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Purpose: To enable rigid body motion-tolerant parallel volumetric magnetic  
resonance imaging by retrospective head motion correction on a variety of spati-
otemporal scales and imaging sequences.
Theory and methods: Tolerance against rigid body motion is based on distributed 
and incoherent sampling orders for boosting a joint retrospective motion estimation 
and reconstruction framework. Motion resilience stems from the encoding redun-
dancy in the data, as generally provided by the coil array. Hence, it does not require 
external sensors, navigators or training data, so the methodology is readily applicable 
to sequences using 3D encodings.
Results: Simulations are performed showing full inter-shot corrections for usual lev-
els of in vivo motion, large number of shots, standard levels of noise and moderate 
acceleration factors. Feasibility of inter- and intra-shot corrections is shown under 
controlled motion in vivo. Practical efficacy is illustrated by high-quality results in 
most corrupted of 208 volumes from a series of 26 clinical pediatric examinations 
collected using standard protocols.
Conclusions: The proposed framework addresses the rigid motion problem in volu-
metric anatomical brain scans with sufficient encoding redundancy which has ena-
bled reliable pediatric examinations without sedation.
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1  |   INTRODUCTION

Tolerance against motion is desirable in magnetic resonance 
imaging (MRI). This includes brain MRI, where significant 
motion-induced image degradation prevalence has been 
documented1 and high-resolution imaging quality may be 
compromised by head motion.2 Rigid-body MRI motion cor-
rection3,4 can be tackled via prospective or retrospective tech-
niques. Prospective techniques5 compare advantageously in 
terms of spin-history, dephasing confounders, or k-space den-
sity guarantees. Particularly, optical tracking systems have 
been proposed for head motion estimation, with corrections 
showing impressive accuracy and latency.6 However, pro-
spective methods require additional hardware and/or scanner 
modifications, often involving intrusive markers attached 
to the subject. In addition, satisfactory corrections may not 
always be possible due to unpredictability or complexity of 
motion, or maximized sampling efficiency requirements. 
Retrospective techniques may facilitate scanning or improve 
prospective results,7 particularly for 3D encodings, where 
spin-history is less of a problem, and when using nonlinear 
reconstruction paradigms8 to deal with nonhomogeneous 
sampling density after motion.

Motion compensation is strongly dependent on motion es-
timation from the measured information. Some methods have 
proposed the use of navigators, where surrogate motion-sen-
sitive information is interleaved with the main acquisition and 
correction is applied either prospective or retrospectively.9-11 
Due to variability in time requirements for different MRI se-
quences, application of a given navigator is usually limited to 
a specific sequence type. Furthermore, particular care has to 
be taken to prevent spin-history or saturation and, sometimes, 
scanning efficiency may be compromised. Alternatively, se-
quences can be constructed with relative resilience to motion 
or, similarly, sampling schemes can be designed to function 
as implicit navigators. This is the case for spiral and radial 
trajectories,12-14 where temporally distributed low-resolution 
information is used for motion estimation, with retrospective 
corrections usually grounded on an intermediate reconstruc-
tion of fully formed images for each motion state, often in-
volving nonlinear methods. Finally, other approaches have 
explored the redundancy of the information sensed by par-
allel MRI to detect and discard localized inconsistencies in 
k-space measurements,15 usually requiring prior image mod-
els to limit noise amplification and improve inconsistency 
detection.16

Building on models of MRI acquisition in the presence 
of motion,12,17 some methods have proposed formulations for 
motion estimation from the k-space that do not require navi-
gators.18-20 Our previous work20 introduced a data-driven re-
construction method for retrospective multi-shot rigid-body 
motion correction or aligned reconstruction taking advantage 
of the encoding redundancy in the measured data. Performed 

simulations showed that the ability to solve the aligned re-
construction problem is strongly sensitive to the k-space 
encoding order, which suggested that opportunities exist to 
maximize the sensitivity to motion by appropriate sampling 
order designs. Consequently, in this paper we introduce the 
Distributed and Incoherent Sample Orders for Reconstruction 
Deblurring using Encoding Redundancy (DISORDER) 
framework as a flexible way to correct for head motion on a 
variety of spatiotemporal scales and imaging contrasts by op-
timizing the sample orders for k-space coverage. In addition, 
we propose some technical refinements to the aligned re-
construction formulation and extend the simulation domain. 
The technique is implemented on a 3 T scanner and tested on 
controlled motion scans and pediatric examinations includ-
ing magnetization-prepared rapid acquisition gradient echo 
(MP-RAGE), fast spin echo (FSE), fluid attenuated inver-
sion recovery (FLAIR), spoiled gradient echo (SPGR), and 
balanced steady-state free precession (bSSFP) sequences. 
A MATLAB implementation to reproduce the experiments 
is made available at https​://github.com/mriph​ysics​/DISOR​
DER/relea​ses/tag/1.1.0.

