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Nanoparticle size distribution 
from inversion of wide angle X‑ray 
total scattering data
Fabio Ferri1*, Federica Bertolotti1, Antonietta Guagliardi2 & Norberto Masciocchi1

An increasingly important issue in nanoscience and nanotechnology is the accurate determination of 
nanoparticle sizing. Wide angle X-ray total scattering (WAXTS) data are frequently used to retrieve 
the Particle Size Distributions (PSDs) of nanocrystals of highly technological relevance; however, 
the PSD shape typically relies on an a-priori assumption. Here, we propose a modified version of the 
classical iterative Lucy-Richardson (LR) algorithm, which is simple, fast and highly reliable against 
noise, and demonstrate that the inversion of WAXTS data can be profitably used for recovering 
accurate PSD regardless of its shape. Computer simulations based on the use of the Debye Scattering 
Equation (DSE) modelling WAXTS data show that the algorithm is capable of recovering accurate 
PSDs even when the sample is made of a mixture of different polymorphs and/or exhibits microstrain 
effects. When applied to the inversion of WAXTS data taken on real samples, the method requires 
accurate modelling of the nanoparticle crystal structure, which includes structural defects, microstrain 
and surface induced distortions. Provided that this information is correctly fed to the program, the 
inversion algorithm reconstructs the WAXTS data with high accuracy and recovers highly robust 
(against noise) PSDs. Two examples reporting the characterization of Magnetite-Maghemite and 
commercial P25-Titania nanopowders, are discussed. We demonstrate that pre-assumption of wrong 
PSD shape leads to inaccurate number-based average sizes in highly polydisperse samples.

Nanoparticle sizing and nanoparticle structural characterization have become, over the last decades, topics of 
increasing interest due to their intimate relationship to nanoscience and nanotechnology1–6. Nanoparticles or 
NanoCrystals (NCs) usually exhibit a crystalline or a partially ordered atomic arrangement, with local structural 
distortions, defects, and remarkable surface effects (due to their large surface area to volume ratio) that can be 
tailored by proper functionalization. All these structural features, together with the NCs morphology and size, 
determine their physical–chemical properties and, ultimately, their functionality7,8. In particular, the detailed 
knowledge of the Particle Size Distribution (PSD) and Particle Size and Shape Distribution (PSSD) becomes an 
issue of extreme relevance when developing materials with advanced functionalities. This is for example the case 
of electroluminescent perovskites9, heterogeneous catalysts10, nanomaterials for optoelectronics11, photovoltaics12, 
drug delivery13, or in industrially relevant processes, such as filtration14, coating15, dyes and inks16, cosmetics17 
and active pharmaceutical ingredients formulation18.

Among the experimental techniques that deal with nanoparticle sizing, imaging and scattering optical meth-
ods are among the most popular ones. Imaging methods, such as confocal optical19 or transmission electron20 
microscopy, work by analyzing individually each single particle and therefore provide a direct measurement of 
the PSD and PSSD, but suffer from very poor statistics21 (unless the measurements are repeated many times). 
Conversely, when the measurements are carried out in the reciprocal space as it occurs with scattering methods, 
such as Static Light Scattering (SLS), Dynamic Light Scattering (DLS), Small Angle X-ray Scattering (SAXS) and 
Wide Angle X-ray Scattering (WAXS), the statistics is very high because a very large number of particles are 
examined at the same time. Depending on the length scales being probed, these techniques provide different (and 
complementary) information on the nanoparticles. For example, SLS, DLS and SAXS give useful information on 
the PSD and PSSD in the micro- to nano-range sizes, but they are totally blind to the nanoparticle structure such 
as atomic arrangement and crystal defectiveness. The latter ones can be investigated by using WAXS techniques 
and in particular the classical method called X-ray Powder Diffraction (XRPD) that works by analyzing Bragg 
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peak positions, widths and integrated intensities. XRPD typically gives information on composition, average 
crystal structure and (via Scherrer’s equation) average crystal size of the (defect-free) nanoparticles, but no 
information about PSD and PSSD is normally provided. All the methods (including X-ray absorption, photolu-
minescence, NMR, mass spectrometry, and others) used for the characterization of NCs in terms of composition, 
structure, PSD and PSSD are presented in Ref.22,23.

Recently, with the advent of the methods called Wide Angle X-ray Total Scattering (WAXTS), the possibil-
ity of simultaneously characterizing the nanoparticle structure and PSSD has become at hand within a single 
technique24,25. The methods work by measuring the total X-ray pattern scattered by the sample at wide angles and, 
by exploiting information coming not only from peak positions and integrated intensities (as done in standard 
XRPD) but also from diffuse scattering and sample-dependent peak width and shape, particle composition, 
structure, defects, morphology and size distribution can be recovered26–31.

