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Abstract

Purpose: To predict the spatial and temporal trajectories of lung tumor during radiotherapy 

monitored under a longitudinal MRI study via a deep learning algorithm for facilitating adaptive 

radiotherapy (ART).

Methods: We monitored ten lung cancer patients by acquiring weekly MRI-T2w scans over a 

course of radiotherapy. Under an ART workflow, we developed a predictive neural network (P-net) 

to predict the spatial distributions of tumors in the coming weeks utilizing images acquired earlier 

in the course. The 3-step P-net consisted of a convolutional neural network to extract relevant 

features of the tumor and its environment, followed by a recurrence neural network constructed 

with gated recurrent units to analyze trajectories of tumor evolution in response to radiotherapy, 

and finally an attention model to weight the importance of weekly observations and produce the 

predictions. The performance of P-net was measured with Dice and root mean square surface 

distance (RMSSD) between the algorithm-predicted and experts-contoured tumors under a leave-

one-out scheme.

Results: Tumor shrinkage was 60% ± 27% (mean ± standard deviation) by the end of 

radiotherapy across nine patients. Using images from the first three weeks, P-net predicted tumors 

on future weeks (4, 5, 6) with a Dice and RMSSD of (0.78±0.22, 0.69±0.24, 0.69±0.26), and 

(2.1±1.1mm, 2.3± 0.8mm, 2.6± 1.4mm), respectively.

Conclusion: The proposed deep learning algorithm can capture and predict spatial and temporal 

patterns of tumor regression in a longitudinal imaging study. It closely follows the clinical 

workflow, and could facilitate the decision making of ART. A prospective study including more 

patients is warranted.
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I. INTRODUCTION

Radiotherapy is advancing towards incorporating longitudinal image studies into its effort to 

consistently deliver tumoricidal dose to the tumor while sparing the adjacent organs at risk 

(OAR). A snapshot of the tumor/OAR at the simulation phase still serves a fundamental role 

as defining a target in an initial treatment plan, but loses its dominance because 

morphological changes observed on daily/weekly surveillance scans can also trigger a 

replanning process to ensure appropriate dosage. Furthermore, as we accumulate multiple 

snapshots of the tumor/OAR in a longitudinal study, we hypothesize that the underlying 

spatial and temporal patterns of evolution can be extracted on the basis of both patient 

population and the particular patient of interest, eventually extrapolated to a patient-specific 

spatial distribution of tumor at a later time point in the treatment course. Adaptive 

radiotherapy (ART) may potentially benefit from the timely predictions because the earlier 

the changes can be determined, the sooner the action such as replanning can be taken, and 

the better the therapeutic ratio can be achieved. We have reported a patient population-based 

atlas model to predict residual tumor after radiotherapy via principal component analysis of 

tumor geometry at simulation, and its potential clinical usage to benefit patients with 

significant dose escalations to the residual tumor.1–3 In this paper, we investigate the 

feasibility of expanding the prediction model to incorporate all available image scans in the 

longitudinal study and make a series of weekly predictions along the remaining treatment 

course.

Prediction of a time series using recurrence neural networks (RNN) has been primarily 

investigated in the context of natural language processing,4–8 financial stock market 

prediction,9–10 and computer vision problems including object recognition,11,12 tracking,
13,14 and image caption.15 Recently RNN has been rapidly extended to healthcare 

applications and achieved a great success in electronic health records analysis,16,17 disease 

progression analysis,18,19 and analysis of tumor cell growth.20 RNN constructs a series of 

sequentially-connected nodes to store the time-dependent status of an object, and explicitly 

forms a dynamic representation of the studied object in the deep learning algorithm. In the 

supervised learning process, because the future states of the object are calculated as a 

nonlinear function of the weighted sum of the past, the embedded history information is well 

preserved and ready for relevant predictions. Meanwhile, convolutional neural network 

(CNN) is best-suited for extracting both global and fine features of an object. Frameworks 

that combined CNN (encoding spatial information) and RNN (encoding temporal 

information) have achieved significant success in video prediction.21–23 Inspired by these 

studies, we developed a customized deep learning algorithm that integrated both CNN and 

