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Abstract

Mammals have two specialized vascular circulatory systems, the blood vasculature and the 

lymphatic vasculature. The lymphatic vasculature provides a unidirectional conduit that returns 

filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays major 

roles in immune cell trafficking and lipid absorption. As we discuss in this review, the molecular 

characterization of lymphatic vascular development and our understanding of this vasculature’s 

role in pathophysiological conditions has greatly improved in recent years, changing conventional 

views about the roles of the lymphatic vasculature in health and disease. Morphological or 

functional defects in the lymphatic vasculature have now been uncovered in several pathological 

conditions. We propose that subtle, asymptomatic alterations in lymphatic vascular function could 

underlie the variability seen in the body’s response to a wide range of human diseases.

Oliver eTOC blurb

Oliver and colleagues comprehensively review the anatomy, development, and functional roles of 

the lymphatic vasculature in health and disease. They highlight emerging evidence suggesting the 

lymphatic system plays more diverse physiological roles that previously appreciated.

Introduction

While blood vessels are essential for oxygen and nutrient delivery, and for the disposal of 

waste products for detoxification and replenishment, the lymphatic vasculature plays 

essential roles in immune surveillance, lipid absorption and in the maintenance of tissue 
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fluid balance (Oliver, 2004; Oliver and Alitalo, 2005; Petrova and Koh, 2018; Tammela and 

Alitalo, 2010). The cellular and molecular characterization of lymphatic vascular 

development and our understanding of this vasculature’s role in pathophysiological 

conditions has greatly improved in recent years, changing conventional views about its 

functional roles in health and disease. Traditionally considered a passive route for the 

transport of fluid, immune cells and lipoproteins, lymphatics are now known to be active 

players in major physiological and pathophysiological processes. Until recently, lymphatic 

vessel dysfunction was associated mainly with primary and secondary lymphedema. 

Unexpectedly, however, lymphatic vascular defects have been uncovered in conditions 

including obesity, cardiovascular disease, inflammation, hypertension, atherosclerosis, 

Crohn’s disease, glaucoma and various neurological disorders, such as Alzheimer’s disease.

In this review, we first provide a brief overview of lymphatic anatomy and of the key 

molecular and morphological steps underlying formation of the mammalian lymphatic 

vasculature. Next, we discuss the long-standing conventional views on lymphatic function in 

normal (immune surveillance) and disease conditions (tumor progression, symptomatic 

lymphatic disorders). Finally, we assess recent discoveries revealing novel roles of the 

lymphatic vasculature in a variety of human disorders; findings supporting our hypothesis 

that subtle, asymptomatic morphological and/or functional alterations in the lymphatic 

vasculature are responsible for the variability seen in the body’s response to a range of 

pathologic conditions.

Anatomy of the Lymphatic Vasculature

The lymphatic vasculature consists of a network of thin-walled, blind-ended, highly 

permeable initial lymphatics (also called lymphatic capillaries although they are functionally 

distinct to blood vascular capillaries) and larger collecting lymphatic vessels (Figure 1). 

Initial lymphatics consist of a single layer of loosely connected lymphatic endothelial cells 

(LECs) that lack a continuous basement membrane and perivascular mural cells, such as 

pericytes and smooth muscle cells (Figure 1). LECs within initial lymphatics are inter-

connected through discontinuous button-like junctions (Figure 1) (Baluk et al., 2007), which 

facilitate the uptake of interstitial fluid and macromolecules. Blood plasma is continuously 

filtered from the arterial side of the capillary bed into the interstitial space, where excess 

fluid and macromolecules are taken up by initial lymphatics (Alitalo, 2011). Initial 

lymphatics interact with the extracellular matrix through anchoring filaments that facilitate 

the sensing of changes in interstitial pressure, which in turn modulates the opening of “flap 

valves” inbetween the button junctions to allow fluid entry (Tammela and Alitalo, 2010) 

(Figure 1). All of these features make the initial lymphatic vessels highly permeable to large 

macromolecules, pathogens, and immune cells.

Initial lymphatics first drain into pre-collecting lymphatic vessels that merge with larger 

secondary collecting lymphatics, in which LECs are connected to each other through tighter, 

continuous zipper-like junctions, and are covered with specialized muscle cells that provide 

contractile activity to assist lymph flow (Figure 1) (Baluk et al., 2007; Muthuchamy and 

Zawieja, 2008). Collecting lymphatic vessels have valves that regulate the unidirectional 

flow of lymph (Figure 1). The coordinated contraction of muscle cells facilitates the 
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transport of lymph back to the blood circulation (Norrmen et al., 2009; Sabine et al., 2016). 

Tissue fluid transported via the collecting lymphatics drains into the thoracic duct and the 

right lymphatic duct, which in turn, discharge lymph into the large veins at the base of the 

neck (Figure 1) (Srinivasan and Oliver, 2011; van der Putte, 1975; Wang and Oliver, 2010; 

Yang and Oliver, 2014).

The lymphatic system also contains lymph nodes (> 200 in humans) (Figure 1), whose close 

integration with the lymphatic vasculature allows the system to initiate and expand immune 

responses, while simultaneously serving as a filtration barrier that prevents the return of 

noxious stimuli to the blood circulation. With the exception of a brief discussion about 

lymph nodes in inflammation and immunity, this review focuses mostly on the lymphatic 

vasculature. Lymphatic vessels have not yet been identified in avascular structures such as 

the epidermis, hair, nails, and cartilage, nor are they present in some vascularized organs 

such as the brain and retina. Abnormal lymphatic vasculature invasion into bone has been 

linked to vanishing bone syndrome (Gorham Stout disease, Dellinger et al., 2014), though 

the bone marrow is normally devoid of lymphatic vessels.

Lymphatic Vasculature Development

Major advances have been made in understanding how the lymphatic vasculature develops, 

particularly in mouse and zebrafish embryos (Geng et al., 2017; Hogan and Schulte-Merker, 

2017; Kazenwadel and Harvey, 2018; Petrova and Koh, 2018; Tammela and Alitalo, 2010; 

Yang and Oliver, 2014). Also, in humans, mutations in several genes, most of which 

participate in aspects of lymphatic development, have been identified as responsible for 

different types of lymphatic disorders (Table 1). This knowledge has advanced our 

understanding of how defects in lymphangiogenesis contribute to human vascular disease.