The analysis of WAXTS data can be carried out either in the direct space by Fourier transforming the Inten-
sity profile and recovering the Pair Distribution Function (PDF) of the sample32,33, or in the reciprocal space 
by directly analyzing the experimental scattering data, which are described by the Debye-Scattering Equation 
(DSE)24,34. In both cases, the analysis relies on atomic scale models of NCs and, generally, on the pre-assumption 
of a (discrete) analytical function describing the sample PSD. In this article, we will focus on the DSE method 
(named as WAXTS-DSE) and demonstrate that PSD can be recovered from experimental data without any a 
priori assumption by using a modified version of the well-known Lucy35-Richardson36 algorithm, which has 
never been used before for this kind of data analysis.

Theoretical background.  The Debye Scattering Equation (DSE)34 provides the intensity scattered by ran-
domly oriented monodisperse (i.e. equal size) nanoparticles composed by N atoms whose interatomic distances 
between atomic pairs are known:

where Q = (4π/�) sin(θ) is the magnitude of the scattering vector, θ is half of the scattering angle, λ is the radia-
tion wavelength, fi is the X-ray atomic form factor of element i, dij is the interatomic distance between atoms i 
and j, T and o are the (isotropic) Debye–Waller thermal displacement parameter and the site occupancy factor 
associated to each atomic species, respectively. The first term of Eq. (1) is given by the sum of the intensities 
scattered from all the atoms composing the nanoparticle, whereas the second term accounts for the interference 
between the waves scattered by all the atoms within the NP.

When the sample is polydisperse and/or polyphasic, Eq. (1) must be summed over nanoparticles of different 
sizes and/or phases. This task can be overwhelming in terms of computational times because the number of terms 
appearing in the interference sums of Eq. (1) scales as the square of the number of atoms, which, in turn, grows 
very rapidly with particle size ( ∼ d3 for spherical particles). A way out to cope with this problem is using a suit-
able algorithm that, relying on a highly reduced number (by orders of magnitudes37) of interatomic distances, 
can compute Eq. (1) with acceptable computational times, without lacking any accuracy38. Such algorithm is 
implemented in the recently published DEBUSSY suite of programs39. Practically, the WAXTS-DSE study is 
performed by creating, in a preliminary and independent step, a database of Gaussian sampled interatomic 
distances for each phase from which the scattering profiles of a set of nanoparticles of different sizes and phases 
are calculated. Specific tests38 have demonstrated that the agreement between DSE simulations calculated using 
Gaussian sampled and true interatomic distances, results in relative errors at the 10–6 level, (or even smaller, 
depending on the sampling step, however at expenses of the computational time) well below the noise level of 
the experimental data. Based on this consideration, we can safely state that using sampled distances does not 
affect the accuracy of the inversion algorithm later discussed. In the following, we will always use the sampled 
distances whenever implementing Eq. (1).

Once the scattering profile of each nanoparticle is available, the WAXTS-DSE method works by fitting the 
data on the assumption that the (number) PSD of each phase is described by a LogNormal distribution, in 
which the first two momenta (average and variance) and the relative weight fraction are retrieved by standard 
χ2 minimization. Therefore, the WAXTS-DSE method pivots on a strong assumption, namely the shape of the 
PSD, which if not appropriate, may affect significantly the results. Two examples of the errors introduced by this 
assumption when the distribution shape is fairly different from that of a LogNormal, are reported and discussed 
in the Supplementary Information 1 (SI) file, section 6.

The request of a pre-assumed PDS shape could be removed if, instead of fitting, one would invert the data. 
In this article, we propose the inversion of WAXTS-DSE data that characterizes a sample made of collection(s) 
of nanocrystals of different sizes and shapes, for a single material or a mixture of phases. Although the differ-
ent common morphologies might be described by size distributions that require more than one size parameter 
(for example, length and diameter for cylinders or three sides for prismatic platelets), in this work we consider 
only monovariate distributions as a proof of concept. For a monovariate distribution, the nanoparticle size is 
pin-pointed by a single size parameter, namely the diameter of the equivalent sphere with a volume equal to the 
particle volume. Thus, when the sample is composed by P different phases and each phase is made of Mp nano-
particles of different diameters, the intensity scattered at a given wavevector Qi can be written as

(1)I(Q) =

N
∑

i

f 2i (Q)o
2
i + 2

N
∑

i,j>i

fj(Q)fi(Q)Tj(Q)Ti(Q)ojoi
sin(Qdij)

Qdij
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where Np

(

dp,j
)

 is the Number diameter distribution of the p-th phase and Ip
(

Qi , dp,j
)

 is the intensity scattered 
at Qi by a nanoparticle of size dp,j belonging to the p-th phase. In Eq. (2) we have also added the term αI0(Qi) 
which is a background contribution associated either to an amorphous component present in the sample or, as 
in the case of colloidal nanoparticles, is due to the solvent. Note that, since the shape of I0(Qi) is supposed to be 
known whereas the weight factor α is not, the last term of Eq. (2) can be formally interpreted as the contribution 
of an equivalent extra phase made of single sized particles.

