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As the number of genomics datasets grows rapidly, sample mislabeling has become a high

stakes issue. We present CrosscheckFingerprints (Crosscheck), a tool for quantifying

sample-relatedness and detecting incorrectly paired sequencing datasets from different

donors. Crosscheck outperforms similar methods and is effective even when data are sparse

or from different assays. Application of Crosscheck to 8851 ENCODE ChIP-, RNA-, and

DNase-seq datasets enabled us to identify and correct dozens of mislabeled samples and

ambiguous metadata annotations, representing ~1% of ENCODE datasets.
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B iomedical research is rapidly embracing large-scale
analysis of next-generation sequencing (NGS) datasets,
often by integrating data generated by consortia or

many individual research labs. Parallelized NGS analysis
of tissues from many different patients is also commonplace

in clinical genomics pipelines. In these settings, sample or
data mislabeling, where datasets are incorrectly associated
with a donor, can lead to erroneous conclusions, misdirect
future research, and affect treatment decisions1–3 (Fig. 1a).
Verifying the relatedness of samples that nominally share a
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Fig. 1 Incorporating linkage information allows robust comparison of sequencing datasets. a Sample swaps and misannotations, where a sample is
incorrectly attributed to the wrong donor, are a high stakes issue for large consortium projects and clinical science. b Our method compares reads from two
datasets across a genome-wide set of linkage disequilibrium (LD) blocks (haplotype map). The single-nucleotide polymorphisms (SNPs) in each block are
highly correlated with each other and have low correlation with SNPs in other blocks. Reads overlapping any of the SNPs in a given block inform the
relatedness of the datasets, even when reads from the two datasets do not overlap one another. c Haplotype maps contain many large LD blocks. LD blocks
are created using common, ancestry independent SNPs from 1000 Genomes. Most SNPs lie within blocks of size >2, which boosts the chances of reads to
be informative. d Distribution of LOD (log-odds ratio) scores for 34,336 donor-mismatched (red) and 9767 donor-matched pairs (green) of public ChIP-,
RNA-, and DNase-seq datasets from the ENCODE project. e LD-based method can correctly determine sample relatedness even at low sequencing
coverage. Pairwise comparisons of reference dataset pairs at different subsampling percentages using two equally sized SNP panels—one panel contained
only independent single SNPs, while the other contained only LD blocks. Donor-mismatched dataset pairs are colored red while donor-matched dataset
pairs are green. f Comparison of NGSC and Crosscheck’s classification of 34,336 donor-mismatched and 9767 donor-matched dataset pairs. Performance
was measured in terms of the false flag rate (FFR), the fraction of donor-matched pairs incorrectly flagged as donor mismatches, and the false-match rate
(FMR), the fraction of donor-mismatched pairs incorrectly identified as donor matches. Comparisons are classified as same-assay if the two datasets are
from the same-assay type, and have the same target epitope in the case of ChIP-seq datasets. All other comparisons are classified as cross-assay.
(Elements of (a and b) have been modified from a CDC publication (https://commons.wikimedia.org/wiki/File:Access_to_Health_Care-CDC_Vital_Signs-
November_2010.pdf) which is under a CC BY-SA licence: https://creativecommons.org/licenses/by-sa/4.0/deed.en.)
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donor is therefore a crucial quality-control step in any NGS
pipeline.

Several methods utilize genetic information from NGS datasets
as an endogenous barcode to verify sample relatedness4–10. The
common logic behind these tools is that each genome harbors a
unique set of single-nucleotide polymorphisms (SNPs) that are
shared between datasets originating from the same donor. A
limitation of these methods is their requirement that sequencing
reads from both inputs overlap the exact genomic position of
informative SNPs. When insufficient reads satisfy this
condition—for example when the input datasets are shallow or
target different genomic regions (i.e different transcription fac-
tors), the power to evaluate sample relatedness is compromised.
Many NGS-based studies now integrate multiple types of
assays11–15 and utilize shallow sequencing to reduce cost at the
expense of read depth. This is commonly encountered in highly
multiplexed experiments, sequencing spike-ins, and large cohort
sequencing efforts in population and cancer genomics (i.e. 1000
Genomes, structural variant calling). We therefore set out to
develop a method for quantifying sample relatedness that was
both robust to shallow sequencing depth and that could be sys-
tematically applied to modern large-scale projects incorporating
multiple data types.

Linkage disequilibrium (LD) is the non-random association of
alleles at different loci within a given population16. This asso-
ciation implies that comparing datasets across SNPs in high LD—
termed LD blocks—would provide more statistical power to
compare datasets than using single SNPs alone. Because of LD,
two non-overlapping reads from different datasets may support
(or provide evidence against) a common genetic background, as
long as they overlap SNPs in the same LD block (Fig. 1b). For
each input dataset, Crosscheck uses reads overlapping SNPs
within each LD block to calculate a block allele fraction and
compute diploid genotype likelihoods, which are then compared
(Methods). The relative likelihood of a shared or distinct genetic
background at each block is reported as a log-odds ratio (LOD
score). These scores are combined across all blocks to report a
genome-wide LOD score. This calculation relies on two approx-
imations: that linkage between SNPs in an LD block is perfect and
that SNPs in distinct blocks are independent. A positive LOD
score indicates a higher likelihood that the two datasets share a
donor, while a negative LOD score suggests that the datasets are
from distinct donors. The Crosscheck calculation assumes that
the two datasets are a priori equally likely to be from the same
donor as they are from different ones. It is possible to incorporate
a different prior expectation for a mismatch by shifting the LOD
scores (Methods). Though the magnitude of the LOD score
reflects genotyping confidence, simplifying assumptions prevent
direct interpretation of the LOD score as a true likelihood ratio
(Methods). Crosscheck is implemented as part of Picard-Tools
(https://github.com/broadinstitute/picard), and is routinely used
for quality control by the Broad Institute’s Genomics Platform,
using a small set of LD blocks optimized for use with whole-
exome-sequencing data.