2  |   THEORY

2.1  |  Aligned reconstruction

Assuming whitened measurement noise,21 the aligned recon-
struction for parallel volumetric imaging can be formulated 
as: 

where x is the image to be reconstructed, θ are the motion pa-
rameters, r is the loss function, y is the measured k-space data, 
T is a set of rigid motion transformations, S are the coil sensi-
tivities,   is the discrete Fourier transform (DFT), and A is a 
sampling mask. We are interested in reconstructing a 3D image 
of size V = V1V2V3 with Vd the number of voxels along dimen-
sion d from N = C

∑M

m= 1
Em C-element coil array samples of 

a discretized k-space grid of size K. Em denotes the number of 
samples within segment m and M is the number of segments in 
the sequence, with each segment associated to a specific mo-
tion state. Detailed information about the terms in Equation 1 
can be found in.20 Here we provide a brief description of their 
structure:

1.	 y is a N  ×  1 vector.
2.	 A is a N × KMC block matrix comprising submatrices of 

size Em × K whose entries take the value 1 if the sample 
e of the segment m corresponds to the k-space location 
indexed by k and 0 otherwise.

(1)(x̂, �̂)= argmin
x,�

rx,� = argmin
x,�

‖AST
�
x−y‖2

2
,

https://github.com/mriphysics/DISORDER/releases/tag/1.1.0
https://github.com/mriphysics/DISORDER/releases/tag/1.1.0
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3.	  is a KMC  ×  VMC block diagonal matrix comprising 
submatrices of size K  ×  V representing 3D DFT’s with 
applied k-space sampling.

4.	 S is a VMC × VM block matrix comprising diagonal sub-
matrices of size V  ×  V whose diagonal elements corre-
spond to the spatial sensitivity of the coil c.

5.	 T is a VM × V block matrix comprising unitary22 subma-
trices of size V × V corresponding to the 3D rigid transfor-
mation modeling the motion state m by three translations 
and three Euler rotation angles codified in the parameter 
vector �m.

6.	 x is a V × 1 vector.

Equation 1 is a separable nonlinear least squares prob-
lem.23,24 We confront it by iteratively addressing the 
subproblems: 

The first subproblem, reconstructing the image x in the pres-
ence of rigid motion,17 can be solved by conjugate gradient 
(CG).21 As for the second, the solution must null the gradient 
of the objective function against the motion parameters,20 
which is tackled by a Levenberg-Marquardt (LM) algorithm 

using a simplified Jacobian.25 A natural initialization is a 
zero-motion condition �̂(0)

= 0, so the first step corresponds 
to a standard sensitivity encoding (SENSE) reconstruction. 
Further in this paper, we describe how to temporally arrange 
the k-space samples into segments to improve the aligned 
reconstruction convergence.

2.2  |  DISORDER sampling

We focus on Cartesian 3D k-space grids with uniform sam-
pling as sketched in Figure 1. Figure 1A shows K1 = 4 
collected samples after the first readout or profile in the k1 
direction. Figure 1B shows the first segment, in this exam-
ple corresponding to the full acquisition of the k1-k2 plane.  
Figure 1C shows that segments can be used to define an or-
dered partition of the k1-k2-k3 grid. Due to short duration, we 
assume negligible motion during the readout and focus on 
the phase encode (PE) plane in Figure 1D. We define EPE

m
 

as the number of profiles per segment, so EPE
m

= Em∕K1, and 
hereinafter we adopt the replacement Em ←EPE

m
.

By modifying the PE gradients before each readout, 
it is possible to design different encoding or view orders. 
These can be defined as a temporally ordered set of profiles 
p∈ = {(k

1,1

2
, k

1,1

3
), … , (k

1,E1

2
, k

1,E1

3
), … , (k

M, EM

2
, k

M,EM

3
)} 

with cardinality P = �� =
∑

m Em. Figure 2A shows the first 

(2)
x̂

(i+1) = argmin
x

‖AST
�̂

(i) x−y‖2
2

�̂
(i+1)

= argmin
�

‖AST
�
x̂

(i+1)−y‖2
2
.

F I G U R E  1   Sketch of volumetric sampling for an exemplary K = 4 × 4 × 4 space (in radians). A, Measured samples after acquiring the first 
readout. B, Measured samples after acquiring the first segment. C, Measured samples after whole sequence acquisition with color coding used to 
differentiate each segment. D, View of the k2-k3 PE plane