When the measurements are taken at N different wavevectors Qi ( i = 1, 2 . . .N ), Eq. (2) represents a set of N 
algebraic linear equations in which I(Qi) are the known terms provided by the experiment and 

{

Np

(

dp,j
)}

and α 
are the M =

∑P
p=1Mp + 1 unknowns. Thus, Eq. (2) can be compactly rewritten as

where Nk ( k = 1, 2, . . . ,M ) are the overall concatenated unknowns (all sizes of all phases) plus the amplitude α of 
the background term, whereas Ai,k is a N ×M matrix built by merging together, column by column, the matrices 
Ip
(

Qi , dp,j
)

 and the profile I0(Qi) . Equation (3) is a typical example of an ill-conditioned problem, meaning that, 
in the presence of even a very small (but unavoidable) level of noise on I(Qi) , quite different distributions can 
reconstruct the data to the same level of statistical accuracy. As a consequence, the solution of Eq. (3) is not a 
trivial task and a suitable inversion algorithm has to be adopted. The algorithm used in this work is described 
in the next paragraph.

Inversion algorithm.  The inversion of WAXTS-DSE data is herein carried out by using a modified ver-
sion of the Lucy-Richardson (LR) algorithm, which was proposed long time ago by Lucy35 and Richardson36 in 
the field of image restoration. The LR method is based on a simple iterative nonlinear algorithm that ensures 
non-negativity of the solutions, is rather robust (but not immune) against noise and, provided that the iterative 
procedure is stopped after a properly chosen number of steps, does not require any parameter to be optimized40. 
The LR algorithm appears to be quite suitable for dealing with the inversion of WAXTS-DSE data because: (i) 
the data to be inverted are usually taken at high Q-resolution, over a large Q-range40; (ii) the noise on the data 
is expected to be described by a Poisson statistics41, with a high signal-to-noise ratio (SNR); (iii), the kernels 
Ip
(

Qi , dp,j
)

 associated to Eq. (1) are highly structured40 with the presence of a large number of relatively narrow 
and differently shaped peaks. These three features make the inversion of Eq. (3) not a severely ill-posed problem 
because, as long as the SNR on the data is high enough that the Intensity profiles of two adjacent size classes 
are significantly different, the inversion algorithm can work properly without introducing artefacts. A detailed 
analysis on the ill-posedness of the WAXTS-DSE data inversion problem is reported in Supplementary Informa-
tion 1, section 11.

The implementation of the modified LR algorithm to the inversion of the WAXTS-DSE data described by 
Eq. (3) works as follows. Let us suppose that Nr

k is the concatenated size distribution recovered after r iterations. 
Thus, at the (r + 1) step the distribution is corrected as

where Im(Qi) is the measured scattering profile, Ir(Qi) is the profile reconstructed after r iterations by insert-
ing Nr

k into Eq. (3) and �ωp are phase-dependent 3-points triangular operators that perform a smoothing of 
Nr
k before passing to the next iteration. The amplitude of the lateral points in the �ωp operators are set by the 

parameters ωp , whose typical values are between ∼ 10−1−10−7 , depending on distribution width and SNR (see 
Supplementary Information 1, section 1). The introduction of the smoothing procedure is the novelty of our 
algorithm with respect to the original LR algorithm; the latter one suffers from some instabilities against noise42, 
which produce recovered distributions with an unphysical spiky appearance (See Supplementary Information 
1, section 1). The iterative smoothing procedure acts as a regularization scheme42 capable of removing such a 
spurious and unphysical feature. Details on the optimization of the smoothing parameters ωp and a comparison 
with the original LR algorithm are discussed in Supplementary Information 1, section 1.

Notice that in Eq. (4) the population of each class is corrected (except for the smoothing operation) inde-
pendently of the populations of all the other classes and the correction is based only on the (weighted) ratios 
Im(Qi)/I

r(Qi) between the measured and reconstructed data. These two features make the algorithm very simple 
and fast. The iterative procedure is initiated by starting from a flat distribution ( N0

k = 1 for any k ) and is stopped 
at r = r∗ when the goodness of fit (GOF) parameter defined as

(2)I(Qi) =

P
∑

p=1

Mp
∑

j=1

Np

(

dp,j
)

Ip
(

Qi , dp,j
)

+ αI0(Qi)

(3)I(Qi) =

M
∑

k=1

Ai,kNk

(4)
Nr+1
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{

Nr
k

N
∑
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Im(Qi)

Ir(Qi)

}
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where σi are the experimental error bars, attains a minimum or becomes stationary. Details on the stopping 
criteria are reported in Supplementary Information 1, section 2.