Here, we summarize some critical steps guiding lymphatic development in the mouse 

embryo. In mammals, this starts with the molecular specification and budding of LEC 

progenitors expressing the master transcription factor Prox1 from the cardinal veins to form 

lymph sacs (Figure 2) (Oliver, 2004; Sabin, 1902; Wigle and Oliver, 1999). A Prox1-Vegfr3 

autoregulatory feedback loop is required to regulate the number of LEC progenitors 

specified and to maintain their identity (Srinivasan et al., 2014). Prox1 upregulation of fatty 

acid β-oxidation is also required for maintenance of LEC fate through epigenetic 

modifications (Wong et al., 2017).

The first lymph sacs to develop are the paired jugular lymph sacs, each retaining a 

connection to the adjacent vein (Kampmeier, 1969; Sabin, 1902; van der Putte, 1975), at 

which sites lymphovenous valves form (van der Putte, 1975). These sites are where 

interstitial fluid collected by the lymphatics is returned to the blood circulation (Figure 2). 

Defects in lymphovenous valve development significantly impact fluid homeostasis (Geng et 

al., 2017; Srinivasan and Oliver, 2011). The polarized sprouting of LECs from the sacs 

generates an interconnected network of peripheral lymphatics (van der Putte, 1975) that 

undergoes continued growth, remodeling and maturation to generate the entire functional 

lymphatic vascular network (Figure 2). Lymphatic vessel development is intricately linked 

with lymph node development, a process that is initiated embryonically and is dependent on 
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the lymphatic vasculature (Bovay et al., 2018; Onder et al., 2017). The importance of 

embryonic events is evident in the developmental etiology of lymphatic vascular diseases, 

including primary lymphedema (Table 1).

The embryonic origin of lymphatic endothelial progenitor cells

The embryonic origin of LEC progenitors has been explored for over 100 years (Huntington 

and McClure, 1910; Sabin, 1902). Advances in genetic tools and imaging technology have 

shed new light on these events in recent years. The first studies to employ genetic lineage 

tracing techniques to address the embryonic origin of LECs (Srinivasan et al., 2007) 

confirmed Sabin’s earlier hypothesis that lymphatic vessels originate via the continuous, 

centrifugal sprouting of lymphatic endothelial cells from embryonic veins and lymph sacs 

(Sabin, 1902). Subsequent studies in mice using various Cre driver and reporter lines 

determined that LECs originate from both venous and non-venous progenitors in distinct 

embryonic tissues. Besides the venous source, hemogenic EC-derived cells were shown to 

contribute LEC progenitors to the mesenteric lymphatic vessels (Stanczuk et al., 2015). 

Similarly, in addition to venous-derived LEC progenitors, a group of cells within the dermal 

blood capillary bed (Pichol-Thievend et al., 2018) and a not yet identified, non-venous 

derived cell population (Martinez-Corral et al., 2015) contribute to the assembly of the 

dorsal dermal lymphatic vasculature. Most recently, a second heart field derived progenitor 

cell population was shown to contribute to the lymphatic vasculature on the ventral side of 

the heart (Lioux et al., 2020; Maruyama et al., 2019). Intriguingly, recent work has revealed 

that the overarching progenitor lineage contributing to most Prox1-positive LECs within the 

mouse embryo originates from the paraxial mesoderm (Stone and Stainier, 2019).

A universal feature of vertebrate LECs is their dependence on Prox1 for the specification 

and maintenance of LEC identity (Johnson et al., 2008; Wigle et al., 2002). Key roles for the 

transcription factors Sox18 (Francois et al., 2008), CoupTFII (Srinivasan et al., 2010), Gata2 
(Kazenwadel et al., 2012; Kazenwadel et al., 2015) and Hhex (Gauvrit et al., 2018) in 

regulating Prox1 expression have been uncovered (Figure 2).

Lymphatic vessel growth and maturation

VEGF-C signaling via VEGFR3 is the major signaling axis driving embryonic 

lymphangiogenesis in vertebrates (Figure 2). The emergence and continued migration of 

LECs from the cardinal veins to form the initial lymphatic structures of the embryo depends 

on VEGFC (Karkkainen et al., 2004) and on two factors that control its proteolytic cleavage 

and activation; the matrix protein Ccbe1 (Bos et al., 2011; Hagerling et al., 2013; Hogan et 

al., 2009; Le Guen et al., 2014) and the metalloprotease Adamts3 (Bui et al., 2016; Jeltsch et 

al., 2014). Additional receptors expressed by LECs that contribute to the activity of this 

pathway include neuropilin 2 (Nrp2), which binds VEGF-C and is important for lymphatic 

vessel sprouting (Yuan et al., 2002) and β1-integrin, which is activated in response to the 

mechanical stimulus of increased interstitial volume and facilitates VEGFR3 

phosphorylation and activation (Planas-Paz et al., 2012).

Cell polarization and lumen formation and maintenance are key, interdependent events in 

lymphatic vessel development. Correct cell polarity is important for vessel growth and 
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function; LECs need to respond to sprouting and guidance cues to navigate their appropriate 

course and to establish luminal and abluminal surfaces, which have a distinct array of cell 

surface proteins. Cell polarity regulation is also important during valve development. Recent 

work in mice has identified important mediators of both cell polarity and lumen formation. 

Key regulators of epithelial planar cell polarity, Celsr1, Vangl2, Pkd1, Pkd2 and Fat4 are 

also employed to control LEC polarity and are important for valve development (Betterman 

et al., 2020; Coxam et al., 2014; Outeda et al., 2014; Pujol et al., 2017; Tatin et al., 2013). 

Intriguingly, FAT4 is redistributed in LECs upon exposure to flow and is important for flow-

induced LEC elongation (Betterman et al., 2020), highlighting that mechanical signals, 

including fluid flow within vessels, are important drivers of vessel morphology. Rasip1, a 

Ras-interacting protein, is crucial for regulating lymphatic vessel lumen size via regulating 

the integrity of LEC junctions and is also important for valve development (Liu et al., 2018). 

Polarity proteins provide a link to the cytoskeleton, underpinning changes in cell shape and 

orientation that are important for valve construction (Figure 2) (Bazigou and Makinen, 

2013).

Transcriptional regulators that drive valve development and are regulated by shear stress 

include Foxc2 (Sabine et al., 2012; Sabine et al., 2015) and Gata2 (Kazenwadel et al., 2015; 

Sweet et al., 2015). While the sensors that transduce flow-initiated signals in LECs are 

incompletely understood, recent work has revealed that channel proteins, including Orai1 

(Choi et al., 2017) and Piezo1 (Choi et al., 2019), are shear sensors in LECs and initiate 

downstream signaling events important for valve development. Recent studies report that 

canonical Wnt/β-catenin signaling is also activated in LECs in response to fluid flow and is 

important for lymphovenous and lymphatic vessel valve development (Cha et al., 2016; Cha 

et al., 2018). Intriguingly, in addition to oscillatory shear stress driving Gata2 elevation in 

LECs, Gata2 levels are also regulated by ECM stiffness, providing a mechanism by which 

mechanical signals in the LEC microenvironment drive programs of gene expression 

important for key events in lymphatic vessel morphogenesis (Frye et al., 2018).