RNN units to predict the spatial tumor distribution in a longitudinal imaging study, and 

evaluated the impact of the structural design on the predictive accuracy. Furthermore, we 

assessed the characteristics of the prediction including its timing, frequency, and spatial 

accuracy to prepare for its integration into the clinical workflow of ART.
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II. METHOD AND MATERIALS

2.1 Weekly MRI study

The prediction algorithm was based on weekly magnetic resonance imaging (MRI) data 

acquired via a retrospective IRB approved longitudinal study that monitors geometrical 

changes of tumor for patients with locally advanced non-small cell lung cancer. MRI was 

selected to help the visualization and segmentation of mediastinal tumors because of its 

superior soft tissue contrast compared to CT or CBCT. Patients received 2Gy/fraction in a 

30-fraction radiotherapy course of 6–7 weeks with concurrent chemotherapy. A respiratory 

triggered (at exhalation) T2-weighted MRI scan (TR/TE=3000–6000/120ms, 43 slices, 

NSA=2, FOV=300×222×150mm3) was acquired weekly with a resolution of 

1.1×1.0×2.5mm3 on a Philips Ingenia 3 Tesla MRI scanner. All weekly MRI images were 

rigidly registered to the first weekly scan with respect to the tumor to minimize the motion 

effect.24 Tumors were segmented by radiation oncologists, serving as ground truth. 

Subsequently an ROI around the tumor was cropped and standarized to prepare for studying 

the regression patterns of the primary tumors.

The primary tumors of all ten patients exhibited shrinkage ranging from 15% to 92% with a 

median of 55% at the end relative to the start of the treatment. However, on a weekly basis, 

the patterns of tumor evolution were neither unidirectional (three patients, #5, #6, and #9 

showed noticeable early tumor expansion) nor homogeneous as illustrated in Figure 1. The 

weekly shrinkage did not correlate with tumor volume or the number of weeks into 

radiotherapy. Most of the weekly shrinkages occurred between weeks 2 and 4.

2.2 Prediction via P-net

2.2.1 P-net structure—We developed a deep learning algorithm called P-net as 

illustrated in Figure 2 to make a series of predictions of spatial tumor distributions in the 

later part of the radiotherapy course. P-net was specifically designed to match the clinical 

workflow and facilitate the decision making of ART. We implemented P-Net using the open-

source neural-machine translation toolbox25 on the python platform. P-net consisted of three 

major components: (1) a six-layer CNN to extract relevant features on the weekly MRI 

scans; (2) a RNN constructed with gated recurrent unit (GRU26) to store and process the 

trajectories of tumor evolution in response to radiotherapy; and (3) an attention model to 

weight the importance of weekly observations and produce the final predictions.

Many pilot investigations in medical imaging that utilize deep learning algorithms suffer 

from the restrictions of the small number of patients recruited in the study. To overcome the 

limitation of a small dataset, methodologies that utilize finer patches rather than whole 

images have been developed and tested in a variety of applications including neuroanatomy 

segmentation,27 cartilage voxel classification,28 image template matching,29 and assessing 

image deformations.30 Although patches are likely highly correlated, they contain sufficient 

features as a diversified group and provide enough data for training the neural networks and 

achieve reasonable accuracies.31,32 Similarly we adapted a 3D patches-based approach for 

prediction. We first constructed a volume of interest (VOI) as a union of the gross tumor 

volume (GTV) observed on the first three weekly scans and expanded with margins 
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proportional to the dimension of the tumor.32 The number of voxels inside the VOI from 

each individual patient ranged from 8K to 80K. Centered around each voxel inside the VOI, 

a 3D patch was formed by cropping out three consecutive 2D slices: the 45×45 pixels 

transverse image, and the two-immediate above and below neighbor images, to incorporate 

all the intensity and environmental information useful for prediction. A patch was classified 

either as tumor or background according to the label of its center. We generated image 

patches from the same location on the first three weekly MRI scans as inputs to P-net. The 

number of patches created from all ten patients were approximately 440K, which covers a 

wide variety of shrinkage patterns and is well-suited for the task of training the deep 

learning algorithm. The output of P-net was the patch’s classification predicted for weeks 4, 

5 and 6, which was successively assembled into a full spatial tumor distribution for each 

future week.