Figure 1 provides a schematic summary of all the steps followed in a typical data analysis. First, the atomistic 
models of the various crystal phases are built, resulting in the encoding of all the interatomic distances, diam-
eters dp,j and masses mp,j of each nanocrystal (step 1); then, by using the DEBUSSY suite, the intensity profiles 
Ip
(

Qi , dp,j
)

 of all the nanocrystals are computed (step 2) and the inversion matrix Ai,k is assembled by merging 
together (column by column) all the matrices Ip

(

Qi , dp,j
)

 plus the background profile I0(Qi) (step 3); similarly, 
all the unknowns Np

(

dp,j
)

 plus the amplitude α of the background profile are concatenated together in a single 
1D-unknown array Nk (step 4); at this point (step 5) the iterative inversion procedure is run and Nr

k is cor-
rected by comparing the measured data Im(Qi)(red line) with the reconstructed ones Ir(Qi) (blue line). When 
convergence is attained, the final (concatenated) solution Nr∗

k  is found; finally (step 6), the number diameter 
distributions of each phase Np

(

dp,j
)

 are recovered by parsing the solution Nr∗
k  . Mass distributions are computed 

as Mp

(

dp,j
)

= Np

(

dp,j
)

mp,j .

Numerical simulations.  The proper functioning, efficiency and accuracy of the inversion algorithm 
applied to WAXTS-DSE were tested by using in-silico simulations. For each simulation, we built the atomistic 
models of various nanocrystal phases, generated a plausible background profile and computed the matrix Ai,k . 
Then, according to a set of pre-defined “input” distributions Np

(

dp,j
)

 and corresponding concatenated input 
array Ninp

k  , the ideal (noiseless) scattering profile I(Qi) was computed by using Eq. (3). Such data were passed 
through a Poisson filter so to produce realistic noisy “input” data to be inverted by means of Eq. (4). The inver-
sion was carried out by using the same kernel functions used for generating the noiseless scattering profile I(Qi). 
At the end of the inversion procedure, the final recovered data and distributions are compared with the input 
ones.

Mixture of polymorphic TiO2 NCs.  Figure 2 shows an example of this kind of simulations in which a TiO2 sam-
ple is composed by a mixture of nanocrystals of the three common polymorphs anatase, rutile, and brookite43. 
Each phase is supposed to be characterized by a LogNormal (number) distribution of monovariate spheroidal 
nanoparticles of average size  ⟨ d ⟩ n, standard deviation σn and relative (number) concentration cn (see Supple-
mentary Information 1, section 3 for all parameter values). Figure 2a shows the noisy input scattering profile 
Im(Q) associated to such a sample (blue circles) obtained by summing the noiseless profiles of each single phase 
[anatase (green), rutile (magenta), brookite (orange) curves] to the background profile (grey curve) and adding 
a Poisson distributed noise. Note that the scattering profiles of the three phases exhibit quite different peak 
shapes and positions, a feature that makes the inversion problem clearly not ill-posed (see Supplementary Infor-

Figure 1.   Sketch of data analysis carried out in 6 steps. (1) Build the atomistic model of each phase; (2) 
compute the scattering profile of all the nanocrystals of each phase Ip

(

Qi , dp,j
)

 by using the DEBUSSY suite; 
(3) build the inversion matrix Ai,k ; (4) concatenate all the unknowns Np

(

dp,j
)

 into a single array Nk ; (5) run the 
iterative inversion procedure and correct Nr

k by comparing the measured data Im(Qi) with the reconstructed 
ones Ir(Qi) . At convergence, the final solution is Nr∗

k  ; (6) recover the final number and mass diameter 
distributions by parsing the solution Nr∗

k  . Mass distributions are computed from number distributions as 
Mp

(

dp,j
)

= Np

(

dp,j
)

mp,j .
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mation 1, section  11) and renders the inversion algorithm very efficient in recovering the PSD of each  
single phase. The sample concentration was chosen so to have a maximum count of ∼ 105−106  
(equal to the typical count encountered at synchrotron facilities), which corresponds to an average 
SNR =

(

∑N
i=1I

2
i /
∑N

i=1σ
2
i

)1/2

∼ 300 . The black curve passing through the data is the reconstructed profile 
according to the recovered mass distributions shown in Fig.  2b. The latter ones were obtained by setting 
ωp = 10−4 for all the phases and stopping the iterative procedure at the minimum GOF ∼ 1.01 after ∼ 1.8× 104 
iterations, where the matching between the input and reconstructed data is quite good, with non-systematic 
relative residuals [(data-fit)/fit] (Fig. 2c).

The recovered mass distributions are shown in Fig. 2b. The matching between recovered and input PSDs is 
excellent, as also witnessed by the fairly good agreement between the input and recovered mass based param-
eters reported in Table 1 (comparison between number distribution parameters are reported in Supplementary 
Information 1, section 3). Parallel tests considering the same combination of phases plus background and higher 
noise levels systematically recover the distributions shown in Fig. 2b, demonstrating the robustness of the inver-
sion algorithm (see Supplementary Information 1, section 5).