The recruitment of muscle cells to collecting lymphatic vessels is an important aspect of 

lymphatic vessel maturation, facilitating lymphatic vessel contraction and the return of 

lymph to the bloodstream. As in blood vessels, PDGFB expression in the LECs of collecting 

vessels, coupled with ECM-mediated PDGFB tethering, is important for muscle cell 

recruitment (Wang et al., 2017), although intriguingly, muscle cells are not recruited in the 

vicinity of valves. Lymphatic muscle cell recruitment is also regulated by semaphorin/

neuropilin signaling, specifically via Sema3a and Nrp1 (Bouvree et al., 2012; Jurisic et al., 

2012), and by angiopoietin2 (Dellinger et al., 2008; Gale et al., 2002).

Future work focusing on mammalian lymphatic development should conclusively determine 

the controversial origin/s of LEC progenitors in embryogenesis and during organ repair, and 

decipher whether LECs derived from distinct progenitor pools have distinct, tissue specific 

functions. It will be important also to profile organ-associated LECs to gain insight into LEC 

heterogeneity and specialization to enable the specific targeting of organ-associated vessels 

for therapeutic purposes. As evident from the compendium of genes in which mutations 

have been identified in human lymphatic vascular disorders (Table 1), dissecting the cellular 

and molecular mechanisms underpinning developmental lymphangiogenesis is crucial for 
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understanding the origin of human lymphatic diseases, and will provide new and important 

opportunities for developing novel therapeutics to treat these pathologic conditions. 

Accordingly, and as discussed below, a better understanding of how mutations in different 

genes impact the normal function of the lymphatic vasculature, and the identification of 

novel pro-lymphangiogenic factors will facilitate the diagnosis and eventually, treatment of 

patients with symptomatic or asymptomatic lymphatic disorders and associated 

comorbidities.

Functional Roles of the Lymphatic Vasculature in Health and Disease

Lymphatics have conventionally been considered a passive route for the transport of fluid 

and immune cells, playing a critical role in adaptive immune responses and also in the 

absorption of dietary fat in the gastrointestinal tract. Lymphatic vasculature malfunction had 

been associated with symptomatic pathological conditions such as primary and secondary 

lymphedema and lymphatic vessels were recognized as an important highway for tumor 

metastasis (Figure 3). In the last few years this traditional view has expanded, such that 

morphological or functional defects in the lymphatic vasculature have now been identified in 

a growing list of medical conditions (Figure 4). Below, we will briefly review traditional 

roles for lymphatics and discuss novel, recently identified functional roles together with the 

implications for human disease.

Traditional Lymphatic-Associated Pathological Processes

Primary Lymphedema—Although few life-threatening diseases are caused by lymphatic 

vascular malfunction, defective lymph flow promotes several congenital and acquired 

disorders, including lymphedema. Lymphedema is a disfiguring, disabling, and occasionally 

life threatening disease that is characterized by fluid accumulation, t he chronic and 

disabling swelling of the extremities (Figure 3), tissue fibrosis, subcutaneous fat 

accumulation, poor immune function, impaired wound healing and susceptibility to infection 

(Rockson, 2001; Witte et al., 2001). Primary lymphedema has a genetic origin, and 

secondary lymphedema occurs as a consequence of surgery (such as lymph node resection 

after breast cancer), infection (as in filariasis) or following radiation therapy (Rockson, 

2001; Witte et al., 2001). Nonne-Milroy’s (Milroy, 1892) (Table 1) and Meige (Meige, 1898) 

disease are examples of primary lymphedemas that appear at birth or puberty, respectively. 

In general, abnormally dilated lymphatic vessels are seen in Meige’s disease (causes are yet 

unknown but most likely are genetic and environmental) and underdeveloped lymphatics in 

Milroy’s. Both result in insufficient lymph transport due to the occlusion of lymphatic 

drainage caused by the hypoplasia, or impaired lymphatic function of lymphatic vessels, 

(Witte et al., 2001).

Numerous genetic defects underlying primary lymphedema have been identified in humans 

in recent years. Among the genes associated with different types of lymphatic disorders are: 

FLT4 (VEGFR3), FOXC2, SOX18, CCBE1, FAT4, ADAMTS3, FBXL7, GJC2, GATA2, 
PTPN14, KIF11, ITGA9, REELIN, PIEZO1, EPHB4 and CALCRL. Major phenotypes 

associated with mutations in these genes are listed in Table 1 and most of those genes 

participate in different steps of developmental lymphangiogenesis. A full list of the genes 
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identified so far in different lymphatic anomalies is available in Brouillard et al., 2014, 

Mendola et al., 2013, Jones and Mansour, 2017 and Gordon et al., 2020.

Secondary Lymphedema—Worldwide, most cases of lymphedema are secondary and 

occur as a consequence of damage to the lymphatic vasculature. Filariasis (i.e., 

elephantiasis) is the most common cause, and mostly affects people living in tropical regions 

(Pfarr et al., 2009; Wynd et al., 2007). Filariasis is caused by mosquito-borne worm parasites 

that invade the lymphatic system, where an inflammatory reaction triggers the production of 

VEGF, VEGF-C and VEGF-D. Eventually, hyperplasia, obstruction, and extensive damage 

of the lymphatic vasculature follows, resulting in chronic lymphedema in the lower limbs or 

genitalia and permanent disability (Pfarr et al., 2009; Rockson, 2001). The leading cause of 

secondary lymphedema in the industrialized world is lymph node dissection or radiation 

therapy that damages the lymphatic vasculature after cancer surgery (Rockson, 2001). It 

affects 15%−20% of women undergoing breast cancer treatment (Vignes et al., 2007). 

Unfortunately, lymphedema treatment is still based mainly on conservative therapies, such 

as manual drainage, massage, compression garments, liposuction, and dietary modification 

(such as limiting the consumption of long-chain fatty acids) (Brorson, 2003; Rockson, 

2001). However, the use of pharmacotherapy or pro-lymphangiogenic factors such as 

VEGFC offers a promising alternative treatment for secondary lymphedema in the near 

future (Alitalo, 2011; Dayan et al., 2018; Rockson et al., 2018; Tian et al., 2017).

