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ABSTRACT: Flavonoids are a large class of polyphenols widely distributed in plants in the free form or as glycosides, and they have
antioxidation, antibacterial, antitumor growth, and other pharmacological effects. As an important active component of traditional
Chinese medicine, they have high medicinal value and development prospects. In this work, the biomolecular properties of 10
common flavonoids, including baicalein, baicalin, apigenin, quercetin, naringenin, hesperetin, daidzein, genistein, puerarin, and
gastrodin, are studied by terahertz time-domain spectroscopy (THz-TDS) in the range of 0.2−2.5 THz. The results reveal that these
flavonoids have different characteristic absorption peaks in the terahertz band. Moreover, the terahertz absorption characteristics of
samples in the temperature range of 78−320 K are studied. The results show that the characteristic absorption peaks gradually
increase with the decrease in temperature, and the frequency position of the absorption peak has a slight blue shift. Furthermore,
qualitative identification and quantitative analysis of flavonoids are carried out by terahertz spectra combined with chemometrics.
Specifically, a series of mixtures of three flavonoids with similar molecular structures under various concentrations are analyzed. The
partial least-squares regression (PLSR) model and the artificial neural network (ANN) model are applied to quantitatively analyze
the ternary mixture. The results confirm that the ANN model obtains the best predicted value, with the root-mean-square errors in
the prediction set (RMSEP) of 1.27% for daidzein. In summary, the biomolecular properties of flavonoids are studied by the THz-
TDS technique, and a rapid, effective, and nondestructive method for qualitative identification and quantitative analysis of flavonoids
is provided. The results demonstrate that this method has potential application value in the detection of Chinese herbal medicine
and has better referential significance for the study of other biomolecules, especially for isomers or similar molecular structures.

1. INTRODUCTION

Flavonoids generally refer to a class of compounds formed by
two benzene rings connected by a central three-carbon chain.
They are a large class of polyphenols, which are widely found in
plants in the free form or as glycosides. They have antioxidation,
antibacterial, antiviral, antitumor growth, and other pharmaco-
logical effects. At present, it is often counterfeited and of low
quality in the market, which seriously disturbs the market order
and consumers’ health. To ensure the quality and safety of
medicines and protect the rights and interests of consumers, it is
essential to adopt a reliable and effective method for detection of
Chinese herbal medicine. Traditional analytical techniques, such
as high-performance liquid chromatography (HPLC),1,2 gas
chromatography (GC),3,4 and gas chromatography−mass
spectrometry (GC−MS),5 have been used to study the

biomolecules. However, these methods are costly, labor-
intensive, time-consuming, and require a large number of
solvents and reagents. Instead, vibrational spectroscopic
technologies, such as near-infrared (NIR),6,7 midinfrared
(MIR),8 and Raman spectroscopies,9 have been widely applied
in the detection of biological molecules.
Terahertz (THz) spectroscopy exploits a part of the

electromagnetic spectrum lying between the microwave and
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infrared region. In recent decades, it has emerged as a powerful
investigation technique with great potential for the analysis of
biological molecules. To date, it has already been used to analyze

DNA, proteins, and amino acids.10,11 THz spectroscopy is
commonly considered as being different from conventional far-
infrared spectroscopy because the terahertz response is coupled

Figure 1. Terahertz absorption spectra of (a) baicalein, (b) baicalin, (c) apigenin, (d) quercetin, (e) naringenin, (f) hesperetin, (g) daidzein, (h)
genistein, (i) puerarin, and (j) gastrodin in the range of 0.2−2.5 THz.
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with the collective behavior of molecules. Specifically, THz
absorption spectra contain numerous molecular vibrations,
including low-frequency bond vibrations and crystalline phonon
vibrations. Thus, the THz spectroscopy technique has been
extensively employed in the fields of biomedicine,12,13 material
science,14,15 and chemistry.16 Additionally, chemometric
methods in conjunction with THz spectroscopy have been
successfully used for qualitative and quantitative analysis.17−22