2.2.2 Six-layer CNN—To extract all the pertinent features of a patch, we modified a 

neural network originally designed for segmenting tumors in the same longitudinal study32 

as shown in Figure 2b. The covariate shift is a common challenge for a prediction problem 

because the distribution of the underlying data may vary between the training and testing set, 

especially due to inter-patient or inter-fractional acquisition uncertainties. To mitigate the 

effect of the internal covariate shift, we added a process of batch normalization to equalize 

the intensity distribution.33 The first four convolutional layers were configured with a 

standard 3×3 filter, and two pixels convolutional stride. Max pooling was performed over a 

2×2 kernel with one-pixel stride. All convolutional and fully connected layers were followed 

by a nonlinearity rectification layer. The number of convolutional channels began with 64 in 

the first level, increased 2-fold in each subsequent level until finally reaching 512. The last 

three fully connected layers sequentially processed and produced high-level features, 

representing the temporal and spatial pattens for prediction.

2.2.3 Recurrent Neural Network—The extracted high-level features along with the 

binary labels were subsequently fed into RNN. The sequential labels were critical priors and 

explicitly included to reinforce the ability of prediction. The hierarchical structure of RNN 

includes two layers of GRU with 512 hidden units per layer to strengthen the processing 

power. The inputs from individual weeks passed through GRUs in a recursive route. GRU 

modulates the information flow via two gates: a reset to determine the portion of the 

previous memory to forgo, and an update gate to decide the portion of the history 

information to pass through. GRUs are trained to remove the irrelevant information for 

prediction, formulate a useful representation vector over time, and leverage the prediction. In 

a mathematical form, at a given time t, a hidden state ht, was a direct output of each 

individual GRU, and expressed as a combination of its precursor and current input:

ℎt = GRU ℎt − 1, It; θ (1)

with h0 as the initial state.

2.2.4 Attention model—Not all inputs from the time series contributed equally to the 

prediction results. An attention model parsed the weights of the inputs which were used to 

calculate the prediction. We applied a global attention34 to approximate the attention 
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distribution of all hidden states (h1, …, hT) from the encoder, and generated a context vector 

ct =  ∑i = 1
T at, iℎi , where the attention distribution weights at,I of each hidden state hi is 

calculated by:

at, i = exp score ℎt, ℎi
∑i = 1

T exp score ℎt, ℎi
(2)

where the score (·) is an alignment model, formulated as:

score ℎt,   ℎi = βT tanℎ w1ℎt + w2ℎi (3)

The application of the attention model relieved the burden of encoding all the information 

into a fixed length vector, and spread out the burden through all the encoder hidden layers. 

Subsequently, a decoder calculated the probability of there being tumor in a future output 

according to the previous outputs and hidden states via a SoftMax layer as:

p(ot + 1 y1, …, yt, V ) = softmax(W outot) (4)

where ot = tanh(Wc[ht;ct]), and Wout, Wc are weighting parameters.

The direct output of P-net was mapped back to the original MRI scan and formed a binary 

mask of predicted tumors. Morphological filters such as imfill and bwareopen25 were 

applied to fill the holes, and remove the background noise and small isolated islands.

2.2.4 Training and testing—P-net was trained and cross validated by using the leave-

one-out strategy. A cross entropy loss function was selected for training, which was 

optimized with an ADAM algorithm35 for both CNN and RNN. The initial and consistent 

learning rate and maximal number of epochs were set to 10−4, and 15, respectively. Training 

and testing were completed on an institutional Lilac GPU cluster equipped with 72 Ge-force 

GTX1080 GPUs, each GPU installed with 8GB memory.

2.2.5 Exploring variations of P-net structures—Variations to the architecture of P-

net can substantially influence the behavior of the prediction algorithm. We explored some 

competitive alternatives to search for optimal settings and justify the selection of our design. 