Highly strained Fe5Te4 NCs.  The second test was aimed at ascertaining the capability of the inversion method 
to retrieve the correct PSD when the sample is not a mixture of different phases (that have different crystalline 
structures and therefore quite different peaks shapes and positions), but is characterized by microstrain distor-
tions that affect only peaks widths and shapes, leaving unchanged their positions. In this case the inversion task 
is expected to be much more difficult and, depending on noise level, microstrain type and extent, and size dis-
tribution shape, the results may or may not be reliable. For this test we used a recently characterized nanocrys-
talline iron-rich telluride material, Fe5Te4, which has been found to exhibit structural distortions (microstrain) 
that derive from the mechano-chemical synthesis44. Microstrain along a given crystallographic direction x can 
be quantified as the ratio between the root mean square modulation 〈�x2〉

1/2 of the interatomic distances and 
their average value 〈x〉 , i.e. through the parameter ǫx = ��x2�

1/2
/�x� . When ǫx is equal along all the three lattice 

vectors, a, b, c, the microstrain is isotropic, otherwise is anisotropic. Traditional methods for estimating isotropic 
and anisotropic strain parameters rely on single peak or full pattern analysis of the angular dependence of peak 
widths. Typical values for this and other materials are in the range ǫx ∼ 0.1−1% 45.

In this test, the input WAXTS-DSE data were generated according to a collection of anisotropically 
( ǫab = 0.85%, ǫc = 0.35% ) microstrained Fe5Te4 nanoparticles characterized by a LogNormal distribution in 

Figure 2.   (a) Simulated input (blue circles) and reconstructed (black curve) WAXTS data for a TiO2 sample 
composed by the three phases: anatase, rutile and brookite. For the sake of clarity, the single phases (noiseless) 
contributions and a background profile have been shifted by − 1. The noise added to the data was generated 
according to a Poissonian distribution; (b) input (black curves) and recovered (colour curves) mass distributions 
of the three phases obtained by inverting the input data of (a); (c) relative residuals [(data-fit)/fit] between 
recovered and input data. The peak-to-peak fluctuations of ( ∼ ±0.06 ) are consistent with the noise level 
( SNR ∼ 300 ) used in the simulation.

Table 1.   Comparison between input and recovered parameters for the mass distributions of Fig. 2.

TiO2 phase

Input Recovered

 ⟨  d ⟩ m (nm) σm (nm) cm (%)  ⟨ d ⟩m (nm) σm (nm) cm (%)

Anatase 4.80 1.20 0.173 4.81 1.22 0.173

Rutile 8.23 2.74 0.291 8.23 2.76 0.291

Brookite 11.25 2.25 0.536 11.25 2.31 0.537

Background (a.u.) – – 1 – – 0.998
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diameters ( �d�n = 10 nm, σn/�d�n = 20% ). The inversion was carried out by allowing the program to use “three 
sets of phases”, namely the ones with no strain, the correct anisotropic strain ( ǫab = 0.85%, ǫc = 0.35% ) and an 
isotropic strain ( ǫabc = 0.70% ). As for the test on TiO2 NCs, we set ωp = 5× 10−5 for all the phases and stopped 
the iterative procedure at the minimum GOF ( ∼ 1.002 after ∼ 5× 105 iterations).

Figure 3a shows that the matching between the input (blue circles) and recovered (black line) data is excellent 
with non-systematic residuals (Fig. 3c), in spite of the fact that the scattering profile of the three used phases are 
quite similar, in term of both peak positions and shapes. The goodness of the inversion is also witnessed by the 
accuracy of the PDS reconstruction (Fig. 3b), in which only the (correct) single phase used for generating the 
data (anisotropic microstrain distribution) is sorted out, whereas the other two phases almost totally vanish. 
Quantitatively, these results are reported in Table 2, where one can appreciate the excellent matching between 
the (mass) input and recovered distribution parameters (rows 4–7)).

For this test, one may question how important is to define a reasonable set of strain parameters. Raw data 
provide information on these values, considering the Q-dependent and hkl-dependent broadening of the dif-
fraction peaks, which has a different functional dependence than that attributable to finite size. When using the 
DSE approach, spanning the goodness-of-fit (hyper) surface of strain parameters is a viable option, as done by 
us in ref44. In any case, upon assuming wrong strain levels and inverting the data by using only the no-strain 
or the iso-strain phases, the accuracy of the signal reconstructions deteriorates significantly (large GOFs) and 
non-negligible errors are made for the parameters recovery (see rows 8–9 of Table 2). For the no-strain case, the 
remarkable underestimation of 〈d〉m is due to smaller sizes counterbalancing the lack of strain broadening. For 
the iso-strain case, the errors are somewhat reduced, but the recovered distribution is quite different from the 
input one with the presence of an extra broad peak at small sizes (data not shown).