F I G U R E  2   Example of segments for different encoding orders to cover a P = K2K3 PE plane (in radians) with K2 = K3 = 32 using an 
acquisition partitioned into M = 16 segments with equal number of profiles per segment Es = E = P∕M = 64. Full set of profiles to cover the 
PE plane as red circles, profiles within a segment filled in blue, underlying tilings (U2 = U3 = 4) in purple, samples at half the spatial resolution 
enclosed in cyan, and areas covered by four intra-segment temporal subdivisions of considered segment enclosed in yellow. A, Sequential;  
B, Checkered; C, Random-checkered; and D, Random traversals
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segment of a commonly used Sequential ordering scheme. 
In this case, due to the partition definition, a segment in-
cludes two consecutive k3 planes. Figure 2B, introduces 
the Checkered traversal. First, a rectangular tiling of the PE 
plane is built using tiles of size U2 × U3 such that U2U3 = M. 
Second, a spectral lexicographic order for the profiles within 
a tile U is defined by U →U = {1, … , M}, which can 
be extended to different tiles by translation. Third, interleaved 
segments are defined such that the same profile mu ∈U is 
used ∀e∈ = {1, … , E}, with  a temporally ordered set of 
tiles. Finally, the profile sequence to traverse each tile is de-
fined by mapping from the set of profiles within a tile to a tem-
porally ordered set of segments U →T = {1, … , M} 
using an electrostatic repulsion criterion with periodic bound-
ary conditions. Hence, a distributed temporal coverage is 
guaranteed both for the whole spectrum and within each tile. 
This strategy aids the aligned reconstruction conditioning by 
reducing the chances for large uncovered spectral areas due 
to head rotation. Figure 2C presents the Random-checkered 
modification. Tiles are built as in the Checkered approach but 
segments are constructed by a random permutation of the tile 
elements drawn independently for each tile, so we have mue

. 
This guarantees a distributed coverage in probability and in-
troduces some incoherence among profiles within and across 
segments. Figure 2D shows a Random view order where  

is a random permutation of the profiles conforming the se-
quence. Note that, considering a free definition of segments, 
Sequential and Random schemes are particular cases of the 
Random-checkered traversal respectively with tiling sizes of 
1 × 1 and K2 × K3.

View orders should preserve the contrast and the trajec-
tory consistency. We establish the following differentiation:

1.	 Non-steady-state sequences (MP-RAGE, FSE, FLAIR). 
They acquire a fraction of the k-space or shot after 
each radiofrequency (RF) preparation. Thus, they induce 
a natural sampling partition where segments are in cor-
respondence with shots. In addition, magnetic properties 
are not invariant for the different shot samples. Typically, 
middle samples within each shot cover the central area 
of the spectrum,26 which our orders can fulfill by jump-
ing from tile to tile in a Zig-zag manner. An example 
is shown in Figure 3 using an elliptical sampling area. 
The Checkered traversal produces regular segment pat-
terns (first column), with neighboring colors maximally 
separated within the tile, whereas the Random-checkered 
traversal produces non-regular patterns. Tiling orders gen-
erate smooth color transitions across the spectrum for 
all presented traversals (second column), which translates 
into smooth magnetic properties of the profiles.

F I G U R E  3   Segment m and tiling e temporal orders together with trajectory derivatives dk2 and dk3 (left to right) for Zig-zag tiling orders used 
in non-steady-state sequences. The example corresponds to a case with P = 3630 profiles, M = 30 segments, and tiling pattern U2 × U3 = 6 × 5.  
A, Sequential; B, Checkered; and C, Random-checkered segments
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2.	 Steady-state sequences (SPGR, bSSFP). They produce a 
temporally stable magnetization after reaching the steady-
state, usually facilitated by some preparatory dummy pro-
files, so the contrast becomes independent of the encoding 
order. For estimates attempted at the segment level, tem-
poral resolvability of motion will increase with bigger til-
ing sizes U2U3. However, large jumps in the spectrum may 
induce inconsistencies due to eddy currents, especially for 
low repetition times, so a trade-off may be required. If 
the profiles are covered by the application of M spectral 
sweeps, analogously to,27 eddy currents can be minimized 
by an Alternating zig-zag tiling order where the traversal 
polarity is reversed for consecutive sweeps. This is illus-
trated in Figure 4. The segment structure (first column) 
matches that of Figure 3 but for some minor differences in 
the Sequential case due to smooth magnetization require-
ments in shot-based sequences.26 The Sequential scheme 

guarantees a smooth passage through k-space (third and 
fourth columns). Although quicker k-space sweeps of our 
traversals imply larger dk2 and dk3 steps, these remain sub-
stantially lower than for the Random order, which should 
limit the impact of eddy currents. Finally, the Alternating 
zig-zag suppresses the undesirable spikes in the fourth 
column of Figure 3.

2.3  |  Aligned reconstruction refinements

We propose a series of refinements for improved and more 
efficient aligned reconstructions:

1.	 Spatial multiresolution. The spatial and spectral grids for 
both subproblems in Equation 2 can be refined according 

F I G U R E  4   Segment m and tiling e temporal orders together with trajectory derivatives dk2 and dk3 (left to right) for Alternating zig-zag 
tiling orders used in steady-state sequences. The example corresponds to a case with P = 3630 profiles, M = 30 segments and tiling pattern 
U2 × U3 = 6 × 5. A, Sequential; B, Checkered; C, Random-checkered; and D, Random segments
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to a given multiresolution pyramid as commonly used 
in image registration.28 In contrast to sequential sam-
pling, the proposed orders allow for motion estimates 
from samples at coarse scales (area enclosed in cyan 
in Figure 2) to be completely exploited when recon-
structing at fine scales. This is useful for quick aligned 
reconstructions as adequate motion estimates are often 
possible at coarse scales.

