleichgerrcht
et al. 2010). Accumulating evidence suggests that the FIT
circuit is affected in brain neurodegenerative diseases such as
frontotemporal dementia, Parkinson disease, and Alzheimer’s
disease (Taylor et al. 1986; Rahman et al. 1999; Torralva et al.
2000). Importantly, Mann et al. (1989) and Cauffman et al. (2010)
showed that young adolescents had impairment in decision-
making as compared with older individuals, suggesting that
developmental differences affect decision-making performance,
particularly under situations of emotional engagement and
uncertain outcome. Our findings showing that differences
between BCA and ChA in ASD, in part coming from the FIT
circuit, might underlie altered decision-making ability in autistic
developing brains.

Simultaneous Structure–Function Contribution to BCA
Estimation

Our findings demonstrate that some brain regions have a crit-
ical contribution to BCA estimation, as their connectivity con-
tributed simultaneously for both structure and function (purple

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa098#supplementary-data
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Figure 3. Relationships between BCA and ChA and differences of ΔAGE in childhood and adolescence for the two groups ASD and TDC (childhood, age 5–12 years;
adolescence, age 12–18 years). (a) Group differences between BCA and ChA in childhood and adolescent ASD. Yellow represents ChA and red represents BCA. Error

bars indicate the range of values. (b) Similar to (a) but for TDC. (c) Correlation between BCA and ChA in the two regimes: childhood (gold) and adolescence (silver). (d)
Similar to (c), but for TDC. Gold represents childhood and silver represents adolescence. The diagonal dashed line represents the line BCA = ChA. (e) Group difference
of �AGE between ASD and TDC in childhood. Beige represents childhood ASD and gray represents childhood TDC. �AGE represents the difference of BCA from ChA
(i.e., �AGE = BCA − ChA) (left). Similar to the left (e), but for adolescence (right). ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 after two-sample t-tests.

in Supplementary Fig. S2). These areas included basal ganglia,
superior parietal gyrus, superior frontal gyrus, postcentral gyrus,
insula, cerebellum, and the limbic system. Our results suggest
that both SC and FC of these areas play an important role in the
autistic brains and highlight the critical role of SC and FC in the
pathophysiological mechanisms underlying ASD. In the current
study, white matter SC obtained from DTI data using the fiber
tracking strategy, critically contributed to the SVR performance
for BCA estimation. Additionally, many previous studies have
reported that white matter carries functional information and
highlights its neurobiological relevance in the brain, similar to
gray matter (Ji et al. 2017, 2019; Peer et al. 2017; Li et al. 2019).
Thus, future studies using white matter structure together with

its functional information are necessary to broaden our under-
standing of the neurobiological developmental underpinnings of
the autistic brain.

Trajectories of BCA in Childhood
and Adolescence in ASD

We found discrepancies of brain development deviating from
normal aging in childhood and adolescence in ASD concerning
SC and FC. Specifically, BCA was significantly higher than ChA in
childhood ASD, while BCA was significantly lower than ChA in
adolescent ASD. These findings are in agreement with previous
results of age-related changes in anatomical and functional
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Figure 4. Difference between BCA and ChA. Blue line, BCA and ChA are highly
correlated in TDC. Red regime: BCA was higher than ChA in childhood ASD.

Purple regime: BCA was lower than ChA in adolescent ASD. ys, years.

connectivity showing that children with ASD have increased
FA (Billeci et al. 2012) and, in contrast, adolescents with ASD
do have reduced FA (Keller et al. 2007). Additionally, Uddin
et al. (2013) showed increased FC in children with ASD and
reduced FC in older individuals. Moreover, overgrowth processes
(including an excessive number of axonal connections and pre-
mature myelination) among children with ASD and degenera-
tive processes (including loss of connections and neuron loss)
among adolescents with ASD is an established neurobiological
finding (Courchesne et al. 2004, 2007). These results showing
two regimes of brain maturation in ASD agree with our current
results and further suggest that such a transition might occur
at preadolescence. Recently, some studies have characterized
ASD as a disorder emerging at a critical period, reporting exces-
sive plasticity occurring at the wrong times, resulting from
noisy and unstable processing (Rubenstein and Merzenich 2003;
Uddin et al. 2013). Therefore, our results exhibiting aberrant BCA
might indicate higher levels of plasticity in childhood (excessive
plasticity) and the opposite in adolescence (delayed plasticity).
Early identification of BCA could potentially improve clinical
outcomes in ASD through early treatment or prophylaxis.

Limitations

Our findings should be interpreted in light of some limitations.
First, the sample size is relatively small due to the requirement
of multimodal data (fMRI and DTI) and age range (5–18 years).
Larger sample sizes are required to replicate and confirm our
results. Second, the healthy sample dataset of TDC in this study
was utilized to train the model and uncover age-related brain
connectivity providing useful information of normal aging pat-
terns, rather than an independent healthy sample dataset. We
were unable to obtain an independent dataset to train the model.
However, we performed a series of reproducibility analyses to

investigate the robustness of our findings, which could alleviate
the risk of overfitting in the current study. Future work should
aim to train models using completely independent datasets.
Moreover, following previous work (Lawrence et al. 2019), longi-
tudinal (rather than cross-sectional) studies are needed for the
validation of the aberrant developmental trajectories found in
ASD.

Conclusion
We found that BCA was significantly higher than ChA in child-
hood ASD, while BCA was significantly lower than ChA in ado-
lescent ASD. These results suggest that discrepancies between
BCA and ChA may be attributed to abnormal developmental
trajectories in ASD and demonstrate that, compared with TDCs,
ASD exhibits accelerated brain development in youth followed
by a delay after preadolescence. Furthermore, we suggest that
BCA from multimodal imaging data is a potentially useful
biomarker for understanding atypical neurodevelopmental
patterns in ASD.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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