Lymphatics in Immunity

A key feature of the lymphatic system is its critical role in adaptive immune responses and 

provision for removal of substances or stimuli from tissues that might promote harmful 

reactions in the circulation. These features are made possible by the inclusion of lymph 

nodes along every major lymphatic route from tissues to the bloodstream (Figure 1). All 

lymphatics upstream of lymph nodes are called afferent lymphatics and those emanating 

from lymph nodes, efferent lymphatics (Figure 1). Because lymph nodes can be found in 

groups often referred to as chains (but more like beads on a string), the lymphatic vessels 

connecting one lymph node to another can be efferent to one lymph node while afferent to 

another.

Briefly, during development, lymphatic vessels supply critical lymph node organizer roles 

while interacting with specialized lymphocytes called lymph node inducer cells (Bovay et 

al., 2018; Onder et al., 2017). One of the key signals in the interaction of lymphatics and 

lymph node inducers is provided through lymphotoxin engagement of the lymphotoxin 

receptor (De Togni et al., 1994; Drayton et al., 2006; Onder et al., 2017). Mice lacking 

lymphotoxin or its receptor fail to develop lymph nodes (De Togni et al., 1994), but this 

ultimately does not prevent lymphatic vasculature development. Flow within nascent 

lymphatic vessels provides spatial and mechanical cues to form the lymph node capsule 

(Bovay et al., 2018), allowing sophisticated integration of flow through the lymph node as 

the vessels and the nodes complete their development. The lymphatic endothelium of the 

afferent lymphatic collecting vessel forms the floor of the lymph node subcapsular sinus, 

which serves to elegantly coordinate the entry of cells and molecules into the parenchyma of 

the lymph node (Martens et al., 2020), where flow is further regulated by the existence of 
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specialized conduits (Roozendaal et al., 2009). Exit of cells and molecules from the lymph 

node is provided by the medullary sinuses located in the hilum of the lymph nodes, and 

these sinuses too are comprised of LECs (Cyster and Schwab, 2012).

Through integration with afferent lymphatics, lymph nodes receive antigens derived from 

the tissues that they drain, ranging from intact micro-organisms to partially degraded 

material from these organisms. Lymph carries immune cells, such as dendritic cells, that 

have engulfed and processed antigens for immune presentation in the lymph node, along 

with an abundance of lymphocytes (Randolph et al., 2017). Given that many antigens consist 

of non-self, foreign molecules, it is vital for the integrity of the immune response that the 

lymphatic vasculature does not require receptor engagement for the entry of most cargo. 

Instead, it relies on the open, button-like junctions of this circulatory system (as discussed 

above), or on high levels of endocytosis and transcytosis (Kähäri et al., 2019; Triacca et al., 

2017).

In mammals, when lymph enters lymph nodes, its cargo is sorted to optimize immune 

responses. This is largely achieved by the elegant organization of the lymph node conduit 

system, which separates small from large molecules (Gerner et al., 2017) and allows 

antigens to be concentrated through the removal of water (Adair et al., 1982; Czepielewski 

and Randolph, 2018). LECs might also participate in antigen presentation (Randolph et al., 

2017). Single-cell RNA sequencing has shown that up to six types of LECs exist in human 

lymph nodes that correspond to distinct locations in the node (Takeda et al., 2019), with each 

expressing distinct chemokine profiles and decoy receptors that scavenge chemokines to 

maintain gradients of chemotactic signals that guide immune cells to areas of their highest 

functional concentration.

One striking finding from the data defining LEC diversity is the presence of signals in the 

lymph node that appear to attract neutrophils (Takeda et al., 2019), a cell type of low 

abundance in resting lymph nodes. Indeed, it is becoming increasingly clear that neutrophil 

recruitment into reactive lymph nodes plays a role in programming adaptive immunity and 

the lymph node’s ability to contain infectious agents (Figure 5) (Bogoslowski et al., 2018; 

Chtanova et al., 2008; Yang and Unanue, 2013). The containment of infectious agents within 

lymph nodes may have been a major driver in the evolution of the lymphatic vasculature 

(Miller and Simon, 2018).

Lymph nodes are also elegant sorting facilities that promote adaptive immunity. Lymphocyte 

recruitment to lymph nodes, either via a lymph node’s blood supply or afferent lymphatic 

vasculature, brings lymphocytes into close proximity with antigen-presenting cells (APCs) 

in a highly efficient manner. Lymphocytes, the TCRs of which engage with cognate peptide-

MHC in the node, are retained in the node by sustained loss of the receptor S1P1 for 

sphingosine 1 phosphate (S1P) from the cell surface (Cyster and Schwab, 2012). One 

physiologic mechanism for removal of S1P1 from the T cell surface is binding to the 

activation antigen CD69 that it turns prompts internalization and degradation of S1P1 

(Cyster and Schwab, 2012). Eventually, as CD69 expression wanes, lymphocytes can leave 

the lymph node by sensing S1P produced by LECs at the medullary sinuses of the lymph 
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node (Figure 1) (Cyster and Schwab, 2012). They then recirculate, preferentially to the 

organ that drains to the lymph nodes where they were stimulated.

In contrast to T cells, most APCs, particularly dendritic cells but also monocytes and 

macrophages, cannot leave the lymph nodes (Randolph et al., 2005). Indeed, keeping the 

cells that first phagocytize or become infected with an infectious agent in tissue parenchyma 

away from the blood vasculature is extremely important in host defense. This is because 

activated dendritic cells or monocytes/macrophages might otherwise spread infection from 

organ to organ, as they are known to do during toxoplasmosis (Drewry et al., 2019). When 

these cells are activated, they also upregulate molecules that initiate blood clotting, such as 

tissue factor (Grover and Mackman, 2018). Tissue factor, which initiates clotting in the 

extrinsic pathway of coagulation, expressed on blood-borne monocytes is thought to drive 

the hemorrhagic, intravascular coagulation complications seen in infectious diseases, such as 

Ebola (Geisbert et al., 2003). Although egress from lymph nodes is typically low, even the 

low level that occurs can lead to negative outcomes; the blockade or deficiency of S1P1 aids 

in reducing such perilous trafficking from the lymph node in Yersinia infection models (St. 

John et al., 2014).

Sepsis and disseminated intravascular coagulation are two extreme examples of outcomes 

that the sequestration of myeloid A P C s in lymph nodes might prevent (Figure 5). 

However, the vertebrate organism zebrafish has lymphatic vessels but no known lymph 

nodes, which seems inconsistent with the concept that we propose herein that the 

segregation of activated, procoagulant cells from the bloodstream is a key driver in the 

evolution of the lymphatic vasculature. Perhaps the zebrafish lymphatic vasculature has 

other features that limit the dissemination of cellular or molecular cargo to the bloodstream 

after entering lymphatics from tissues, an interesting question for future research to address.