These investigations include: (1) searching the optimal size of the input patch among 

35×35×3, 35×35×5, 45×45×3, 45×45×5, and 55×55×3; (2) substituting GRU with Long-

Short Term Memory (LSTM),31 another popular yet slightly complicated design for RNN; 

(3) revealing the functionality of the attention model via comparisons with skipping it in the 

design; (4) shortening the number of fully convolutional layers in CNN from 3 to 2; and (5) 

changing the timing of the prediction by utilizing two rather than three weekly scans to 

predict the rest of the radiotherapy course. We evaluated the impact of these changes in 

terms of the balance between calculation efficiency and predictive effectiveness of the deep 

learning algorithm.
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2.3 Evaluation

To verify the prediction against expert-contoured tumor on the weekly MRI scans, we 

evaluated the performance of P-net by tabulating precision, Dice coefficient, and sensitivity 

to assess the predictive power, calculating root-mean-square surface distance (RMSSD) to 

measure the spatial uncertainty, and analyzed computational costs and speed of convergence 

to estimate the burden on the clinical workflow.

Because our purpose was to monitor and predict the spatial distribution of tumor, we aligned 

the weekly scans by rigidly registering the images according to the lung outer surface and 

spine, rather than the tumor itself. Even in a gated image acquisition protocol, residual 

interfractional uncertainties in the respiratory patterns can cause misalignments of the tumor. 

These registration errors contribute to uncertainties in calculating all the evaluation indices. 

We shifted the predictions of P-net with fixed steps in the lateral, anterior-posterior, and 

superior-inferior directions, re-calculated RMSSD, and analyzed the changes of RMSSD 

with respect to potential spatial errors as a measure to evaluate the impact of registration. 

Similarly, inter-observer contour variations also influence the predictive accuracy. We 

produced predictions using one observer’s contour, verified against a second observer’s 

segmentation, and calculated the spatial deviations to investigate this impact.

2.4 Prediction via deformable registration

Deformable registration is a popular clinical tool to fuse longitudinal imaging studies and 

analyze the geometric changes. As a control to P-net, we implemented a prediction method 

based on the deformable vector field (DVF). We first registered the 2nd and 3rd to the 1st 

weekly MRI via Plastimatch (www.plastimatch.org) and obtained the corresponding 

DVF1→2 and DVF1→3. On a voxel basis, we extrapolated DVF using a linear-log model, 

derived predictions of DVF on the 4th, 5th, and 6th week, shifted the tumor voxels according 

to the predicted DVFs, and eventually formed predictions of weekly tumor distributions. The 

results were compared to the actual weekly tumor distributions, and its predictive accuracy 

was compared to that of P-net.

III. RESULTS

The number of samples utilized for training and validating P-net averaged 315k and 84k, 

respectively. The training process converged at an accuracy of 97%. The accuracy of 

validation was 95%. The training and validation of P-net took around 11 hours on the high-

performance computer cluster, while the testing on one patient (averaged 42K patches) only 

took 2 minutes, which is well-tolerated by the ART workflow with a weekly surveillance 

frequency. Predictions made via P-net with five choices of patch sizes are shown in Figure 3. 

Measured by the dice and RMSSD, a patch size of 45×45×3 results in the best predictive 

performance across the remaining weeks of the radiotherapy course.

The detailed characteristics of predictions made with different timing schedules are listed in 

Table 1. When P-net was fed with the first three weekly MRI scans, the predictive 

performance scored the largest Dice and lowest RMSSD. The precision of the prediction and 

its robustness declined along weeks, evidenced by the moderate correlation between tumor 
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shrinkage and RMSSD (0.54), despite no correlations between tumor volume and RMSSD 

(−0.12). Compared to predictions made from the first three weeks of images, predictions at 

an earlier time point in the treatment course and using only the first two weeks were more 

challenging, less accurate and less robust (as indicated by the larger standard deviations). 

There was a noticeable drop in performance when forecasting weeks 5 and 6 compared to 

weeks 3 and 4.

Replacing GRU with LSTM in the design of RNN had little impact on the predictive 

performance, but prolonged the training time by 25%. The attention model does provide a 

boost to the performance. If the attention model is removed from the P-net structure, the 

predictive accuracy suffers a loss of 0.07±0.02 in Dice, and a deterioration of 0.7±0.1mm in 

RMSSD, respectively. Installing three fully convolutional layers moderately outperformed 

two layers, which lifted Dice by 0.04±0.01, and lowered RMSSD by 0.4±0.3mm.