Inversion of experimental data.  We tested our modified LR algorithm on experimental WAXTS data 
measured on real samples by using synchrotron X-rays46. The results of the inversion algorithm are discussed 
in comparison to those provided by the DSE-based analysis using the DEBUSSY suite. Experimental details are 
given in Supplementary Information 1, section 6.

When dealing with data collected on real samples, it is extremely important to model the nanocrystal structure 
with very high accuracy, taking into account any possible deviations from spatial periodicity due to finite-size 

Figure 3.   (a) Simulated input (blue circles) and reconstructed (black curve) WAXTS data for an anisotropic 
microstrained Fe5Te4 sample. The inversion was performed by letting the algorithm to sum the contributions of 
three phases (no strain, isotropic and anisotropic strain) plus a background profile. The noise added to the data 
was generated according to a Poissonian distribution; (b) Simulated (black curves) and mass distributions of the 
three phases recovered by inverting the WAXTS data of (a). For improving visibility, the no strain and isotropic 
strain curves have been amplified by a factor 10; (c) relative residuals between reconstructed and input data.

Table 2.   Comparison between input and recovered parameters for the mass distributions of Fig. 3 (rows 4–7); 
recovered parameters when the inversion is carried out by using only one phase with the wrong strain (rows 
8–9).

Fe5Te4 phase

Input Recovered

 ⟨ d ⟩ m (nm) σm (nm) cm (%)  ⟨ d ⟩m (nm) σm (nm) cm (%) GOF

No-strain – – 0 9.13 1.62 0.001

1.002
Aniso-strain 11.25 2.25 1 11.26 2.26 0.996

Iso-strain – – 0 11.53 2.27 0.003

Background (a.u.) – – 1 – – 0.998

No-strain only 11.25 2.25 1 8.40 1.84 1 13.5

Iso-strain only 11.25 2.25 1 11.55 2.60 1 5.93
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and/or surface-driven structural distortions, microstrain, size-dependent lattice parameters, atomic thermal 
relaxation and any other kind of defects. Indeed, any discrepancy between the modelled and actual structure as 
well as any inaccuracy in the (shape of) background signal introduce systematic errors in the kernel functions 
Ip
(

Qi , dp,j
)

 that might produce not negligible artefacts in the recovered distribution. Similarly, it is crucial to take 
into account any (sample independent) bias introduced by the experimental setup, such as the presence of a blank 
signal due to the glass capillary scattering (which has to be removed prior to the analysis), or the peak broadening 
due to the finite instrumental response function, which might be particularly nasty for large sizes ( ≥ 10−20 nm ) 
and low-angular resolution instrumentation. Therefore, the usage of high-resolution experimental set-ups, such 
as dedicated synchrotron beamlines, outperforms laboratory sources, as it widens the nanoparticle size range 
which can be safely studied, up to tens of nanometers, i.e. to values which would be significantly underestimated 
if proper corrections of instrumental broadening are not performed. A few examples of the distribution artefacts 
arising in these situations are reported in Supplementary Information 1, section 5.

Magnetite‑maghemite (Fe3O4–Fe2O3) NCs.  Herein we present the outcome of the inversion of synchrotron 
WAXTS data collected on a powder sample of superparamagnetic iron oxide nanoparticles exhibiting partial oxi-
dation of Fe2+ ions, resulting into chemically inhomogeneous core–shell Magnetite-Maghemite (MM) nanocrys-
tals. Worthy of note, the conditions of their preparations (co-precipitation) have been frequently reported, by a 
variety of experimental techniques, to follow a LogNormal size distribution law as in47–50. This is also valid for 
nanoparticle vapour phase growth method employed for fumed titania, discussed in the following sub-section 
(see for example Refs.51,52), thus, not unexpectedly, the conventional DEBUSSY approach used in both cases 
provides satisfactory results, but was further challenged by the present inversion method. The DEBUSSY analy-
sis of such a sample [labelled A1 in Ref.53] relied on a monovariate (LogNormal) size distribution of spherically 
shaped NCs (cubic crystal structure, space group Fd-3m) where the size-dependent MM stoichiometry, the lat-
tice parameters and Debye–Waller isotropic thermal factors were globally optimized against the experimental 
data; the contribution of an amorphous phase (probably two-line ferrihydrite) necessary for accurately fitting the 
data, was independently measured and used as a background signal. Overall, the DSE-based model allowed to fit 
the WAXTS data with very high accuracy (Fig. 4a) and to quantitatively correlate the structural to the magnetic 
properties.