2.	 Temporal multiresolution. Motion estimation can also be 
attempted at intra-shot (or intra-sweep) levels (for instance 
using the samples enclosed within the yellow areas for the 
four intra-segment subdivisions in Figure 2). However, esti-
mates using low-spatial harmonics localize the structures at 
coarse scales only and, conversely, motion estimation using 
high-spatial harmonics alone is limited by lower SNR and 
prone to local optima. These limitations can be alleviated 
using hierarchical estimation refinements by temporally 
subdividing the samples considered by the motion states 
within a shot in a coarse-to-fine manner.

3.	 Coil compression. The two subproblems in Equation 2 
can operate on a reduced number of virtual channels.29

4.	 Motion compression. The reconstruction subproblem com-
plexity grows with the number of motion states, which can 
be reduced by motion compression or binning. Estimated 
motion parameter traces are approximated using piecewise 
constant functions by Haar wavelet decomposition trunca-
tion with threshold τ. Thereby,  original motion states are 
packed into effective states by grouping together those 
contiguous states with similar motion parameters into an ef-
fective motion parameter vector 𝜽̃. Thus, the reconstruction 
complexity is driven by the underlying motion complexity.

5.	 Robustness. Accurate intra-shot corrections may be 
infeasible, for instance due to temporary inconsisten-
cies in the magnetization. Denoting the real motion pa-
rameters by �∗, we can ideally characterize the loss rx,�∗ 
using the sampling noise properties. Sampling noise 
follows a circularly symmetric complex Gaussian ad-
ditive stationary distribution and, after whitening, it 
is independent across channels, so the losses  per pro-
file r[m, em] =

∑
c,k1

r[m, em, c, k1] should ideally follow 
a �2 distribution. To account for the sensitivity of the 
residuals to the underlying signal, we use trimmed sta-
tistics on a logarithmic scale rb[m] = P

�m

c(b)
log (r[m, em]) 

with b  ∈  1,  …B indexing the 100c(b)  % centile Pc of 
the loss  distribution through k-space �m. As we are 
concerned with anomalously high residuals, robust es-
timates of the scale and mean of the statistic distribu-
tion across segments � are obtained respectively by 
�b =

√
2(P�

cU
rb[m]−P�

cL
rb[m])∕(erfc−1(2cU)−erfc−1(2cL)) 

and �b = P�

(cU+cL)∕2
rb[m]+

√
2�berfc−1(cU+cL) choosing  

cU = 0.25 and cL = 0.125. Using these estimates, 
the statistics are normalized and averaged into 
r[m] =

∑
b (rb[m]−�b)∕B�b, and segments are weighted 

in the reconstruction by a matrix W with entries 
w[m] = min (M erfc(r[m]∕

√
2)∕(2�w), 1), with �w an ac-

ceptance threshold corrected for multiple comparisons.
6.	 Regularization. If outlier segment rejection is activated 

or the reconstruction is applied to accelerated scans, some 
form of regularization may be advisable. This is consid-
ered by reformulating the reconstruction as: 

where λ controls the degree of regularization and  corre-
sponds to a shearlet decomposition, which provides nearly op-
timal approximation rates for piecewise smooth functions with 
discontinuities on a piecewise smooth surface.30 We resort to 
an iteratively reweighted least squares (IRWLS) solver, able 
to produce high-quality solutions in a few iterations,31 with λ 
adaptively updated according to32 using a normalized Rayleigh-
quotient trace estimator.33

3  |   METHODS

3.1  |  Synthetic experiments

Our contributions are validated using a synthetic dataset built 
from a T2 neonatal brain axial ground truth (GT) image without 
perceptible motion artifacts. This corresponds to a multi-slice 
TSE sequence acquired on a 3 T Philips Achieva TX (same 
scanner as for in-vivo tests) using a C = 32-element neonatal 
head coil array, 0.8 × 0.8 mm in-plane resolution, 1.6 mm slice 
thickness, echo time TE = 145 ms, repetition time TR = 12 s, 
and flip angle � = 90◦. Coil sensitivities were estimated from 
a separate reference scan.34 We use a 2D dataset and no regu-
larization or outlier rejection for a concise presentation of re-
sults. We assume that the simulated 2D k-space corresponds to 
the k2-k3 PE plane of 3D scans and expect the driving conclu-
sions to be extensible to 3D because estimates should be easier 
along the missing fully sampled readout direction.