We reasoned that applying Crosscheck across a large, genome-
wide set of LD blocks (haplotype map) would allow us to com-
pare the genotype of diverse datasets and would be robust to low
coverage and sequencing errors. We constructed a map consisting
of nearly 60,000 common (minor allele frequency (MAF) ≥ 10%)
bi-allelic SNPs from the 1000 Genomes11 project, the majority of
which lie in LD blocks of two or more SNPs in order to maximize
the probability of informative read overlap (Fig. 1c, Methods).
SNPs within each block are highly correlated (r2 > 0.85), while
SNPs between blocks are approximately independent (r2 < 0.10).
Increasing or decreasing the thresholds for within-block and
between-blocks correlations by 0.05 had no effect on the method’s

performance on a testing dataset (described in the next para-
graph). Finally, in order to reduce bias from donor ancestry, we
required that LD blocks have similar allele frequencies across
different human sub-populations. The pipeline for creating hap-
lotype maps exists as a standalone tool (https://github.com/
naumanjaved/fingerprint_maps) and comes with pre-compiled
haplotype maps for both hg19 and GRCh38. The pipeline can be
customized to create LD blocks in specific genomic areas (i.e.
coding regions) and with different parameters (i.e. different intra
or inter-block r2).

In the rest of this manuscript we demonstrate that Crosscheck,
used with the haplotype map that we generated, can reliably
detect donor mislabeling with fewer errors than other existing
methods. It is particularly superior in challenging settings such as
low sequencing depth or when comparing datasets from diverse
data types. We demonstrate the suitability of Crosscheck for
large-scale production operation by applying it to 8851 datasets
from the ENCODE consortium, and discuss the misannotations
that this analysis uncovered.

Results
Benchmarking. To pilot our method, we calculated LOD scores
between donor-matched and donor-mismatched pairs of public
datasets from the ENCODE12 database, which hosts data from
thousands of diverse NGS experiments (Methods). Classification
performance was measured in terms of the false flag rate (FFR),
the fraction of donor-matched pairs incorrectly flagged as donor
mismatches, and the false-match rate (FMR), the fraction of
donor-mismatched pairs incorrectly identified as donor matches.
Our testing set comprised all pairwise comparisons between 281
RNA-, DNase-, and ChIP-seq (targeting histones, CTCF, or
POL2) datasets with verified donor annotations (Supplementary
Data 1), and all donor-mismatched comparisons between 101
ChIP-seq experiments targeting transcription factors and chro-
matin modifiers (Supplementary Data 2). This resulted in a final
testing set of 34,336 donor mismatches and 9767 donor matches.
Regardless of the input assay or enrichment target, Crosscheck
correctly classified almost all dataset pairs with 0% FMR and
0.01% FFR, and showed a clear separation between donor mis-
matches (negative LOD) and donor matches (positive LOD)
(Fig. 1d). Our method therefore confidently detects donor-
matched and donor-mismatched dataset pairs.

We next quantified how using LD blocks improves classifica-
tion performance. We generated two equally sized subsets of our
full haplotype map—one comprised solely of unlinked SNPs and
the other containing only LD blocks with two or more SNPs,
and used these to classify the same testing dataset pairs.
To simulate sparse datasets generated by spike-ins and multi-
plexed sequencing, we conducted each comparison at a range of
sequencing depths, expressed as the percentage of reads
subsampled from the original datasets (Methods, Supplementary
Fig. 1a). Using LD blocks significantly decreased FMR and FFR,
particularly at lower read depths and for cross-assay/target
comparisons (Fig. 1e, Supplementary Fig. 1b). For example, at
5% subsampling (≤~107 reads), using LD blocks decreased the
FMR and FFR by nearly 10% relative to using single SNPs for
cross-assay comparisons.