In order to make the MM nanocrystals a test-model for the inversion algorithm (as much as possible) irre-
spective of the DEBUSSY-defined model, we generated a population of spherical NCs (up to a diameter of 
∼ 33 nm ) using an average crystal structure model derived from previously optimized parameters (see Supple-
mentary Information 1, section 7 for details). Worth of note, these values might be provided also by a standard 
Rietveld fit of the experimental pattern that does not rely on any size distribution information. We inverted the 
data by setting ωp = 2× 10−3 and stopping the iterative procedure at the minimum GOF ∼ 4.9 after ∼ 5.0× 103 
iterations. The recovered mass size distribution is quite similar to the LogNormal recovered with the DEBUSSY 
analysis (Fig. 4b). Thus, the two methods provide consistent results, as also demonstrated by the remarkable 

Figure 4.   (a) Experimental (black circles) and reconstructed inversion (red line) WAXTS-DSE data for core–
shell Magnetite-Maghemite (Fe3O4–γ-Fe2O3) nanocrystals measured with synchrotron X-ray radiation. The 
blue line indicates the DEBUSSY analysis. The grey line is the scattering profile of the amorphous phase used 
as a background in both analysis; (b) mass diameter distributions recovered with the inversion procedure and 
the DEBUSSY analysis. In the crystal lattice cell oxygen ions are in red, iron ions in tetrahedral sites in gold, and 
iron ions in octahedral coordination in light green (see also Supplementary Information 1, section 7); (c) relative 
residuals between the experimental and reconstructed data.

Table 3.   Comparison between DEBUSSY and Inversion results for the Magnetite-Maghemite data of Fig. 4.

 ⟨ d ⟩m (nm) σm (nm) Background (a.u.) GOF

DEBUSSY 8.55 3.81 0.346 4.8

Inversion 8.70 3.50 0.291 4.9
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similarity between the two reconstructed WAXTS data (Fig. 4a,c). A quantitative comparison between the mass 
distribution parameters recovered with the inversion procedure and DEBUSSY analysis is reported in Table 3.

Commercial titania (TiO2) NCs.  The second test regards the characterization of a commercial “P25” Titania 
powder sample (Sigma-Aldrich, CAS # 13463-67-7, product # 71467) that, according to the product technical 
specifications, contains primary particles of ∼ 21 nm (TEM) and is known to be a mixture of anatase (dominant) 
and rutile (minor) polymorphs.

For anatase we used the structural data available in literature further optimized by a Rietveld refinement using 
the Topas program (see Supplementary Information 1, section 8) and computed the kernel functions Ip

(

Qi , dp,j
)

 
via the DEBUSSY suite with the exact DSE (Eq. 1) of spherical NCs up to diameters of ∼ 80 nm.

For the rutile phase, the occurrence of very large sizes ( ≥ 100 nm ) emerging from this analysis discouraged 
the use of the DSE (Eq. 1) for the computation of kernel functions, due to computational time issues. We resorted 
to an alternative approach based on the Rietveld method and Topas54 program (see Supplementary Informa-
tion 1, section 8), which allowed us to compute the (approximate) functions Ip

(

Qi , dp,j
)

 of spherical NCs up to 
diameters of ∼ 200 nm . The inversion was carried out by setting ωp = 2× 10−3 for both phases, using a constant 
background to improve the quality of data reconstruction, and stopping the iterative procedure at the minimum 
GOF ∼ 14.8 after ∼ 1.7× 103 iterations. The matching between the reconstructed and experimental WAXTS 
data is rather accurate (Fig. 5a) as also shown by the relative residuals plot reported in Fig. 5c. For comparison, 
we report in the two figures also the data and the residuals obtained with the DEBUSSY analysis, which appears 
to be quite similar to our method.

The distributions of the two phases recovered by the inversion procedure are shown in Fig. 5b (symbols) 
together with the distributions obtained from the DEBUSSY analysis (solid curves). Notice that the distributions 
recovered from our inversion algorithm presents two spurious peaks at very small sizes, which are artefacts aris-
ing probably from imperfect modelling of the rutile phase or from the use of a somewhat inaccurate background 
(See Supplementary Information 1, section 5). Nevertheless, the presence of these two peaks does not jeopardize 
the reliability of the recovered 〈d〉m and σm parameters that, in the distributions with and without the peaks, 
differ, respectively, by ∼ 1% and ∼ 2% for anatase and by ∼ 20% and ∼ 10% for rutile. In conclusion, we can say 
that, also in this case, the inversion and the DEBUSSY analyses provide very similar results, as evidenced by the 
quantitative comparison reported in Table 4.

Conclusions
We have shown that WAXTS data taken on a variety of nanocrystal samples can be profitably processed by using 
a simple and fast inversion algorithm that allows to recover the PSDs of all the phases composing the sample. The 
algorithm used in this work is a modified version of the classical iterative Lucy-Richardson algorithm, in which 
we have implemented a smoothing operator that acts as a regularization scheme capable of recovering smooth 

Figure 5.   (a) Experimental (black circles) and reconstructed inversion (red line) synchrotron WAXTS-DSE 
data for a commercial Titania (TiO2) composed by nanopowder polymorphs of anatase and rutile. The blue line 
indicates the DEBUSSY analysis. The grey line is a constant background profile used for both analysis; (b) mass 
diameter distributions of the anatase and rutile phases recovered with the inversion procedure (red symbols) 
and the DEBUSSY analysis (blue curves); (b) relative residuals between the experimental and reconstructed 
data.