Lymphatic Vessels in Cancer Progression and Metastasis

Given that the immune system can be harnessed to combat tumor progression, the 

functionality of the lymphatic vasculature can also markedly impact the control of tumor 

progression, as discussed below. The relationship between lymphatic vessels and tumor 

biology has been an area of ongoing research interest, which first took off after evidence 

emerged that lymphatic vessels supported metastasis (Skobe et al., 2001). The initial 

interpretation of these findings was that lymphatic vessels simply supported the development 

of a physical route by which tumor cells might leave one site, mobilize to a draining lymph 

node, and then beyond. However, evidence later emerged that lymphangiogenesis in tumors 

was sometimes associated with immunosuppression or immune tolerance (Lund et al., 

2016), which might explain why high lymphatic density in tumors can be associated with 

poor prognosis. This immune tolerance possibly occurs because the transported signals, 

including peptides derived from cells in the drained tissue, are regulatory or tolerogenic. The 

presence of tumor-derived products needs to be very high in lymph draining tumor sites to 

foster immune responses (Broggi et al., 2019).

By contrast, genetic models that have a paucity of lymphatic vessels unexpectedly show 

greater tumor control compared with controls with normal lymphatics (Steinskog et al., 

2016). Also, at odds with the findings discussed above is that various tumor types in 
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different models show greater immune-mediated tumor regression when lymphatic vessels 

were supported with growth factors like VEGFC (Fankhauser et al., 2017; Song et al., 2020). 

In a glioblastoma model, tumor rejection was especially robust when VEGFC therapy to 

support lymphatic vessel expansion was coupled with an anti-PD1 checkpoint blockade 

(Song et al., 2020). These different responses likely depend on the coupling of lymph 

transport with signals that either support the development of killer T cells or are more 

tolerogenic. Furthermore, as some tissue sites are immune-privileged, such as the brain, 

improved lymphatic drainage can significantly reverse the adverse effects of immune 

privilege by allowing a tumor to be exposed to the immune system.

In several tumor types, lymphatics are found in association with tertiary lymphoid tissue 

(TLT) embedded within the tumor. Consistent with the literature cited above, the impact of 

this lymphoid tissue on immune-mediated tumor tolerance versus rejection, depends on the 

nature of the tumor environment, as discussed in the references below. In the absence of a 

checkpoint blockade, TLT can promote tumor growth (Shields et al., 2010), but in the 

context of checkpoint blockade, TLT in tumors can serve as potent sites of anti-tumor 

immunity (Cabrita et al., 2020; Helmink et al., 2020; Hiraoka et al., 2015; Petitprez et al., 

2020). It is unclear at present if immune cells access these intra-tumoral structures via a 

lymphatic vessel that supports short-distance travel to the tertiary structure from different 

parts of the tumor, or if immune cells enter them through migration directly from the 

surrounding tumor. Likewise, it is unknown if tumor-killing T cells exit the tertiary 

lymphoid structures via efferent lymphatic vessels and are programmed to return to the 

tumors via blood vessels, or if T cells directly move out of TLT into the tumor parenchyma. 

It will be interesting in the future to 3D image tumors that bear tertiary lymphoid structures 

to determine if they are themselves connected with afferent and efferent lymphatic vessels 

that serve a draining lymph node, as seen for tertiary lymphoid tissue in Crohn’s disease 

(Randolph et al., 2016).

In order for lymph nodes to become a supportive metastatic niche, tumors that pass through 

lymphatic vessels to reach lymph nodes must undergo significant metabolic remodeling (Lee 

et al., 2019). Interestingly, by tracking the clonal history of the primary tumor and its 

relationship with different metastases, one can argue that a given site for metastasis 

possesses properties that render it favorable enough to support multiple, distinct waves of 

tumor cell arrival to the metastatic location (Heyde et al., 2019). Importantly, however, 

different sites of metastases arise from different clones in the primary tumor (Naxerova et 

al., 2017). It is clear that, at least for colorectal cancer metastases, 65% of lymph node 

metastases are unrelated to distal metastases (Naxerova et al., 2017). This finding casts 

doubt on the concept that the lymphatic vasculature and associated lymph nodes are robust 

conduits for distal metastases; they might instead act as barriers to tumor dissemination 

(Figure 5) (Naxerova et al., 2017).

Nonetheless, at least some distal metastases arise from tumors that have first passed through 

lymph nodes (Naxerova et al., 2017) (Figure 5). In an experimental model of metastasis in 

mice, distal metastases of B16 melanoma seeded the lung after passing through skin 

draining lymphatics and lymph nodes (Pereira et al., 2018). Overall, it appears as though the 

role of lymphatics in tumor progression is moving away from the great concern early in the 
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21st century that lymphatics might only promote cancer via enhanced metastasis, towards the 

current realization that the promotion of lymphangiogenesis, coupled with methods to 

enhance T cell-mediated immunity, might be especially efficacious for treating cancer, while 

not increasing the risk of metastasis, at least in certain tumor types. A future focus must be 

on gaining a better understanding of what manipulations are needed in concert with 

therapies that support lympangiogenesis to ensure that tumor regression prevails over tumor 

progression.

Up to here we briefly reviewed our current understanding about the traditional views (Figure 

3) of the functional roles of the lymphatic vasculature in health and disease. Great progress 

has been made in the last years, particularly in the diagnoses and treatment of some of these 

lymphatic-promoted pathological conditions. It is likely that the identification of reliable 

biomarkers of lymphatic disease will facilitate a better diagnosis and treatment of patients in 

the near future, in particular of those with medical conditions not exhibiting obvious 

lymphatic associated defects.

Novel Functional Roles of the Lymphatic Vasculature

Recent discoveries have changed our conventional views about the roles of lymphatics in 

health and disease, such that lymphatics are now considered to actively modulate or 

participate in major physiological and pathophysiological processes. Somewhat 

unexpectedly, morphological or functional defects in the lymphatic vasculature have been 

associated with the medical conditions discussed below (Figure 4). These new data argue 

that the identification of underlying asymptomatic lymphatic defects in a wide array of 

human diseases could lead to enhanced diagnostics and, potentially, novel therapeutics and 

preventive strategies.

Obesity

A variety of factors are now accepted as contributing to obesity, in addition to excessive 

dietary intake or inadequate energy utilization. Obesity is a key risk factor for metabolic and 

cardiovascular diseases, including type 2 diabetes, hypertension, coronary heart disease, 

stroke and dyslipidemia (Escobedo and Oliver, 2017; Friedman, 2000; Kopelman, 2000; 

Roth et al., 2004).