In this article, the biomolecular properties of 10 common
flavonoids, including baicalein, baicalin, apigenin, quercetin,
naringenin, hesperetin, daidzein, genistein, puerarin, and
gastrodin, are investigated by terahertz time-domain spectros-
copy (THz-TDS) in the range of 0.2−2.5 THz. Moreover, the
terahertz absorption characteristics of flavonoids in the
temperature range of 78−320 K are studied. Furthermore, we
perform qualitative identification and quantitative analysis of
flavonoids using terahertz absorption spectra combined with
chemometric methods, including principal component analysis
(PCA), support vector machine (SVM), partial least-squares
regression (PLSR), and artificial neural network (ANN). In
previous studies, some flavonoids were characterized by well-
distinct peaks in the THz frequency range, demonstrating the
feasibility of the THz technique.23,24 In this work, we investigate
a series of ternary mixtures based on genistein, naringenin, and
daidzein in various concentrations and perform quantitative
analysis for the mixtures of three flavonoids with similar
molecular structures, demonstrating the characteristics of a
terahertz fingerprint spectrum. The results indicate that THz
spectroscopy technique in combination with chemometrics is an
effective, sensitive, and nondestructive analytical approach for
the detection of biomolecules, especially for isomers or similar
molecular structures.

2. RESULTS AND DISCUSSION

2.1. Spectral Analysis. All flavonoid samples were
measured at room temperature using THz-TDS. To ensure
data accuracy, each sample was measured three times to get
average data. To remove the echo effect caused by reflections in
the sample, the time-domain waveform was cropped and zero-
padded prior to Fourier transform. In this work, the spectral
resolution is 10 GHz. After applying a Savitzky−Golay filter of
polynomial order 3 to data frames of length 9, the original time-
domain signal was calculated to obtain absorbance in the range
of 0.2−2.5 THz. The THz absorption spectra of 10 kinds of
flavonoids are shown in Figure 1. Although these flavonoids had
a similar molecular structure, each flavonoid had significantly
different characteristic absorption peaks in the terahertz band,
which reflects the characteristics of the terahertz fingerprint
spectrum of biological molecules. Indeed, baicalein has three

absorption peaks at 1.19, 1.79, and 2.18 THz. Baicalin has four
absorption peaks at 1.07, 1.4, 1.7, and 1.93 THz. Apigenin has
three absorption peaks at 0.63, 1.47, and 2.03 THz. Quercetin
has four absorption peaks at 0.7, 1.24, 1.68, and 2.16 THz.
Naringenin has four absorption peaks at 1.4, 1.58, 1.78, and 2.42
THz. Hesperetin has five absorption peaks at 0.73, 1.19, 1.46,
1.71, and 2.22 THz. Daidzein has five absorption peaks at 0.97,
1.24, 1.75, 2.04, and 2.39 THz. Puerarin has four absorption
peaks at 1.08, 1.28, 1.7, and 1.94 THz. Gastrodin has five
absorption peaks at 0.78, 1.02, 1.17, 1.61, and 2.02 THz. It
should be noted that biomolecules contained complex vibration
modes in terahertz bands, mainly vibration, rotation, and weak
intermolecular interactions, such as hydrogen bonds and van der
Waals forces. Therefore, the species of flavonoids can be
identified by the terahertz absorption spectrum.

2.2. Low Temperature. In this study, naringenin and
daidzein are investigated by THz-TDS within a temperature
range of 78−320 K. For naringenin, as shown in Figure 2a, the
three absorption peaks gradually increase and suffer a slight blue
shift with a decrease in temperature. The three absorption peaks
of naringenin at 1.4, 1.58, and 1.78 THz are blue-shifted to 1.42,
1.6, and 1.8 THz, respectively. Daidzein exhibits similar
behavior with the absorption peaks becoming sharper as the
temperature decreases. The three absorption peaks at 0.97, 1.24,
and 1.75 THz are blue-shifted to 0.98, 1.25, and 1.76 THz,
respectively. The intensities and frequency positions of THz
absorption peaks usually exhibit a temperature-dependent
change. Generally, the absorption peak becomes sharper with
the decreasing temperature mainly due to the temperature-
dependent changes in the distribution of the energy vibrational
states. The frequency shift of absorption peak position caused by
temperature is considered to be due to various mechanisms.
Among them, the blue shift was mainly due to the increase in the
bond length caused by thermal expansion and the anharmonicity
of vibrational potential, and the red shift was mainly due to the
interaction of weak intermolecular bonding forces such as
hydrogen bonds and van der Waals forces.33−36