Comparison with other methods. As mentioned above, there are
other tools that quantify genetic sample relatedness. For com-
parison purposes, we considered only methods that could be
applied to the general use case that Crosscheck is designed to
address, namely comparing any two NGS datasets, and that can
be deployed at scale, so that calculating tens-to-hundreds of
thousands of comparisons is tractable. Two of the methods we
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examined, HYSIS6 and BAM-matcher7, did not satisfy these
criteria. Two other tools, Conpair8 and BAMixChecker9, pro-
vided inconclusive results for a high percentage of the testing-set
comparisons (Methods). NGSCheckmate10 (NGSC) is a model-
based method that compares datasets by correlating allele frac-
tions across a panel of reference SNPs, and was the only other
method that could be directly compared to Crosscheck on the
testing dataset. At high and intermediate read depths, both
methods show similar performance. At lower read depths (≤15%
subsampling), however, Crosscheck outperforms NGSC, as indi-
cated by a consistently lower FMR and FFR (Fig. 1f). Crosscheck
is particularly effective at classifying cross-assay dataset pairs,
where it shows a 2–3% lower FMR and FFR than NGSC at 5%
subsampling. In these use cases, Crosscheck performs better than
NGSC due to its use of LD and the large number of SNPs in the
haplotype map. Using LD blocks allows comparison of non-
overlapping reads, while using a large set of SNPs increases the
chance that input datasets will contain genetically informative
reads. An illustrative example is a specific comparison between
two ChIP-seq datasets, one targeting H3K27me3 and the other
H3K27ac. At 5% subsampling, these datasets cover 8% and
2% of the genome, respectively, and overlap at only 0.02%,
which is expected from these mutually exclusive histone mod-
ifications. Given this small set of potentially informative reads,
NGSCheckmate wrongly concludes that the datasets are derived
from the same donor, while Crosscheck is still able to make the
correct call (Supplementary Fig. 1e). We have also tested Cross-
check, NGSC, BAMixChecker, and Conpair on sample pairs from
seven donors that are genetically related. We found that Cross-
check can identify all pairs of samples from related individuals as
donor mismatches, and is superior in this context to the other
tools (Supplementary Fig. 2).

Finally, we used the distribution of LOD scores from
incorrectly classified pairs to define an inconclusive LOD score
range of −5 < LOD < 5, in which a dataset pair cannot be
confidently classified (Methods, Supplementary Fig. 1c). Outside
of this range, any pair with LOD ≥ 5 is denoted a donor match,
and those with LOD ≤−5 are flagged as donor mismatches. The
inconclusive range highlights the interpretability of Crosscheck’s
LOD score relative to NGSC’s binary outputs (match or
mismatch), since clear donor mismatches can be prioritized and
investigated separately from inconclusive comparisons. We
conclude that using Crosscheck with a full haplotype map
enables more accurate detection of donor-mismatched pairs in
diverse and shallow collections of data.

Crosscheck analysis of ENCODE data. To illustrate the utility of
our method on a consortium-scale dataset, we next analyzed the
remaining datasets in ENCODE. We used our method to verify
the donor annotation for all human hg19 aligned DNase-, RNA-,
and ChIP-seq datasets in the ENCODE database whose annotated
donor was represented by at least 4 datasets—a total of 8851
datasets (Fig. 2a, Supplementary Data 3). To scale our analysis to
a database of this size, we compared each dataset to a set of three
representative datasets from its annotated donor, and flagged any
dataset with LOD < 5 for further review (Methods). To exclude
the possibility that the representative set for each donor contained
a donor mismatch, we required that all pairwise comparisons
between representative datasets yield an LOD score ≥5. This
strategy scales linearly with the size of the database, and in our
case results in a 1000-fold reduction in computation relative to
performing all pairwise comparisons.

Our strategy confirmed the annotated donor for 97% of
datasets. The remaining 3% (256 datasets) were flagged as
potential donor mismatches (LOD ≤−5), and only ~0.1% yielded

inconclusive results (−5 < LOD < 5) (Fig. 2b). We next compared
each flagged mismatch to the representative datasets for each of
the ENCODE donors in order to nominate a true donor identity.
We also compared each flagged mismatch to all other flagged
mismatches in order to identify genetically consistent clusters and
uncover patterns of mislabeling.

This analysis uncovered three major categories of mislabeling
(as well as a small fraction, 0.4%, of datasets that exhibited a
pattern consistent with cross-sample contamination, as described
in Methods and Supplementary Fig. 3). The first is a straightfor-
ward error where cells from one donor are mistakenly labeled as
deriving from a different donor. The likelihood of such a mistake
increases when working with several cell lines that are each used
in a large number of experiments. For example, out of four
flagged datasets labeled as K562, two were shown to actually
derive from GM12878 cells while the other two derived from
HEK293 cells. This type of mislabeling may also occur for
primary cells or tissues when many biological samples from
multiple donors are obtained from the same source, as in the case
of 300 embryonic tissue samples processed by ENCODE from a
single lab.

The second class of mislabeling occurs when biological samples
of the same cell type from multiple donors are incorrectly labeled
as deriving from a single donor. This is the case with some of the
commercially available primary cell lines that have been deeply
interrogated by the consortium over more than a decade, and for
which cells have been procured multiple times. For example,
HUVEC cells are annotated as being derived from two different
donors in the ENCODE metadata. However, our analysis
indicates that HUVEC samples actually derive from at least five
distinct donors (Fig. 2c). This mis-annotation went undetected by
ENCODE’s previous quality control pipelines because all samples
were of the same cell type and so exhibited similar epigenetic
profiles.

The HUVEC example also highlights the third type of labeling
inaccuracy, in which a single donor is accessioned multiple times
by dozens of different labs over several years. This results in slight
variations in donor name or description, leading to genetically
identical samples being incorrectly attributed to distinct donors.
For example, some samples deriving from putative donor A are
attributed to HUVEC donor 1, while other samples from donor A
are attributed to the distinct HUVEC donor 2.