Most nutrients are absorbed by blood vessels, but the absorption of dietary fats and fat-

soluble vitamins depends on intestinal villi, finger-like, enterocyte-lined extensions of the 

gut wall. Gut villi are filled with connective tissue that contains a blood capillary network 

and one or two central lymphatic vessels, termed lacteals (Figure 1). Lacteals form during 

late mouse embryogenesis, expand into the villus at early postnatal stages and undergo 

continuous remodeling (Bernier-Latmani and Petrova, 2017). In mammals, dietary lipids are 

repackaged in enterocytes into large (200–1,000 nm) triglyceride-loaded particles or 

“chylomicrons,” which are secreted basally into the intestinal stroma. In addition to 

triglycerides, chylomicrons also incorporate fat-soluble vitamins and some microbiota 

components, such as bacterial lipopolysaccharides (Bernier-Latmani and Petrova, 2017; 

Petrova and Koh, 2018). Lacteals take up chylomicrons and other interstitial fluid 

components from villi and transport them to the submucosal and mesenteric collecting 
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lymphatic vessels. Intestinal lymph is transported via the mesenteric lymph nodes and 

thoracic duct to the blood circulation. Lacteal function controls dietary lipid absorption and, 

therefore, body weight (Cifarelli and Eichmann, 2019; Jiang et al., 2019; McDonald, 2018; 

Zhang et al., 2018).

Angiogenesis is tightly associated with the outgrowth of adipose tissue, as expanding 

adipose tissue requires increased nutrient supply from blood vessels. Despite the well-

established connections between lymphatics and lipids, and the key roles of intestinal 

lacteals in dietary fat absorption, evidence emerged only recently indicating that crosstalk 

occurs between lymphatics and adipose tissue and that lymphatic function is associated with 

metabolic diseases and obesity (Blum et al., 2014; Escobedo et al., 2016; Escobedo and 

Oliver, 2017; Harvey et al., 2005). Early studies recognized that lymph nodes and collecting 

lymph vessels are surrounded by fat, that adipose tissue accumulates in affected tissues of 

lymphedema patients (Tavakkolizadeh et al., 2001; Wang and Oliver, 2010) and that dermal 

lipid accumulation is a feature of idiopathic lymphedema patients (Pond, 2005; Rosen, 

2002).

Initial data supporting the existence of a relationship between defective lymphatics and 

obesity was provided by mouse models with lymphatic defects, and by secondary 

lymphedema patients with associated adipose accumulation. In the Chy mouse model of 

lymphedema, heterozygous inactivating mutations in Flt4 led to abnormal subcutaneous fat 

deposition, particularly in the edematous subcutaneous adipose layer adjacent to 

dysfunctional, hypoplastic lymphatic vessels (Karkkainen et al., 2001; Rutkowski et al., 

2010). Severe lymphatic defects and adult onset obesity are also seen in Prox1 heterozygous 

(Prox1+/−) mice (Harvey et al., 2005), in which excessive fat accumulates and is associated 

with defective, leaky lymphatic vessels, particularly in the mesentery (Figure 4) (Escobedo 

et al., 2016; Harvey et al., 2005). These phenotypes led to the proposal that subtle abnormal 

lymphatic leakage of chyle promotes adipocyte hypertrophy and/or ectopic adipogenesis. 

Importantly, chyle collected form the thoracic cavity of newborn Prox1+/− pups promoted 

adipogenesis in vitro (Harvey et al., 2005), and the adipogenic factor within the chyle was 

identified as a lipid (Escobedo et al., 2016), leading to the conclusion that lymph is 

adipogenic. These studies provided the first conclusive experimental results that link 

lymphatic vascular malfunction with obesity.

Support for reciprocal crosstalk occurring between lymphatic vessels and adipose tissue 

came from the discovery that obese mice have impaired lymphatic function, characterized by 

leaky lymphatics, and a reduced collecting vessel pumping capacity (Blum et al., 2014; 

Garcia Nores et al., 2016; Hespe et al., 2016; Nitti et al., 2016; Savetsky et al., 2014; Torrisi 

et al., 2016). In mice with high fat diet (HFD)-induced obesity, it was found that obesity 

reduced lymphatic function and increased inflammation, leading to increased subcutaneous 

adipose deposition, elevated inflammation and fibrosis, resulting in a more severe 

lymphedema phenotype (Savetsky et al., 2014). Being overweight is also an important risk 

factor for lymphedema (Swenson et al., 2009); in obese patients the lymphatic drainage of 

macromolecules is significantly reduced in abdominal subcutaneous adipose tissue (Arngrim 

et al., 2013). Recent work argues that dietary changes alone are insufficient to induce 
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lymphatic dysfunction, and that this lymphatic malfunction is mainly due to obesity-

promoted inflammation (Garcia Nores et al., 2016).

Previous findings have also shown that elevated fatty acids in the plasma of HFDfed mice 

induced leakiness in lymphatic and vascular structures via apelin depletion, resulting in 

adipocyte hypertrophy and obesity (Sawane et al., 2013). Apelin is an endogenous ligand of 

the apelin receptor (APJ), a seven-transmembrane G protein-coupled receptor and has a wide 

tissue distribution in the brain, as well as in various peripheral organs including heart, lung, 

vessels and adipose tissue. In cultured cells, it promotes lymphangiogenesis and plays 

important roles in lymphatic tumor progression and pathological remodeling of the 

lymphatic endothelium after myocardial infarction in mice (Berta et al., 2014; Karpinich and 

Caron, 2014; Tatin et al., 2017). Interestingly, adipose tissue from obese human subjects 

contains more saturated fatty acids that might not only contribute to inflammation, but also 

be responsible for the lymphatic vascular rupture that in Prox1+/− mice, leads to chyle 

leakage and obesity (Escobedo and Oliver, 2017). As mentioned above, the fact that lymph 

can induce adipogenesis, at least in vitro, agrees with clinical studies that demonstrate that 

secondary lymphedema induces localized fat accumulation in the affected tissue (Boyages et 

al., 2015; Brorson, 2003, 2010, 2016).

In summary, this growing body of evidence suggests that the leakage of diet-derived, free 

fatty acids from leaky lymphatic vessels might trigger adipocyte differentiation and obesity 

and represent a novel risk factor for obesity (Figure 4). The idea that lymph leakage, caused 

by a subtle defect in the lymphatic vasculature, might contribute to obesity represents a 

major paradigm shift. It also implies that obesity might be regulated by the local 

accumulation of factors released from the lymphatic vasculature. If true, this could inform 

the development of effective therapeutics, such as promoting lymphatic endothelial integrity, 

preventing the release of adipogenic factors from the lymphatics, or interfering functionally 

with the adipogenic activity (Schneider et al., 2005).