Simulations were conducted to compare the conven-
tional sequential order to the various proposed schemes 
as well as to characterize their performance. The forward 
model in the presence of rigid motion is applied to the GT to 
generate synthetically motion corrupted data. Synthesized 
measures are corrupted with noise levels corresponding to 
a mean SNR of 30 dB for reconstructions in the absence 
of motion or acceleration. Different degrees of motion are 
generated by drawing independent motion states uniformly 
at random on an interval of rotations [−θ/2, θ/2] around the 
field of view (FOV) center. Satisfactory convergence in the 
presence of noise can be ascertained on the assumption of 
an identifiable global optimum basin by rx̂, �̂≤ rx̂,�∗. In this 
case, the error in the motion parameters �̂−�

∗ is attributed 

(3)x̂
(i+1) = argmin

x

‖W1∕2(AST
�̃

(i) x−y)‖2
2
+2𝜆‖x‖1,



      |  719CORDERO-GRANDE et al.

to the uncertainty from the measurement noise and not to 
partial convergence. Note that we can generally achieve a 
lower loss for the joint problem (rx̂, �̂) than with the knowl-
edge of the motion parameters (rx̂,�∗) due to the larger com-
plexity of the former. Reconstructions are terminated when 
rx̂, �̂≤ rx̂,�∗ and the abscissa scale of the convergence plots 
was chosen so that iterations have a direct translation into 
computational costs.

3.2  |  In vivo experiments

In vivo experiments include the main families of volu-
metric sequences for brain MRI (see Table 1). We have 
performed a controlled motion experiment on a consented 
adult volunteer and applied the method to replace sedation 
on pediatric subjects scanned after written informed pa-
rental consent for an epilepsy study. Imaging is performed 
using a 32-channel adult head coil. Data are acquired in the 
inferior-superior (IS) k1, anterior-posterior (AP) k2 and left-
right (LR) k3 orientation using our scanner implementation 
of the Random-checkered traversal. This way, potentially 
strongest rotations on the sagittal plane are captured by the 
k1-k2 coordinates, which may increase the resolvability of 
intra-shot motion. In addition, IS readouts allow to easily 
downweight additional motion sources within the FOV 
when estimating for motion by restricting the loss function 
to the superior part of the FOV (2/3 in our implementa-
tion). Finally, this orientation facilitates nonselective RF 
excitation pulses for shorter TR.

In the controlled motion experiment, the volunteer was 
first scanned without deliberate motion, and then asked to 
perform extreme and continuous motion for the entire scan, 
which was repeated three times. Reconstructed volumes are 
jointly registered together for error comparisons. The pedi-
atric cohort includes 26 subjects ranging from 3 to 19 years 
old (mean ± SD of 12 ± 5 years), typically acquiring one 
MP-RAGE, TSE, and FLAIR, two SPGRs, and three bSSFPs 
for an approximate total of 208 tested volumes across all par-
ticipants. Strongest artifacts in our data are generally arising 
from motion, so the reported case has been separately chosen 
for each modality as the most artifacted after reconstruction 
without motion correction.

3.3  |  Implementation details
In the in vivo experiments sensitivities are compressed into 
a number of channels corresponding to a 10% SNR loss. 
The number of resolution levels is defined as 
L =

⌊
log2 (4 mm∕Δmin

y
)
⌋
+1, with ⌊·⌋ denoting the biggest 

integer lower or equal than the argument and Δmin
y

 the mini-
mum of the voxel sizes along different directions. As we 
use 2  ×  subsampling ratios, we operate at a minimum T
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resolution of 4 mm. In the first iteration at level l, a soft-
masked35 full CG reconstruction is run till loss reduction 
saturation. Then, the method quickly alternates between 
reconstruction and motion correction using one CG and 
one LM iteration with heuristically updated damping and 
line search. We activate a flag for provisional convergence 
of the parameters of a given motion state when the  
maximum update is smaller than a threshold 
�Δ� = {0.05, 0.02◦mm−1}Δmax

yl
, with same values used for 

motion compression. This saves computations by consider-
ing motion updates only on not-converged parameters. 
However, this flag is reset to 0 whenever i = n(n−1)/2+1 
(n∈ℕ> 0) to account for the impact of the updated recon-
structions in the motion parameter estimates. Joint conver-
gence is achieved when provisional convergence is 
achieved for all motion states. Then, the method runs a full 
CG reconstruction with the consolidated motion parame-
ters. If regularized outlier rejection reconstructions are  
activated, artifacted segments are rejected at levels l  
such that Δmax

yl
≤2 mm by densely sampling within 

[c(1), c(B)] = 0.5+ (0.35∕max (Δmax

yl
, 1))[−1, 1] and using 

�w = 0.05. If regularization is applied, shearlets are de-
signed based on36 and a final reconstruction is launched 
with 3 CG iterations within 2 updates of the IRWLS-
induced cost function and λ. Reconstructions are performed 
on a 8(16) × Intel(R) Core(TM) i7-5960X 3.00 GHz CPU, 
64 GB RAM, GeForce GTX TITAN X GPU. For further 
implementation details, readers can refer to the source 
code.

4  |   RESULTS

4.1  |  Validation

In Figure 5, we compare different simulated reconstruction 
scenarios showing the losses when iterating the method, 
r

x̂(i+1), �̂
(i) as solid-colored lines with joint iterations represented 

by markers. Losses in the convergence plots are normalized 
to the minimum of the reference levels rx̂,�∗, which are shown 
as dashed lines strongly overlapped for the different alterna-
tives. Figure 6 includes reconstructions with and without mo-
tion correction for different reconstruction scenarios and 
provides absolute value error maps and mean SNR for the 
compared cases.