Examples of predictions made with an initial timing at week 4 (top row) for a typical case 

(patient #1) are shown in Figure 4 at the tumor center cut. When compared to the predictions 

made via the deformable registration approach (center row), P-net is more accurate and 

reliable, evidenced by the improvements of 0.10, 0.19, and 0.31 in Dice, and reductions of 

0.4mm, 0.9mm, and 1.7mm in RMSSD, for week 4, 5, and 6, respectively. Predictions made 

with an initial timing at week 3 (bottom row) is also inferior to the timing of week 4.

In the analysis of predictions for each individual patient as shown in Figure 5, we discovered 

that P-net failed to make a reasonable prediction for patient #2, week 5: Dice fell to 0.16, 

which was 2 standard deviation (2×0.21) below the group mean. The low Dice could be 

caused by a combination of its small volume of 5cc, and extreme shrinkages of 92% at the 

end of chemoradiation. In this scenario, its RMSSD of 6.4mm would be a more applicable 

evaluation metrics. Nevertheless, this outlier out of the 30 incidences (3 weeks × 10 patients) 

does reveal the limitations of P-net.

Even under a gated MR acquisition protocol, noticeable residual motions of tumor often 

occur with irregular respiratory patterns. If such movements are not fully compensated in the 

registration process, the accuracy of prediction may suffer. In fact, there was a large 

positional difference of 8mm along the anterior-posterior direction for the 5th weekly scan of 

patient #4, which could cause a drop of 0.36 (from 0.81 to 0.45) in Dice if uncorrected. In a 

further investigation, we specifically examined the effect of uncorrected tumor motion on the 

predictive performance. By artificially shifting tumor positions on the weekly images (both 

input and output) to simulate alignment errors of 1mm, 3mm and 5mm, we found that 

RMSSD of the prediction increased an averaged 0.2mm, 0.9mm, and 2.7mm, respectively.

The RMSSD between the segmentations derived from two observers averaged 2.0mm. When 

predictions were produced using one observer’s contour, but verified against the second 

observer’s segmentation, or vice versa, the RMSSD averaged 1.4mm. While P-net seems to 

be robust to certain registration and contouring errors, these uncertainties need to be 

accounted for when the prediction is used in radiotherapy, most probably by incorporating 

them into the margin of the planning target volume.
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IV. DISCUSSION

Our study’s findings show that P-net can predict changes in lung tumor location and spatial 

extent from weekly imaging over a course of radiotherapy. P-net exploits the information in 

the weekly images themselves rather than simplified countours or binary masks of the tumor. 

Preprocessing steps such as labeling the tumor as parenchymal or mediastinal, located in 

left/right/upper/lower lung, and grouping based on similarities, can be eliminated because 

the CNN components inside P-net automatically extract and process the information. 

Furthermore, the RNN components in P-net determine the weighting of the time series 

coming from previous weeks in producing the predictions via non-linear functions, thereby 

expanding the capacity of P-net compared to using linear combinations such as a Kalman 

filter.36 Although the training of P-net is based on a population of patients, predictions are 

patient-specific because the input data rely on the patient’s own weekly images. In addition, 

patterns of apparent tumor expansion due to inflammation are included in the training 

patient cohort. Therefore a well-trained P-net can make predictions of local tumor shrinkage 

as well as expansion, and become a reliable tool to monitor and understand tumor response 

at any time point along the treatment course. Meanwhile, predictive power of P-net could be 

enhanced by explicitly integrating the planning FDG-PET image (reflecting metabolic 

activities) as well as the accumulated dose distributions into the input. After we collect more 

clinical data, we will investigate such capabilities in our future studies.