Cardiovascular Disease

The heart contains a complex network of blood and lymphatic vessels. In mice, cardiac 

lymphatics derived from the cardinal vein and second heart field become evident at around 

E14.5, particularly over the dorsal side of the heart (Klotz et al., 2015; Lioux et al., 2020; 

Srinivasan et al., 2007). As development progresses, lymphatic vessels expand over both the 

dorsal and ventral surfaces, and into the myocardium during late embryonic and postnatal 

stages. In humans, cardiac lymphatics span all layers of the heart (Bradham and Parker, 

1973; Shimada et al., 1989); although most cardiac lymphatics in mice are found in the 

subepicardium and outer myocardium (Flaht-Zabost et al., 2014). Cardiac lymphatic vessels 

play important roles in maintaining tissue fluid balance and immune surveillance and are 

implicated in myocardial infarction (MI). Although little is known about the role of cardiac 

lymphatics in the healthy or failing heart, a growing body of evidence indicates that 

improved cardiac lymphatic vessel growth and function could be a novel therapeutic 

approach for combatting cardiovascular disease, as we discuss below.
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Atherosclerosis—Atherosclerosis, characterized by the accumulation of plaques 

comprising fat, cholesterol and immune cells inside the arterial vessel wall, results in the 

narrowing and hardening of arterial walls, limiting blood flow from the heart (Shi et al., 

2015) (Figure 4). Atherosclerosis is a leading cause of mortality worldwide, often resulting 

in heart attack and stroke (Libby and Hansson, 2015). Lymphatics are present at 

atherosclerotic sites in the adventitial layer of coronary arteries, adjacent to small blood 

vessels called the vasa vasorum, which are expanded in atherosclerotic plaques (Alitalo, 

2011; Brakenhielm and Alitalo, 2019; Nakano et al., 2005). Recent work in mouse models 

has shown that lymphatics are the main route for the transport of high-density lipoprotein 

(HDL) particles in cholesterol to the bloodstream (reverse cholesterol transport, RCT) (Lim 

et al., 2013; Martel et al., 2013). In these models, defective lymphatic function was shown to 

severely impair RCT (Lim et al., 2013; Martel et al., 2013; Randolph and Miller, 2014), 

while VEGFC-promoted lymphangiogenesis decreased cholesterol content and improved 

RCT (Lim et al., 2013; Milasan et al., 2019). Recent work has demonstrated that lymphatics 

present in the adventitia of human and mouse atherosclerotic lesions increase in density with 

plaque progression (Rademakers et al., 2017). Furthermore, blocked lymphatic drainage or 

the inhibition of VEGFR-3-dependent lymphangiogenesis aggravates atherosclerotic plaque 

formation and increases intimal and adventitial T cell density in atherosclerosis 

(Rademakers et al., 2017). These results suggest that peri-adventitial lymphatics have a 

beneficial role in limiting cholesterol accumulation and plaque inflammation during 

atherosclerosis (Rademakers et al., 2017). It is possible that lymphatics provide a protective 

pathway for lipid and inflammatory cell efflux from the arterial wall, which could oppose 

the development of atherosclerotic plaques (Alitalo, 2011). Conversely, defective 

lymphangiogenesis might contribute to the build-up of atherosclerotic lesions in large 

arteries as a consequence of lipid accumulation and the recruitment of activated immune 

cells. Immune cell types, such as macrophages and T and B cells, might participate in the 

development and progression of atherosclerosis (Hansson and Hermansson, 2011). Future 

work will determine whether therapeutic lymphangiogenesis that targets the arterial wall can 

slow down fat deposition and tissue inflammation, thereby conferring protection against 

atherosclerosis in humans (Brakenhielm and Alitalo, 2019). It might also be important to 

consider the nature of the extracellular matrix around lymphatic vessels in the artery wall, as 

the build-up of collagen, with increasing vascular stiffness, can also limit the access of 

cholesterol to the lymphatic vasculature (Huang et al., 2019).

Myocardial infarction—MI, the most common heart injury, is a life-threatening condition 

that occurs when blood flow to the heart abruptly cuts off, usually as a consequence of 

blockage in the coronary arteries, resulting in tissue damage and massive cardiomyocyte 

(CM) death. This in turn leads to the formation of fibrotic tissue, pathological remodeling 

and eventually heart failure (Figure 4). MI also produces increased microvascular 

permeability in the myocardium. As a result, fluids accumulate in the interstitial space of the 

heart, leading to myocardial edema (Dongaonkar et al., 2010). MI causes a unique reaction 

of the innate immune system, in which neutrophils influx into the injury site, attracted by 

apoptotic signals released by dying cells. Concurrently, immune cells contribute to 

lymphatic remodeling by stimulating or inhibiting lymphangiogenesis.
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Defective lymphatic function has been linked to cardiovascular diseases for some time 

(Bradham and Parker, 1973; Brakenhielm and Alitalo, 2019). Recent findings suggest that 

abnormal cardiac lymph flow promotes cardiac edema (Henri et al., 2016), and that MI is a 

trigger for the production of new cardiac lymphatics (Klotz et al., 2015). Other reports 

indicate that naturally or therapeutically stimulated lymphangiogenesis correlates with 

improved systolic function after MI by facilitating the resolution of myocardial edema and 

inflammation (Henri et al., 2016; Klotz et al., 2015; Vuorio et al., 2017) and by delaying 

atherosclerotic plaque formation (Lim et al., 2013; Milasan et al., 2016; Milasan et al., 2019; 

Vieira et al., 2018; Vuorio et al., 2014; Vuorio et al., 2017). Thus, all of these processes 

might facilitate healing after MI (Henri et al., 2016; Klotz et al., 2015; Trincot et al., 2019).

These new findings indicate that the stimulation of lymphangiogenesis in an infarcted heart 

could be a valuable therapeutic approach to improving cardiac function and preventing 

adverse cardiac remodeling. However, whether cardiac lymphatic function is important 

during MI, and the impact it might have on myocardial fluid balance, cardiac inflammation 

and contractile function remains to be further clarified. It is also unknown whether 

insufficient or defective lymphangiogenesis contributes to chronic myocardial edema, 

inflammation and fibrosis.

During MI, early neovascularization is important for recruiting inflammatory cells into the 

wound and for restoring the supply of oxygen and nutrients to the damaged area. Later on, 

lymphangiogenesis helps to remove excess fluids, cells, and debris to facilitate tissue 

remodeling and wound healing (Gancz et al., 2019; Vuorio et al., 2017). Robust 

lymphangiogenesis after MI is seen in humans (Ishikawa et al., 2007; Nakamura and 

Rockson, 2008) and mice (Henri et al., 2016; Klotz et al., 2015) in the infarct zone, and also 

in non-infarcted regions of the heart (Henri et al., 2016; Ishikawa et al., 2007; Klotz et al., 

2015; Tatin et al., 2017). These newly formed lymphatic capillaries can be detected in the 

infarct zone two weeks later.