4.1.1  |  Encoding orders

Figure 5A compares the Sequential, Checkered, Random-
checkered, and Random traversals. Global convergence is 
achieved for all considered M and θ when using any of the 

Checkered, Random-checkered, or Random traversals. In 
contrast, when using the Sequential order, the method con-
verges to a local optimum or fails to converge in the pre-
scribed iterations except for �∈{2◦, 5◦}/M = 4. The loss at 
the first iteration r

x̂(1), �̂
(0) is always bigger when using nonse-

quential traversals. This increased inconsistency in the meas-
urement domain relates to the aligned reconstruction 
sensitivity to motion degradation.

Figure 6A shows reconstructions and errors with and with-
out motion correction for the Sequential and Random-checkered 
traversals together with GT motion-free reconstructions. 
Motion-corrected reconstructions using the Random-checkered 
data appear similar to the GT despite the strong blurring in 
uncorrected reconstructions. This is confirmed by the lack 
of perceptible structure in the residuals and a moderate noise 
amplification. In contrast, corrections using the Sequential tra-
versal provide only a modest visual benefit.

4.1.2  |  Multiresolution

Figure 5B compares the Checkered, Random-checkered, and 
Random traversals when using a single scale for joint mo-
tion estimation and reconstruction (L = 1) and when first ap-
proximating the motion solution at half the acquired resolution 
to initialize the joint problem at full resolution (L = 2). The 
Sequential traversal was excluded because, as discussed when 
introducing the multiresolution strategy, it has no opportunity 
to improve from the poor relative performance showed in  
Figure 5A by exploiting multiresolution. Plots also include rx̂,�∗ 
at the coarse scale. Global convergence is achieved for all travers-
als at all considered configurations except at M = 256/� = 20◦.  
However, the multiresolution strategy (L = 2) achieves global 
convergence in less iterations or provides a solution with lower 
residuals (M = 256/� = 20◦). For moderate levels of motion, 
convergence is generally quick. For instance, it takes approxi-
mately 10 joint iterations i when using the Random-checkered 
traversal in a case where random excursions of up to � = 10◦ 
are imposed in every one of the M = 256 segments, probably a 
more challenging scenario than expected in practice.

4.1.3  |  Acceleration

Figure 5C tests the ability of the Checkered, Random-
checkered, and Random traversals (using L  =  2 scales) to 
operate in uniformly accelerated regimes as given by differ-
ent acceleration factors R. We observe convergence to the 
global solution in all tested scenarios aside from the Random 
traversal at R = 2 × 2/M = 16/� = 20◦. Considering all con-
ducted simulations, the random checkered traversal is gener-
ally providing the quickest solutions.
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Figure 6B provides an example of reconstructions and er-
rors in the absence of motion, with known motion and with 
estimated motion at R = 1 × 1 and R = 2 × 2. The SNR fig-
ures for R = 1 × 1 and known motion show a degradation of 
1.56 dB with respect to the reference due to noise amplifica-
tion from nonuniform effective k-space sampling after motion. 
No further degradation is introduced from motion estimation 
errors, as approximately the same SNR figures are obtained 
for known and estimated motion. R = 2 × 2 acceleration in 
the absence of motion introduces a degradation of 9.20 dB 

with respect to the reference, which stems from the reduced 
number of samples and the g-factor.37 The presence of motion 
adds further degradations quantified as 4.36 dB, thus stronger 
than in the non-accelerated case. Therefore, without regular-
ization, the limiting reconstruction quality in the presence of 
motion decreases with larger distances between neighboring 
k-space points. Finally, accelerating the scan has also an im-
pact in the uncertainty of motion estimates, as we observe 
a degradation of 1.40 dB from known to estimated motion, 
although the errors show no perceptible structure.

F I G U R E  5   Aligned reconstruction convergence against effective iterations j defined as a single application of the encoding or decoding 
operator for a single motion state and coil channel at full resolution. A, Different encoding orders, number of segments M ∈ {4, 64} (rows),  
motion levels �∈{2◦, 5◦, 10◦} (columns), jmax = 20000. B, Different encoding orders and number of multiresolution levels L, number of segments 
M ∈ {16, 256} (rows), motion levels �∈{5◦, 10◦, 20◦} (columns), jmax = 200000. C, Different encoding orders, L = 2, acceleration factors 
R ∈ {1 × 1,2 × 2} with matched number of segments M ∈ {64, 16} (rows), motion levels �∈{5◦, 10◦, 20◦} (columns), jmax = 200000
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4.2  |  Redundancy for motion tolerance