2.3. Qualitative Analysis. In this article, the characteristic
variables were extracted from the original spectral data by the
PCAmethod. Figure 3 shows the three-dimensional score graph
obtained by principal component analysis of the absorption
spectra of all samples. Among them, the cumulative variance
contribution rate of the first five principal components exceeded
98%, representing the main information of the original data.
Therefore, the first five principal components can be extracted as
input variables of the SVM classification model. First, the
calibration set was used to establish the classification model of
the SVM. Then, radial basis kernel function (RBF) was applied
to optimize themodel, and the optimal parameters were selected

Figure 2. Absorption spectrum of naringenin (a) and daidzein (b) with the temperature change.
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by grid search with a parameter range of [−10, 10] and
parameter step of 0.5. When the variables c = 2 and g = 0.5, the
CV accuracy reached the highest value (100%). Finally, 10 kinds
of flavonoids were classified using a trained model in the
prediction set, resulting in a classification accuracy of up to
100%. Compared with the original spectral data as input
variables of SVM, we used PCA to extract the first five principal
components as input variables of SVM, which not only extracted
the characteristic variables but also improved the computational
efficiency and model accuracy.
2.4. Ternary Mixtures. In this study, we investigated the

quantitative analysis of ternary mixtures. Figure 6 displays the
distribution of the three mixture analytes, namely, genistein
(sample S1), naringenin (sample S6), and daidzein (sample
S11). Indeed, the absorbance spectrum of the sample naturally
contains the spectral features of the three pure analytes.
Nevertheless, it was not simply the weighted sum of the three
spectra related to the pure analytes.22 Consequently, it was
difficult to achieve a direct analysis of the unknown mixture
samples and this was themotivation for the use of chemometrics.
In this work, two regression methods were utilized to build a
quantitative prediction model for the concentration of the
ternary mixture. The regression model was established through
calibration set samples in the experiment, and then the
prediction set was used to evaluate the performance of the
model to predict the concentrations of samples. PLSR algorithm
was applied to simultaneously predict the concentrations of
these three analytes. The results are shown in Table 1. The
mixtures were predicted by the PLSRmodel with different latent
factors. In particular, because the sample was made of analytes
and high-density polyethylene (HDPE) powder with a ratio of
1:2, RMSE expressed the value of the analytes instead of the total
substance. It should be noted that the RMSE values for the three
analytes were above 2%.

We also employ ANN model for the quantitative analysis of
the samples presented above. In this work, a radial basis function
neural network (RBFNN) is used to establish the model, which
has a three-layer network composed of an input layer, a hidden
layer, and an output layer. First, normalization was applied for
the original spectral data as a preprocessing step. Then, all
spectral data from samples were introduced into the ANNmodel
as input neuron, and the hidden layer used RBF to calculate the
value of the activation function. Finally, the output layer
simultaneously provided the predicted result. The results are
presented in Table 2. It should be noted that the RMSE values
for these three analytes were lower than 2%, especially for
daidzein, which was 1.27%.

The prediction results are shown in Figure 4a−c. The figure
exhibits the relationship between the actual and predicted
concentrations of each flavonoid in the ternary mixture. The
error bars describe the relative standard deviation obtained after
the analysis of the three spectra of each sample in the prediction
set, and the oblique line (solid line) represents the fitting
equation. In the case of genistein, the error bars are a little large,
especially for 50 and 60% of concentration. In the case of
daidzein, the predicted values are very close to the actual values
and the error bars are very small compared to the ones obtained
for the other analytes. Comparing the prediction results of the
two models, it can be seen that the ANN model has a higher
correlation coefficient and lower root-mean-square error for
these three analytes.
It should be noted that the performance and robustness of

ANN regression have the best result than that of the PLSR
model. The reasons could be attributed to the multivariate
nonlinear relationship between the THz absorption spectra of
the samples and the ternary mixture. It is known that THz
absorption spectra contain numerous molecular vibrations,
including molecular rotations, low-frequency bond vibrations,
crystalline phonon vibrations, hydrogen bond stretches, and
distortions. These complicated vibrations lead to intrinsic
nonlinearity of spectrum−property relationship. Furthermore,
the absorbance spectrum of the sample naturally contains the
spectral features of the three pure analytes. Nevertheless, it is not
simply the weighted sum of the three spectra related to pure
analytes. These reasons are attributed to the ANN model
adopting a nonlinear optimization strategy. Therefore, the
results demonstrated that the THz absorption spectrum coupled

Figure 3. Three-dimensional score map of PCA for terahertz
absorption spectra of 10 flavonoids.