It is a big leap for the P-net to make a wealth of predictions covering multiple time points 

along the course of radiotherapy. Pairing such timely predictions with the design of ART is 

critical to maximize the benefit of radiotherapy. A credible patient-specific prediction can be 

made as early as the second week (1/3 of the course). This valuable prediction can be used 

as an early signal as whether the treated tumor has responded to radiotherapy, subsequently 

applied to estimate the optimal dosing scheme such as number of fractions and fraction size, 

and eventually adjust the treatment plan to achieve a better therapeutic ratio. Three weeks 

into the middle of the treatment, the prediction reveals the spatial distribution of the tumor 

with high fidelity. A fine tuning of the existing plan, aiming at reshaping the local dose 

distribution according to the dynamic interplays between tumor shrinkage and surrounding 

OAR, can be closely investigated. The initial plan can be reoptimized to escalate dose to the 

predicted residual tumors, maintaining a therapeutic dose even to the regions where tumors 

are predicted to disappear, but does not compromise the sparing of the surrounding healthy 

tissues. Under this design, a poor prediction only translates to a random dose escalation to 

portions of the PTV, and would not cause unnecessary damages to normal tissues. Therefore, 

even though the predictive power of PNet is limited by the small number of patients in its 

current form, the impact of integrating such predictions, small or large, is always positive. A 

series of comprehensive planning studies will be performed to evaluate the actual dosimetric 

impacts of the ART strategies, and explore remedies to deal with uncertainties of the 

prediction.

In our previous study, we built a geometric atlas based on 12 lung patients from our 

institution to predict the distribution of residual tumors after radiotherapy using initial 

tumors observed on the planning CTs.2 When this atlas was tested using a similarly 

structured external dataset from another institution including 22 lung patients, the predictive 
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accuracy only dropped a little, from 0.74 to 0.71 measured in DICE.3 Furthermore, when 

combining patients from two institutions, the rebuilt atlas has recovered its predictive 

accuracy to a DICE of 0.74. Therefore, even though the atlas was built with a small number 

of patients, it still can catch the patterns of how lung tumors respond to radiotherapy, and its 

application can be extended to a larger patient cohort. Since the patients in our current study 

are similar to those in the previous studies in terms of disease stage, tumor location, and 

prescription dose, we expect that P-net is also applicable and expandable to a larger patient 

cohort in a similar way as the geometric atlas. As we accumulate more patients through the 

ongoing clinical protocol or collaborations with external institutions, we will update the P-

net, and further improve its accuracy and robustness.

V. CONCLUSION

The proposed deep learning algorithm can capture and predict the spatial and temporal 

patterns of tumor regression in a longitudinal imaging study. It closely follows the clinical 

workflow, and could facilitate the decision making of ART. A prospective study including 

more patients is warranted.
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Figure 1. 
The patient specific weekly tumor volume changes during lung radiotherapy. The weekly 

changes are calculated with respect to the first week.
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Figure 2. 
(a) Design of a patient-specific deep learning algorithm (P-Net) for predicting tumor in 

future weeks of radiotherapy. (b) Block diagram of a 6-level deep CNN for extracting image 

feature in a longitudinal study.
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Figure 3. 
Performance of P-net peaks with a patch size of 45×45×3 measured by dice and RMSSD.
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Figure 4. 
Using the first two or three weekly MRI images as input (in the light gray box), predictions 

(images in the dark gray box) of tumor are made with P-net and deformable registration for 

patient #1. The initial week 1 contour, the actual tumor at a specific week, and the 

corresponding weekly prediction (via P-net or registration) are shown in red, yellow, and 

green, respectively.
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Figure 5. 
Dice coefficient of predictions made by P-net using first three weeks image data under the 

leave-one-out testing scheme.
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Table 1:

Characteristics of predictions made via P-net.

Predicting 3 future weeks based on first 3 weeks

Dice RMSSD (mm) Precision Sensitivity

Week 4 0.84±0.07 1.6±0.4 0.83±0.10 0.84±0.04

Week 5 0.74±0.21 2.3±1.5 0.74±0.22 0.76±0.20

Week 6 0.78±0.06 2.1±0.5 0.73±0.21 0.81±0.08

Predicting 4 future weeks based on first 2 weeks

Dice RMSSD (mm) Precision Sensitivity

Week3 0.76±0.11 2.4±0.5 0.77±0.14 0.75±0.08

Week 4 0.73±0.13 2.5±0.7 0.75±0.14 0.71±0.12

Week 5 0.67±0.19 3.3±1.5 0.66±0.20 0.68±0.18

Week 6 0.65±0.08 3.3±1.0 0.64±0.13 0.66±0.06
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