Figure 7 compares reconstructions without correction, with 
inter-shot corrections and when activating intra-shot correc-
tions in the presence of extreme motion during in vivo data 
acquisition. Intra-shot corrections are triggered by subse-
quent temporal binary subdivisions of the sampled informa-
tion within each shot until 16 motion states are estimated per 
shot. We show reconstructions without deliberate motion (GT 
reconstructions), and reconstructions and absolute differences 
with respect to the GT using Q = 1, Q = 2, and Q = 3 repeats 
under extreme motion (Extreme motion reconstructions/ 
errors, Q = {1, 2, 3}). Results for Q = 1 and Q = 2 correspond 
to the first repeats, with no remarkable differences observed 
when choosing any other combination. Reconstructions are 
provided without regularization or outlier rejection. Results 
without deliberate motion show that inter- and intra-shot 

corrections do not reduce the reconstruction quality, which 
demonstrates a safe application of generalized reconstructions 
in the absence of motion. Degradation is noticeable for uncor-
rected reconstructions in the presence of motion for all values 
of Q, although with less coherent ghosts as Q increases due 
to incoherent blurring by Random-checkered motion averag-
ing. Inter-shot corrections increase the reconstruction quality 
in all cases, with more finely resolved cortical structures as 
Q increases but with noticeably inferior quality than without 
deliberate motion. Residual degradation is only partially ac-
counted when using intra-shot corrections on a single repeat, 
but can be more satisfactorily addressed with Q = 2 and even 
more with Q = 3. Namely, the level of deblurring in the fourth 
and sixth columns of Figure 7C makes corresponding recon-
structions visually comparable to those of the first column 
despite the extreme and continuous motion (estimated excur-
sions up to 25◦). Thus, we can reason that powerful tolerance 

F I G U R E  6   Reconstruction results (A) without and with motion correction for Sequential and Random-checkered traversals compared to the 
GT (top row) and corresponding error maps (bottom row) for M = 64/� = 10◦ and (B) for a Random-checkered traversal without motion, and with 
known and estimated � = 10◦ motion for R = 1 × 1 and R = 2 × 2 (top row) and corresponding error maps (bottom row)

(A)

(B)
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is achieved for R  =  2  ×  2 and Q  =  2, so that Q  =  1 with 
acceleration R =

√
2 ×

√
2 (Both alternatives involve the 

same scanning time but the latter generates a lower g-factor. 
The former was used in this experiment because it was more 
convenient to our scanner implementation of the traversals.) 
may be adequate for motion tolerance in practice, which has 
been used to guide the acceleration in the pediatric cohort (see 
Table 1). However, in contrast to computation times of 2 min 
(nondeliberate motion), and 11 min (extreme motion, Q = 3) 
for inter-shot corrections, corresponding intra-shot correc-
tions required 21 min and 20 h 36 min. Thus, despite being 
technically feasible, intra-shot corrections may have limited 
applicability due to computational costs. Computational cost 
increase with the complexity of motion is due to the larger 
number of iterations for convergence and to the proposed mo-
tion compression strategy, with 13/30 binned inter-shot mo-
tion states without deliberate motion and 30/30 with extreme 
motion (Q = 1), with proportional savings in the reconstruc-
tion steps in the former.

4.3  |  Noncompliant subjects

Figure 8 shows worst-case reconstructions without motion 
correction, with motion correction alone and with motion 
correction and the regularized outlier segment rejection. 
Results are shown for main structural brain MRI modalities, 

MP-RAGE, TSE, FLAIR, SPGR, and bSSFP. In all sequences 
we observe a substantial improvement when activating mo-
tion-corrected reconstructions alone, with better delineated 
cortical structures. However, subtle artifacts are still present, 
either in the form of ghosts or of coloured noise. Figure 8C 
shows that quality can be further improved by rejecting the 
less consistent segments and performing a regularized recon-
struction. In some sequences discarding the artifacted seg-
ments  seems to reduce residual artifacts from uncorrected 
fast motion (see for instance fine details in SPGR) while in 
others it seems to mainly improve the magnetization con-
sistency (see TSE contrast). Across the cohort, we have 
observed that motion artifact levels always decrease when 
compensating for motion, with no remarkable differences 
when activating the corrections in the absence of artifacts. 
This is along the lines of the quantitative population metrics 
obtained for the less favourable sequential sampling20 or for 
multi-slice scans.38 Worst-case results of Figure 8 have been 
judged satisfactory by the practitioners and researchers in-
volved in the project. Therefore, the proposed methodology 
is delivering reliable examinations for unsedated pediatric 
subjects challenging to comply to the MRI motion require-
ments. In this experiment, motion estimates were performed 
at half the acquired resolution with joint motion estimation 
and reconstruction always taking less time than final recon-
structions at full resolution. Computation times range be-
tween 5 min in least artifacted and 40 min in most artifacted 

F I G U R E  7   Reconstruction results for extreme motion in vivo. A, Uncorrected; B, inter-shot corrections; and C, intra-shot corrections. From 
left to right, results without deliberate motion and reconstructions and errors in the presence of extreme motion for Q = {1, 2, 3} repeats of a 
R = 2 × 2 accelerated baseline scan

(A)

(B)

(C)
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volumes in our cohort. Estimated motion traces and outlier 
segments are reported in Supporting Information Figure S1.