Table 1. Results of PLSR Model for Quantitative Analysis of Ternary Mixture

R2 RMSE (%)

model analyte latent factors calibration prediction calibration prediction

PLSR genistein 5 0.98 0.99 2.80 2.42
naringenin 6 0.99 0.99 2.33 2.14
daidzein 7 0.99 0.99 2.40 2.16

Table 2. Results of ANN Model for Quantitative Analysis of
Ternary Mixture

R2 RMSE (%)

model analyte prediction prediction

ANN genistein 0.99 1.63
naringenin 0.99 1.50
daidzein 0.99 1.27
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with ANN regression is a potential analytical approach for
analysis of a ternary mixture of flavonoids.

3. CONCLUSIONS
In this study, THz-TDS is used to investigate 10 kinds of
common flavonoids in the range of 0.2−2.5 THz band, and the
results reveal that they have distinct characteristic absorption
peaks. Then, the absorption characteristics of naringenin and
daidzein are investigated in the temperature range of 78−320 K,
and the results show that the characteristic absorption peaks
gradually increase with the decrease in temperature, mainly due
to the effect of dynamic distribution of vibration energy. The
blue shift of the absorption peak is mainly due to the thermal
effect and anharmonic vibration. In addition, the classification
and quantitative analyses of these flavonoids were carried out by

means of chemometrics. First, PCA was used to extract spectral
characteristic variables, and then the first five principal
components as input variables of SVM were classified and
identified. The optimal parameters were obtained through the
optimizationmodel, and the classification accuracy was 100%. In
addition, the PLSR and ANN regression models were used for
quantitative detection of the ternary mixture of flavonoids, and
the results showed that the ANN model obtained the best
predicted value, with RMSEP = 1.27% for daidzein. In
conclusion, we used the THz-TDS technique to study the
biomolecular characteristics of flavonoids in the terahertz band
and provided a fast, effective, and nondestructive classification
and quantitative analysis method combined with chemometrics,
which has practical application in the field of detection and
quality control of Chinese herbal medicine.

Figure 4. Predicted concentrations of genistein (a), naringenin (b), and daidzein (c) by PLSR (red, left vertical axis) and ANN (blue, right vertical
axis) versus the actual concentration values.

Figure 5. Schematic of the THz-TDS experimental equipment.
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4. EXPERIMENTS AND METHODS

4.1. Experimental Setup. In this study, the system uses a
diode-pumped mode-locked Ti/sapphire femtosecond laser,
with a center wavelength of 800 nm, a pulse width of 25 fs, and a
repetition rate of 84 MHz. The experimental setup is shown
schematically in Figure 5. The femtosecond laser was split by a
beam splitter into a pump and probe beam. On the pump side,
the pump beam through a time delay device reached the
antenna, which generated terahertz pulses that were collimated
and focused on the sample by parabolic mirrors. On the probe
side, the probe beam combined with the THz pulses through the
sample to reach the antenna, which detected THz signals.
Eventually, the measured signal was amplified by the phase-
locked amplifier to be fed into the computer for further
processing. Noticeably, the THz beam pathmust be purged with
dry nitrogen to reduce the absorption of water vapor in the air
and enhance the signal-to-noise ratio. The humidity was
maintained at less than 3%, and the temperature was kept at
298 K. In general, the amplitude and phase of the THz pulses
penetrating through the sample and reference can be measured.
Thus, the transmission coefficient can be obtained by calculating
the sample and reference spectra.10

4.2. Sample Preparation. In this work, we prepared 10
common flavonoids, including baicalein, baicalin, apigenin,
quercetin, naringenin, hesperetin, daidzein, genistein, puerarin,
and gastrodin. All samples are standard substances (analytical
grade, ≥99%) purchased from Sigma-Aldrich and J&K
Scientific. Before the experiment, all samples were stored at a
constant temperature in a humidity chamber without other
pretreatments. The experimental sample was prepared using the
powder pellet method. First, the sample was fully ground in an
agate mortar, and then fully mixed with high-density poly-
ethylene powder in a ratio of 1:2. Finally, a slice with a thickness
of 1 mm was prepared under a tablet press. In the analysis of
identification, 10 samples for each kind of flavonoid were
prepared, and a total of 100 samples were taken as the samples to
be tested. These samples were divided into a training set (30%)
and a prediction set (70%) using Kennard−Stone method, and
each sample was measured three times to obtain the average
value. In ternary mixture analysis, we prepared a series of 42
samples. The three selected pure analytes were genistein,
naringenin, and daidzein. Figure 6 displays the 42 samples inside
a ternary diagram with each pure analyte as a pole. The samples