Overall, our analysis of the ENCODE dataset suggested that
substantive mislabeling error occurred at a rate of ~1%. For these
datasets, true donor identities were confirmed using ENCODE’s
extensive metadata records and all mislabeled datasets were
corrected (Methods).

In conclusion, we present a robust and easy-to-use method for
quantifying sample relatedness which outperforms similar
methods. Combined with our method for database analysis and
haplotype map, CrosscheckFingerprints can be readily applied for
detecting sample mislabeling in large, diverse databases without
any optimization. We suggest it as a critical component of any
NGS quality control pipeline.

Methods
LOD derivation. Here, a basic overview of the fingerprinting LOD score derivation
is provided. A more detailed derivation is available at the Picard repository at:
https://github.com/broadinstitute/picard/raw/master/docs/fingerprinting/main.pdf

Consider an LD block/locus containing a single bi-allelic SNP with major allele
A and minor allele B, and two sequencing datasets x and y. Let θ and φ denote the
diploid haplotype of datasets x and y, respectively, at this locus. θ and φ can each
take one of three possible haplotypes: AA, AB, or BB. Let s be a Bernoulli random
variable where s= 1 denotes a sample swap (indicating that x and y arose from two
independent individuals) with posterior probability p(s= 1 | x, y), and s= 0
denotes a shared genetic origin (the samples came from the same individual).
Using Bayes’ rule and the prior probability of no-swap, the posterior odds ratio of a
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no-swap vs. swap is given by

p s ¼ 0 j x; yð Þ
pðs ¼ 1 j x; yÞ ¼

p x; y j s ¼ 0ð Þ p s ¼ 0ð Þ
pðx; y j s ¼ 1Þ pðs ¼ 1Þ : ð1Þ

We assume that in the case of a swap, the distinct individuals are independently
sampled from the population and that samples from the same individual have the
same genotype, allowing us to write pðθ;φ j sÞ ¼ p θð Þp φð Þ for s= 1 and pðθ;φ j
sÞ ¼ p θð Þ if θ= φ. Given that x is conditionally independent of φ and y given θ,
and y is conditionally independent of θ given φ, we can also write
pðx; y j θ;φÞ ¼ pðx j θÞpðy j φÞ.

With these two expressions, we derive that

pðx; y j sÞ ¼P
θ;φ

pðx; y j θ;φ; sÞpðθ;φ j sÞ

¼

P
θ
p x j θð Þp θð ÞP

φ
pðy j φÞp φð Þ if s ¼ 1

P
θ¼φ

pðx j θÞpðy j φÞp θð Þ if s ¼ 0

8><
>:

: ð2Þ

Substituting the results of Eq. (2) into Eq. (1), we rewrite the posterior odds of
no-swap as

P
θ¼φ p x j θð Þp y j φð ÞpðθÞP

θ p x j θð ÞpðθÞPφ p y j φð ÞpðφÞ �
pðs ¼ 0Þ
pðs ¼ 1Þ : ð3Þ

Next, we consider evidence over multiple blocks i with correspondingly indexed
θi, φi, xi, and yi. We assume that the haplotypes at distinct blocks are independent,
and that reads at one block give no information about another. In practice, this
assumption is enforced by guaranteeing that a single read cannot be used to
provide genotype evidence at more than one locus. We calculate pðx j θÞ ¼Q

i pðxi j θiÞ and pðy j φÞ ¼Qi pðyi j φiÞ, and substitute into Eq. (3) to get

Y
i

P
θi¼φi

p xi j θið Þp yi j φi

� �
pðθiÞP

θi
p xi j θið ÞpðθiÞ

P
φi
p yi j φi

� �
pðφiÞ

 !
� pðs ¼ 0Þ
pðs ¼ 1Þ : ð4Þ

Finally, since the odds ratio of no-swap to swap may vary by several orders of
magnitude depending on the input files, we compute the base 10 logarithm in order
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Fig. 2 Overview of ENCODE database swap detection. a Overview of 8851 genotyped datasets from ENCODE, partitioned by cell type (top left), assay
type (top right), and by target for ChIP-seq (bottom). Cell types that had less than 100 datasets derived from them were pooled—so all the datasets from
them are grouped into those with less than 30 datasets or those with 30-100 datasets. All hg19 aligned reads from total RNA-, polyA RNA-, ChIP-, and
DNase-seq experiments performed on samples belonging to donors with at least four datasets in total were included in the analysis. All ChIP-seq targets,
including histone modifications (HM), transcription factors (TF), chromatin modifiers (CM), CTCF, and control experiments were included. b Distribution
of LOD scores from ENCODE genotyping. Each dataset was compared to three representative datasets from its nominal donor. Any dataset scoring
negatively against any of the three representatives was flagged for further review. A comparison resulting in an LOD score between −5 and 5 was deemed
inconclusive (insufficient evidence to indicate shared or distinct genetic origin). c Each flagged sample was compared to all other samples from its nominal
donor, as well as the representatives for all other donors in our database to nominate true donor identity and identify genetically consistent sub-clusters.
Comparisons of flagged samples between two HUVEC donors reveal five genetically distinct clusters.
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to facilitate comparison and interpretation:

LOD ¼ log oddssame individual
oddsdifferent individual

� �

¼P
i
log

P
θi¼φi

p xi jθið Þp yi jφið ÞpðθiÞP
θi
p xi jθið ÞpðθiÞ

P
φi
p yi jφið ÞpðφiÞ

� pðs¼0Þ
pðs¼1Þ

� �
:

ð5Þ

The program assumes a conservative prior of p s¼0ð Þ
pðs¼1Þ ¼ 1 by default. A different

prior would result in a shift of the LOD score by a constant, and users may adjust
the LOD score by such a constant as needed on a case-by-case basis. A positive
LOD (log-odds ratio) is interpreted as evidence for the two datasets x and y arising
from the same individual, while a negative LOD is evidence of a sample swap, i.e.,
the two datasets arose from different individuals. Scores close to zero are
inconclusive, and tend to result from low coverage, or poor overlap between the
two datasets, at the observed sites.