Table 4.   Comparison between DEBUSSY and Inversion results for the Titania data of Fig. 5.

Phase

Inversion (GOF = 18.8) DEBUSSY (GOF = 15.3)

 < d > m (nm) σm (nm) cm (%)  < d > m (nm) σm (nm) cm (%)

Anatase 22.7 9.93 0.87 23.2 10.2 0.88

Rutile 36.7 25.5 0.13 34.6 19.3 0.12
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and accurate distributions. The regularization depends on a single phase-dependent parameter ( ωp ), which can 
be easily optimized without any significant user arbitrariness.

The algorithm performances have been tested by computer simulations, in which noisy in silico WAXTS-DSE 
data associated to samples made of a mixture of different TiO2 polymorphs NC and by microstrained iron tel-
luride NC, have been inverted and the recovered distributions compared with the expected ones. In all the cases, 
the reconstruction of both the scattering data and the PSDs is highly accurate, also when the noise present in 
the data is much higher than typical levels achievable at synchrotron facilities. The algorithm features have been 
also discussed in comparison with the standard PSD analysis of the DEBUSSY Suite. Whereas our method works 
fairly well regardless of the PSD shapes and is capable of accurately recovering both number and mass PSDs, the 
DEBUSSY analysis becomes critical when the PSDs to be recovered are rather broad ( σn/�d�n ≥ 0.5 ) and their 
shapes are fairly different from a LogNormal distribution (such as for a Weibull or an exponentially decaying 
PSD). In these cases, the DEBUSSY method recovers with a satisfactory accuracy only the mass PSD (accuracy 
on 〈d〉m and σm of ∼ 5−10% ), but wildly fails in recovering the number distribution with errors that are of ∼ 20% 
for both 〈d〉n and σn of the Weibull distribution and become ∼ 60% for 〈d〉n of the Exponential distribution. Thus, 
any comparison between the DEBUSSY results and other techniques that work by analysing number PSDs (such 
as TEM or other optical microscopy methods) must be taken with high care. These findings also suggest that size 
values from a PSD function based on a wrong pre-assumption may result in similar inaccurate determinations.

When applied to the inversion on WAXTS data taken on real samples, the method relies on a (mandatory) 
accurate modelling of the nanoparticles crystal structure, which include local structural defects, microstrain, 
surface induced distortions, etc.. Indeed, such defects produce an additional (to the finite-size effect) broadening 
of the diffraction peaks that, if not properly taken into account in the NC modelling, might be misleadingly attrib-
uted to smaller NCs rather than to (defective) larger NCs. Thus, defects and sizes are correlated. Disentangling 
them can be a hard task, which, anyway, is an intrinsic problem common to any data analysis method. Similarly, 
it is mandatory to have accurate estimates of the atomic Debye–Waller and site occupancy factors. Fortunately, 
both factors can be estimated from literature or can be derived by a standard Rietveld analysis of the WAXTS 
data. Provided that all these requirements are fulfilled, the inversion algorithm works quite nicely also on real 
data, as demonstrated by the two examples reported in this work, namely a Magnetite-Maghemite nanopowder 
and a commercial P25-Titania sample composed by a mixture of anatase and rutile polymorphs. In both cases, 
the outcome of our inversions compares quite nicely with the results obtained by the DEBUSSY analysis.

We would like to emphasize that the inversion of WAXTS data (as well the DEBUSSY analysis) heavily relies 
on the use of the DSE, which is the theoretical tool providing the entire (peak and diffuse) and exact (including 
defectiveness or non-periodicity) scattering profile of the NCs. These features (not available with other conven-
tional XRPD methods) are of fundamental importance for the correct functioning of the inversion algorithm, 
which requires both accurate modelling of the NCs structure and correct computing of the kernel functions over 
the entire Q-range of the measurement.

Finally, we would like to recall that the inversion method proposed in this work applies only to NCs described 
by monovariate distributions, i.e. NCs with spherical (or spheroidal) morphologies that require only one size 
parameter. This limitation currently hampers the applicability of the method to real anisotropic NCs but, as 
already mentioned in the text, in this work we considered only monovariate distributions as a proof of concept. 
Future work is indeed planned to extend the algorithm to bivariate distributions, aiming at characterizing truly 
anisotropic NCs in terms of their Particle Size and Shape Distributions (platelets or whiskers). Such bivariate 
distributions have indeed been experimentally observed on a number of technologically relevant nanomaterials 
(e.g. in perovskites55, biomimetic materials31, supported metals28) and derived by the DEBUSSY approach within 
the bivariate LogNormal assumption.
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