were selected as follows: 3 of them contained only one pure
analyte and were consequently displayed at the three poles of the
triangle, 12 samples contained different mixtures of two pure
analytes among the three and were consequently displayed on
the three sides of the triangle, and finally, 27 samples contained
different mixtures of the three pure analytes and were
consequently displayed inside the triangle.22 For example, S39
contained 50% genistein, 20% naringenin, and 30% daidzein, but
it should be noted that all of these samples were mixed with
HDPE in a ratio of 1:2. Additionally, 10 copies of each sample
were prepared, corresponding to 10 spectral data. In the
establishment of quantitative models, each kind of sample
containing 10 spectra was divided into a calibration set (70%)
and a prediction set (30%) using Kennard−Stone method.
Thus, the calibration set was made of 294 spectra, and the
prediction set was composed of 126 spectra.

4.3. Chemometric Methods. 4.3.1. Principal Component
Analysis. The principal component analysis is a multivariate
statistical method that can be used to extract feature variables
and reduce the dimensionality of the data without decreasing
their variance. PCA is an orthogonal transformationmethod that
changes the original correlated variables to uncorrelated
components, which are named principal components (PCs),
namely, a linear combination of the original variables. The first
PC (PC1) contains the largest amount of variance and the
subsequent PCs contain progressively less variance.25

4.3.2. Support Vector Machines. The support vector
machines, originally designed as a two-class classifier, can
solve both linear and nonlinear multivariate calibration
problems, which have been widely applied in machine learning,
biometrics, and chemometric fields. Compared with other
statistical methods, SVM does not require a large number of
training samples for modeling.26,27 In addition, a support vector
classifier (SVC), which is specially used for classification, is a
type of SVM. Generally, the standard SVC model is a binary
classifier. In the case of multiple classifications, SVC can be
extended to a multiclass classification by a one-versus-one
method. Specifically, a SVC model is established between any
two types of samples, hence there are k(k − 1)/2 SVC models
for k types of samples. When an unknown sample is classified,
the label with the most votes is the category of the unknown
sample. In this work, a multiclass SVC was applied to establish
the classificationmodel in the calibration set, a radial basis kernel
function was employed to optimize the model, and a grid search
method using 5-fold cross-validation was adopted to find the
optimal parameters (regularization parameter c and the kernel
parameter g) by which the model can achieve the best forecast
results. To evaluate the performance of the established models,
the CV accuracy was employed to evaluate the developed
model’s performance.

4.3.3. Partial Least-Squares Regression. Concerning multi-
variate linear regression techniques, partial least-squares
regression is the most widely used regression technique for
spectroscopic data analysis. PLSR decomposes the predictor
variables (spectral data) and response variables (Y-values)
simultaneously to maximize the covariance between them by
compressing the original data into latent factors. In this case, Y-
values were ascribed to each sample according to the
concentration of the ternary mixture in each formulation.
Theory and more details about PLSR regression can be found in
the literature.28,29

4.3.4. Artificial Neural Networks.An artificial neural network
is a well-known nonlinear method of chemometrics. Radial basis

Figure 6. Ternary diagram displaying the 42 samples analyzed by THz
spectroscopy.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c01706
ACS Omega 2020, 5, 18134−18141

18139

https://pubs.acs.org/doi/10.1021/acsomega.0c01706?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c01706?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c01706?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c01706?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c01706?ref=pdf


function neural network is a feedforward neural network with
strong adaptive learning and fast local optimization, which has
been widely used in nonlinear systems. RBFNNmodel is a three-
layer forward local network, including an input layer, a hidden
layer, and an output layer. In the analysis of spectra, spectral data
were introduced into the ANN model as input neuron, and the
hidden layer was the neuron using radial basis function to obtain
the activation function, and the output layer gave the predicted
values.30,31

In the process of qualitative modeling, the samples were
divided into a calibration set and a prediction set. Additionally,
the performance of the model was evaluated by the coefficient of
determination and root-mean-square errors in the calibration
(i.e., Rc

2, RMSEC) and the prediction set (i.e., Rp
2, RMSEP).

The calculation formulas for R2 and RMSE can be found in the
literature.32
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