To see the expected maximal contribution of a single locus, we assume that the
likelihoods in (5) are vanishingly small when the data does not match the genotype.
Thus, the LOD for a single locus reduces to −log p(θ). The expected LOD
contribution needs to be marginalized over the different possible genotypes, leading
to a �Pθ p θð Þ log pðθÞ, which obtains a maximal value of 1.5 log10 2 ≈ 0.45 at an
allele frequency of 0.5 (leading to p θ ¼ AAð Þ ¼ 0:25; p θ ¼ ABð Þ ¼ 0:5, and
p θ ¼ BBð Þ ¼ 0:25). This means that when creating the haplotype map, it is most
informative to choose variants with an allele frequency close to 0.5.

There is no theoretical lower limit to the contribution of a single locus. This is
because, in theory, overwhelming evidence (hundreds of genetically consistent,
high-quality reads) of different genotypes for two datasets at even a single locus is
sufficient to rule out that the samples are derived from the same donor. However,
as noted below in the section on the limitations of LOD calculation, there are
multiple factors that this formulation does not account for. Our approach
ultimately relies on cumulative evidence, albeit noisy, from a large number of loci,
rather than looking for the small number of high-confidence cases. It is for this
reason that in the implementation of Eq. (5) in the code, we have included an
explicit lower cap on the possible contribution of any single LD block. The
selection of the specific value at which to cap the negative contribution was guided
by the following argument: We consider a single specific locus, and assume a

conservative prior, pðs¼0Þ
pðs¼1Þ ¼ 1. In addition, we assume that at that locus one dataset

is only compatible with a single genotype, namely p(y|θ) is nonzero for only one
value of θ. In this case the contribution to the likelihood ratio for that locus reduces
to

p x j θð Þp y j θð Þp θð ÞP
θi
p x j θið Þp θið Þ

� �
p y j θð Þp θð Þ

≳p x j θð Þ: ð6Þ

If both samples are in fact from the same donor, and the discrepancy between x
and θ is due to a sequencing error, 10−3 is a reasonable ballpark estimate of p
(x | θ)17. With this, the actual score calculated by Crosscheck is

LOD0 ¼
X
i

max log

P
θi¼φi

p xi j θið Þp yi j φi

� �
pðθiÞP

θi
p xi j θið ÞpðθiÞ

P
φi
p yi j φi

� �
pðφiÞ

� pðs ¼ 0Þ
pðs ¼ 1Þ

 !
; σ

 !
;

ð7Þ
where σ=−3 by default, and is a parameter that can be set by the user.

Calculation of data likelihoods p(x | θ) from sequencing reads. The program
assumes that sequencing data arrive in the form of reads from a single individual
(i.e. not contaminated), from a diploid location in the genome, and with no
reference bias. Only non-secondary, non-duplicate reads with mapping quality
greater than 20 are used to calculate likelihoods. In addition, bases must have a
quality score of at least 20 and must agree with either the reference or pre-
determined alternate base to support observations at haplotype blocks. Since the
algorithm assumes that read evidence is independent, the reads should have been
duplicate marked prior to fingerprinting. The algorithm does not use SNPs from
the same read-pair twice, since this would violate the assumption of independence.

Consider a dataset x for which we observe n total sequencing reads, denoted by
rk, at a locus containing a single bi-allelic SNP with major allele A and minor allele
B. The possible block haplotypes are then θ 2 AA;AB;BBf g. For each read rk
which overlaps the SNP, let ok 2 A;Bf g denote the observed SNP allele and let
ek 2 0; 1ð Þ denote the probability of error of each observation (the quality score).
We seek to compute the likelihood of the data (the sequencing reads rk) given the
haplotypes. The likelihood of a single base observation pðoi; ei j θÞ is expressed by

pðok; ek j θÞ ¼
IB okð Þek þ IA okð Þð1� ekÞ θ ¼ AA

0:5 θ ¼ AB

IA okð Þek þ IB okð Þ 1� ekð Þ θ ¼ BB;

8><
>: ð8Þ

where I is an indicator function such that IA oð Þ ¼ 1 if o ¼ A
0 if o ¼ B

�
and IB oð Þ ¼

1 if o ¼ B
0 if o ¼ A

�
and the assumption is that an error will cause a switch in the observed

allele from A to B.