5  |   DISCUSSION

We have presented DISORDER, a retrospective framework 
for motion-tolerant structural 3D k-space encoded brain imag-
ing that combines optimized view orders with an improved 
aligned reconstruction. The proposed distributed and incoher-
ent orders increase the motion sensitivity of the information 
sampled within a given time window which, provided a cer-
tain degree of redundancy, enables the resolvability of mo-
tion in the reconstruction. Conducted simulations have shown 
that reordering the k-space traversals introduces a significant 
boost in the ability to estimate the head pose and suppress mo-
tion artifacts. Tolerance to motion has been demonstrated in 
vivo on a controlled experiment involving extreme and con-
tinuous motion throughout the examination as well as for the 
main families of sequences used for structural brain imaging 
by presenting the reconstruction results on the most challeng-
ing datasets from a pediatric cohort of 26 subjects.

Although DISORDER is robust enough in its current form 
so as to be of practical interest for reliable structural brain 
MR examinations in noncompliant cohorts, with plans in our 

center to use it to progressively replace unnecessary sedation 
or anesthesia in pediatric and neonatal populations,39 it is ob-
viously not free from limitations. First, data consistency may 
be affected by additional degrading factors. These include 
inaccuracies in sensitivities but also water-fat shifts, eddy 
currents, or flow artifacts. In practice, applying fat suppres-
sion when possible, designing the tiles for adequate trade-offs 
between eddy currents and motion resolvability in bSSFP se-
quences, and adequate planning and scanning procedures are 
usually sufficient to address these issues. Differently, correc-
tion of non-rigid motion components would require an exten-
sion of the formulation. Although analogous methodologies40 
have shown potential in this context, a robust and efficient 
extension to non-rigid motion models will probably require 
a careful computational design. This may be particularly the 
case for high-resolution applications, where both rigid and 
non-rigid motion become more important and challenging to 
correct.2 Moreover, coarse scale motion at ultra high field may 
require additional corrections of high-order effects. Finally, in 
this manuscript we have restricted ourselves to uniform sam-
pling, with further work required to generalize the incoherent 
and distributed orders and characterize motion correction and 
resolution retrieval when using variable densities.

In the in vivo experiments of Figure 8, we have shown 
that inter-shot corrections can be sufficient in practical brain 

F I G U R E  8   Reconstruction results for pediatric cases with largest intra-scan degradations. A, Uncorrected; B, motion-corrected; and  
C, motion-corrected and regularized outlier segment rejection reconstructions. From left to right, results for the main families of sequences for 
structural brain imaging

(A)

(B)

(C)
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imaging scenarios requiring motion tolerance. Our under-
lying assumption is that the subject remains approximately 
still for a significant portion of the acquisition. In this case, 
inter-shot corrections are enough to reconcile the brain pose 
among the stable periods and data rejection can be applied 
to the transitions, again, provided that sampling is redundant 
enough. However, intra-shot corrections may become more 
important in challenging situations, as illustrated in Figure 7. 
Despite its computational limitations, our method is able to 
provide stable intra-shot estimates in the absence of motion 
while offering certain motion correction potential. Although 
a prior model for the temporal evolution of motion may aid 
in certain applications, in general, limitations arising from 
available computational resources and SNR per motion state 
are likely to complicate intra-shot tractability.

The situation may perhaps be different if using supervised 
learning strategies to inform the exploration of the motion pa-
rameter space. These may help to improve the spatiotemporal 
resolvability of motion by aiding the intra-shot corrections to 
find better motion solutions. Training may also help to enlarge 
the motion capture range at a given level of redundancy or 
decrease the required level of redundancy for a given motion 
capture range. Although direct learning of motion-corrected 
reconstructions could also be attempted, it is likely that, in 
many circumstances, better results will be obtained when 
concatenating learned reconstructions with model-based strat-
egies, as recently suggested in.41 Further integration of both 
approaches could be tackled, for instance, by incorporating 
the motion operator into the model-based learning framework 
in,42 which may be effective in dealing with the residual penal-
ties from g-factor amplification due to motion (see Figure 6B). 
Thereby, future work will explore the opportunities for extend-
ing the ranges of motion resilience by supervised learning.

6  |   CONCLUSION

We have proposed a simple modification of standard 3D 
Cartesian sequences for structural brain imaging, involving 
only a distributed and incoherent reordering of the sampled 
profiles, for high-quality imaging in the presence of motion. 
Improved convergence has been demonstrated when using a 
separable nonlinear least squares formulation for joint mo-
tion estimation and reconstruction. Feasibility and conditions 
for inter- and intra-shot corrections have been characterized 
by simulations and in vivo reconstructions under extreme 
motion. The DISORDER method has been successfully ap-
plied to replace sedation in a pediatric population scanned 
using common clinical examination protocols by combining 
inter-shot corrections with regularized outlier segment re-
jection reconstructions. Future work will focus on applying 
DISORDER to other cohorts and on strengthening its per-
formance by integrating motion learning strategies.
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SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section.

FIGURE S1 First 120 s of estimated motion traces for pe-
diatric cases with largest intra-scan degradations for each 
sequence. Left: original motion traces. Right: motion traces 
with segment opacity given by corresponding reliability w. 
Solid lines indicate data collection periods for each segment 
with dotted lines used to connect these
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