The likelihood model for all reads r can then be written as

pðr j θÞ ¼ pðo; e j θÞ ¼
Yn
k¼0

pðok; ek j θÞ: ð9Þ

Incorporation of linkage information. The calculations above assume an LD block
containing a single SNP for ease of computation, but the framework is easily
extended to account for LD blocks containing multiple SNPs, which increases
power of comparison. Each LD block used for genotyping contains an “anchor”
SNP which is in high linkage with all other SNPs within the block, and indepen-
dent of all other anchor SNPs in other blocks. Given that all SNPs in a block are
tightly linked (enforced with a strict r2 correlation cutoff), we make the simplifying
assumption that the genotype at any SNP within an LD block is perfectly correlated
with the genotype of the anchor SNP, and that all SNPs within a block have the
same allele frequency, equal to that of the anchor SNP. Then, reads overlapping any
SNP within a block can be used to infer a total block haplotype, which is repre-
sented by the possible diploid genotypes of the anchor SNP. For example, consider
an anchor SNPs S1 with major allele A and minor allele B, and a linked SNP S2 with
major allele C and minor allele D. Then any observation of allele C at SNP S2 is
taken as evidence of allele A at S1, and any observations of allele D at S2 is taken as
evidence of allele B at S2. Using this strategy, evidence across all SNPs within a
block can be used to infer a total block haplotype, which can be represented by the
three possible diploid genotypes of the anchor SNP. That is, for an anchor SNP
with major allele A and minor allele B, the possible block haplotypes are AA, AB,
and BB, with prior probabilities dependent on the allele frequencies of A and B.

Limitations of LOD calculation. Though the magnitude of the LOD score reflects
greater genotyping confidence, it cannot be directly interpreted as a likelihood ratio
(e.g. an LOD of 200 does not correspond to a 10200 probability of a shared vs.
different genetic origin), as the model does not fully account for sequencing noise,
data quality, contamination, and relatedness. In addition, we did not model the
incomplete dependence between haplotype blocks, nor the incomplete dependence
of SNPs within blocks.

Our framework also assumes that the only two sources of a base are the
observed allele or a sequencing error. This assumption can lead to incorrect results
in the cases where a sample has particularly noisy data due to pre-sequencing
events (such as PCR or FFPE processing), non-conforming LD blocks, or high
contamination. These samples could be genotyped as heterozygous due to the noisy
region or the non-confirming LD block structure. Including these error modes into
the model would increase robustness and accuracy.

Implementation details. Crosscheck is implemented as part of the Picard-Tools
suite, a set of Java command line tools for manipulating high-throughput
sequencing data. It accepts VCF/BAM/SAM formatted inputs and can perform
comparisons at the level of samples, libraries, read-groups, or files. Crosscheck is
provided alongside a utility called ExtractFingerprints which for an input bam,
outputs a VCF containing the genotypes and genotype likelihoods across all LD
blocks within the supplied haplotype map. This VCF can be used to store fin-
gerprints for downstream analyses or for use with Crosscheck. More information is
available at https://github.com/broadinstitute/picard.

Runtime and memory requirements. For BAM mode, running Crosscheck
requires approximately 2.5 gb RAM for a single input pair of BAMs. Runtime is
dependent on the size of the input file. Based on our benchmarking experiments,
runtimes are <10 min for DNAse-seq, <30 s for ChIP-seq, and are on average about
2 h for RNA-seq datasets. For VCF mode, Crosscheck requires approximately
2.5 gb of ram for a single pair of inputs, with runtimes <30 s using the standard
hg19 haplotype map. CrosscheckFingerprints is multi-threading enabled in order
to speed up comparisons and fingerprint generation when multiple input pairs are
provided. All comparisons were conducted on Intel(R) Xeon(R) CPU E5-2680 v2
@ 2.80 GHz processors.

Map construction overview. Maps are constructed from 1000 Genomes11 phase 3
(1000GP3) SNPs which are bi-allelic, phased, and have an MAF ≥10%. This MAF
threshold is introduced since the expected maximal LOD contribution is obtained
at an allele frequency of 0.50 (intuitively, rare variants are unlikely to be present in
either of two samples being compared from different individuals). Additionally,
SNPs must not differ in their MAF by more than 10% between the five ancestral
sub-populations (AFR, SAS, EAS, EUR, AMR) present in 1000GP3. This is to
correct for potential sub-population bias due to differing linkage and MAF fre-
quency of SNPs across different populations. Using PLINK2 (ref. 18), we pruned
SNPs meeting these criteria in order to create an independent set of “anchor” SNPs,
between which no pairwise r2 correlation exceeded a threshold of 0.10. A window
size of 10 kilobases (kb) and a slide of 5 SNPs were used for pruning. By creating
this set of independent SNPs, we ensure that individual haplotype blocks are
independent from each other. Next, we greedily added SNPs to the blocks repre-
sented by the anchor SNPs. Adding was done in order of LDScore19 of the anchor
SNPs, with the highest LDScoring anchor SNP first (LDScore is the sum for the r2
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correlations of each SNP with all other SNPs within a 1 cM window on either side).
Recombination maps containing mappings between genomic coordinates and
recombination rates for both the hg19 and GRCh38 assemblies were obtained
from http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/ and
http://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3/. We only added SNPs if
their correlation with the anchor SNP has r2 ≥ 0.85 and they were located within a
genomic window of 10,000 kb. In this way, we prioritize the creation of larger,
more genetically informative blocks that span several kb regions. The haplotype
maps used for the ENCODE database analysis and benchmarking, along with the
python code used to generate them, are available at: https://github.com/
naumanjaved/fingerprint_maps.

Constructing maps only containing LD blocks or single SNPs. The map con-
taining only single SNP blocks was constructed by aggregating all SNPs in the full
haplotype map not in strong linkage (r2 ≥ 0.85) to other SNPs, resulting in 20,792
SNPs. To construct the map containing only blocks with size ≥2 used to quantify
the benefits of accounting for linkage, we subsampled the full haplotype map.
Starting with the largest blocks by number of SNPs, blocks were successively added
to this map until the total number of SNPs approximately reached the number of
SNPs in the map containing only independent SNPs (20,801).

Testing-set construction. 281 ChIP-seq, RNA-seq, and DNase-seq datasets with
ground-truth annotation: To create a testing set of files to evaluate our method’s
performance and benchmark it against other tools, we downloaded 281 hg19 bams
from RNA-seq, DNase-seq, and ChIP-seq (targeting histone modifications, CTCF,
or POL2) from the ENCODE Tissue Expression (ENTEX) project. The ENTEX
project contains datasets from experiments on samples derived from four different
tissue donors, each of which has whole-genome sequencing (WGS) data available.
The WGS data for each donor can be used to verify the nominal donor of each
dataset comprising the testing set. For each dataset, the corresponding hg38
alignments were compared to the hg38 WGS alignments for its nominal donor.
Only datasets that yielded a positive LOD score >5 using CrosscheckFingerprints
(with the full hg38 version of haplotype map) and a “match” result from
NGSCheckMate were included in the testing set. The final testing set of files and
accompanying metadata are included in Supplementary Data 1.

101 transcription factor and chromatin modifier (CM) ChIP-seq datasets without
ground-truth annotation: To test Crosscheck and other methods on transcription
factor and chromatin modifier datasets, we downloaded 101hg19 ChIP-seq datasets
from the ENCODE project. For these datasets, there was no ground-truth donor
sequencing data available for the nominal donor as there was for the ENTEX datasets.
In this case, the false-mismatch rate (incorrect genotyping call for a donor-matched
pair) cannot be assessed, since there is a non-negligible probability that one of the two
datasets with the same nominal donor annotation is incorrectly annotated. However,
the FMR can still be assessed, since we estimate that the probability that two datasets
with different donor annotations may actually share the same true donor is very low.
Therefore, we only characterized the ability of NGSCheckmate and
Crosscheckfingerprints to accurately classify donor-unmatched pairs for this testing
set. In the context of detecting sample swaps, this performance measure is also more
relevant than the accurate detection of donor-matched datasets. All datasets and
accompanying metadata are available in Supplementary Data 2.

BAM pre-processing and downsampling for benchmarking experiments.
Datasets were sorted using Samtools20 and processed using Picard’s MarkDupli-
cates tool with default settings to remove duplicates. We noted that collapsing
duplicates was especially important for RNA-seq datasets since PCR bias can alter
allele fractions and lead to incorrect sample classification. Downsampling was
conducted on the duplicate marked, sorted files using the command samtools view
–s seed.F with a seed value of 5.

Benchmarking with NGSC and Crosscheck. To speed up analysis of a large
number of bams with NGSCheckmate, we followed the author recommendations10

and created VCFs for each input file using the default provided SNP panel from the
NGSCheckMate github and the command samtools mpileup-I -uf hg19.fasta -l
SNP_GRCh37_hg19_woChr.bed sample.bam | bcftools call -c - >./sample.vcf. NGSC
was then run in batch mode using default settings with the hg19 reference SNP
panel. For Crosscheck, we first used Picard’s ExtractFingerprint utility with default
settings and the standard hg19 haplotype map to pre-compute VCFs for each input
bam. Comparisons were then conducted using Crosscheck’s batch mode with
default settings and the standard hg19 map.

Evaluation of other methods that assess genetic similarity between samples.
We considered the following methods:

● HYSIS is intended for tumor-normal concordance verification with a priori
knowledge of homozygous germline mutations in the normal tissue6. Without
considerable modifications, HYSIS is therefore not suitable to handle the
general use case that Crosscheck is intended for.

● Bam-matcher is a tool intended for verifying genotype concordance for whole-
genome sequencing, whole-exome sequencing, and RNA-sequencing data7.

Bam-matcher calls programs such as GATK21 to call variants for each input
BAM. Though the resulting variants can be cached to speed up future
comparisons, we did not find a way to easily call and store variants for each
input bam in the testing set, and without that, performing the hundreds of
thousands of benchmarking comparisons becomes unfeasible.

● We did apply the tools Conpair and BAMixChecker to the testing set. Conpair
was run with default settings using the standard hg19 SNP panel and the
–min-cov parameter set to 1. Pileups were pre-generated using GATK 4.1.7.0
with the recommended settings8. BAMixChecker was run with standard
settings for hg19 (ref. 9) and using GATK 4.1.6.0 for variant calling. Conpair
outputs a genotype concordance percentage, which should be <50% for
different donor and above 80% for same donor datasets. Any genotype
concordance between 50 and 80% is considered inconclusive. BAMixChecker
outputs a concordance score between 0 and 1 with no explicit inconclusive
range. However, we found that BAMixChecker outputs a concordance score of
exactly 0 when there is no overlap between the SNP reference panel that the
program uses and the input dataset. Therefore, we labeled any result from
BAMixChecker with a concordance score of 0 as an inconclusive genotype call.
We found that both methods were unable to yield a conclusive result for more
than 25% of the comparisons even when the full datasets are considered, and
the inconclusive rates became even higher at the lower subsampling rates
(Supplementary Fig. 1d). We reasoned that this was likely due to poor overlap
between the input datasets and the predefined reference panel of SNPs that
both methods use.

Familial dataset acquisition and processing. Paired fastqs for RNA-seq data
from CEPH/Utah Pedigree 1463 were downloaded from the Gene Expression
Omnibus22 (accession GSE56961). Datasets for the following accessions were
downloaded: SRR8505344, SRR8505340, SRR8505343, SRR1258219, SRR1258220,
SRR1258218, and SRR8505347. Fastqs were aligned to the GRCh38 reference using
STAR23 2.6.0c with default parameters. Before analysis, bams were sorted using
samtools and duplicate marked/collapsed using Picard’s MarkDuplicates. All
comparisons were conducted using the default settings and SNP panels for the
GRCh38 assembly for each method.

ENCODE data acquisition. ENCODE metadata was downloaded from
https://www.encodeproject.org/. Metadata were filtered to yield accessions for hg19
ChIP-, RNA-, and DNase-seq ENCODE bams from donors with at least four
datasets. These bams were downloaded from a Broad google bucket and processed
(see below) with a custom Workflow Description Language24 script. All dataset
accessions and associated metadata are available in Supplementary Data 3.

ENCODE data processing. Files were first sorted using samtools sort, and filtered
using BEDTools25 in order to only keep reads overlapping SNPs in the haplotype
map. This facilitated efficient storage of files, resulting in approximate 10-fold
reduction in file size. Finally, duplicates were marked and removed for each file
using Picard’s MarkDuplicates function with default settings. All comparisons were
conducted using the version of CrosscheckFingerprints available in commit
#078b0ba of Picard.

ENCODE genotyping strategy. To detect mislabeled samples, each dataset is
compared against a reference set of three samples that provide a high-quality
representation of the “true” genotype for each ENCODE tissue donor. To construct
this reference set of samples, a self-LOD score is calculated for each sample by
“comparing” each file to itself. This score correlates with the dataset’s overlap with
the haplotype map, and the highest self-LOD samples are those containing the
most genetic information relevant for genotyping. To ensure that the reference set
of samples for each tissue donor does not contain any swapped samples, all
reference samples are compared against one another to ensure self-consistency,
which is defined as an LOD score greater than 5 for all three pairwise comparisons
between the three samples. In the case of one swapped sample in this reference set,
two negative LOD scores and one positive LOD score will be obtained. In this case,
the next highest self-LOD scoring bam replaces the putative swap, and repre-
sentative concordance is re-assessed. This is repeated until a concordant set is
found. More complex patterns of swaps in the representative set are assessed on a
case-by-case basis. Finally, all reference samples across all nominal donors are
compared against one another in order to identify larger cross-donor swaps and
preclude the possibility that all reference samples for a nominal donor are actually
swaps from the same true donor.

Each sample not in the reference set is compared against the top three
representative samples for its nominal donor. Samples yielding an LOD ≤−5
against any of the top three representatives are flagged as swaps for review, while
those yielding an LOD score between −5 and 5 are flagged as inconclusively
genotyped.

Contamination tests. Varying numbers of randomly sampled reads from two
unrelated ENCODE ChIP-seq datasets, ENCFF005HON ENCFF007DFB, were
mixed together to create simulated contaminated datasets. Each mixed sample
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consisted of ~5 million reads and contained varying proportions of the original
datasets (at intervals of 10%). Mixed samples were then compared to
ENCFF007NTA and ENCFF029GAR, which are ChIP-seq datasets from the same
donor as ENCFF005HON. Comparisons were conducted on VCF files generated
using Picard’s ExtractFingerprint utility using Crosscheck’s VCF mode with default
settings.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used for benchmarking and ENCODE analysis are available online at https://
encodedcc.org/. Specific accessions and relevant metadata for each of the benchmarking
experiments are available in Supplementary Data 1 and 2. Accession IDs and metadata
for all datasets from ENCODE analysis are available in Supplementary Data 3. Haplotype
maps used for benchmarking and ENCODE analysis are available at https://github.com/
naumanjaved/fingerprint_maps. RNA-seq data from CEPH/Utah Pedigree 1463 were
downloaded from the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/)
from series GSE56961, using accession IDs: SRR8505344, SRR8505340, SRR8505343,
SRR1258219, SRR1258220, SRR1258218, and SRR8505347. 1000 Genome Phase 3 VCFs
for hg19 and GRCh38 liftovers were obtained from ftp://ftp-trace.ncbi.nih.gov/
1000genomes/ftp. Recombination maps for hg19 and GRCh38 liftovers were obtained
from http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/.

Code availability
Crosscheck code and documentation is available at https://github.com/broadinstitute/
picard. Fingerprint map generation code along with pre-compiled maps and
documentation are available at https://github.com/naumanjaved/fingerprint_maps.
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