One of the first reports of lymphangiogenesis in post MI cardiac repair came from rodent MI 

models (Henri et al., 2016; Klotz et al., 2015). In one study, repeated intraperitoneal 

injections in mice of recombinant human VEGFR3-selective VEGFC-C156S protein 

promoted a significant lymphangiogenic response and improved cardiac function (Klotz et 

al., 2015). In another, recombinant rat VEGFR3-selective designer protein, VEGFC-C152S, 

was injected intramyocardially in rats using microparticles. This study showed that as 

myocardial fluid balance improved, cardiac inflammation, fibrosis and dysfunction were 

attenuated (Henri et al., 2016).

These studies thus indicate that therapeutic lymphangiogenesis could be a new approach for 

treating heart diseases. However, it remains unclear whether the improved heart function is a 

direct consequence of increased cardiac lymphatics after MI. MI triggers a robust 

inflammatory response in which lymphocytes, neutrophils, and monocytes are mobilized, 

and scavenge dead cells and release chemokines for cardiac remodeling (Henri et al., 2016). 

It is possible that VEGFC therapy facilitates lymphangiogenesis and lymphatic function, 

which in turn improves the resolution of cardiac edema and provides a pathway for 

inflammatory cell efflux, thus favoring wound healing within the injured heart. To further 
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elucidate the mechanism by which VEGFC-induced lymphangiogenesis improves cardiac 

function after MI, a follow-up study has documented a significant influx of circulating 

monocytes and activated macrophages that undertake extensive phagocytic activity in the 

infarcted region after MI; these immune cells in the injured heart depend on lymphatic 

vessels to circulate back to the lymph nodes (Vieira et al., 2018). These findings show that 

the therapeutic effects of VEGFC-induced lymphangiogenesis after MI include improving 

fluid clearance and edema reduction, and facilitating the transmigration of immune cells 

across the endothelium (Vieira et al., 2018).

In their study, Vuorio et al. extended these findings, using two mouse models with defective 

Vegfr3 signaling (Vuorio et al., 2018): the sVEGFR3 mice, which express a soluble decoy 

VEGFR3 (sVEGFR3); and Chy mice, which have an inactivating point mutation in the 

Vegfr3 gene. In these mice, disrupted Vegfr3 signaling altered the structure of cardiac 

lymphatics in healthy hearts without affecting cardiac function. Importantly, following MI, 

the sVEGFR3 mice exhibited higher mortality with intramyocardial hemorrhages and a 

modified structure of the infarcted area.

Other signaling pathways and factors also reportedly improve cardiac function after MI by 

regulating lymphangiogenesis. For example, adrenomedullin (AM) is a known 

cardioprotective peptide and has been previously reported to be essential for proper 

cardiovascular and lymphatic development in mice (Caron and Smithies, 2001), and its 

expression increases after cardiac injury (Gibbons et al., 2007). Overexpression of Adm (the 

gene that encodes the AM protein) in mice increases cardiac lymphatic density and caliber 

after MI, improves cardiac function and reduces myocardial edema (Trincot et al., 2019). 

Importantly, the aforementioned work performed in mice and rats argue that improved 

cardiac function after MI appears to require increased cardiac lymphatic density and also 

improved vessel integrity (Gancz et al., 2019; Greiwe et al., 2016; Henri et al., 2016). 

Otherwise, defective lymphatic vasculature could lead to myocardial edema after MI.

Apelin is a bioactive peptide that plays a central role in angiogenesis, lymphangiogenesis 

and cardiac contractility (Ashley et al., 2005; Dai et al., 2006) and is exclusively expressed 

on newly formed lymphatics in the ischemic heart (Tatin et al., 2017). In an apelin-knockout 

mouse, morphological and functional defects in the lymphatic vasculature were observed 

associated with a proinflammatory status (indicated by the presence of an expanded 

lymphatic network within inguinal and mesenteric lymph nodes) after MI (Tatin et al., 

2017). This study found that apelin deficiency increased the expression of VEGF-C and 

VEGF-D and exacerbated lymphangiogenesis after MI. Conversely, overexpression of apelin 

in the ischemic heart was found to restore a functional lymphatic vasculature, reducing 

matrix remodeling and inflammation.

Together, these studies argue that a defective lymphatic vasculature could be a contributing 

factor in cardiac diseases. They also show that increased lymphangiogenesis improves heart 

function after cardiac injury. However, whether increased lymphangiogenesis also improves 

lymphatic drainage functions remains unknown and will need to be further investigated. 

Nevertheless, these studies open up additional therapeutic strategies by which to stimulate 
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and restore cardiac lymphatics in cardiac patients, including for example, the therapeutic use 

of VEGFC.

Neurological Disorders

The human brain is wrapped in a three-layered membranous structure called the meninges. 

The outmost layer, the dura mater, contains sinuses - venous structures that drain the blood 

from the brain before it leaves the cranium. Meningeal lymphatic vessels are positioned 

along the dural sinuses (Figure 6A) and drain brain-derived soluble waste to deep cervical 

lymph nodes (Aspelund et al., 2015; Da Mesquita et al., 2018a; Louveau et al., 2015; 

Louveau et al., 2017; Louveau et al., 2018), thus directly connecting the brain with the 

peripheral immune system. This physical link is of interest as it could mediate both waste 

removal from the brain and control brain-associated immunity. Recent findings also 

demonstrated the presence of meningeal lymphatics along the spinal cord (Jacob et al., 2019; 

Louveau et al., 2018) and suggested that the cerebrospinal fluid is primarily drained via 

lymphatics and not into the dural sinuses (Ahn et al., 2019; Ma et al., 2019), as was 

previously assumed (Upton and Weller, 1985).

Many neurological diseases involve the aggregation of misfolded proteins and are 

characterized by immune dysfunction. Given that lymphatic vessels govern both tissue waste 

disposal and immune surveillance, it is reasonable to hypothesize that globally dysfunctional 

lymphatics could have a major impact on brain function (Figure 4 and 6B). However, it 

remains unknown if primary lymphedema is associated with neurological conditions (Berton 

et al., 2015), as its association with meningeal lymphatic dysfunction has yet to be studied. 

Meningeal lymphatics are also unlikely to be a driving force in the diseases discussed below. 

Nevertheless, meningeal lymphatics could plausibly be exploited to facilitate the dispersion 

of therapy through the brain, to regulate the immune response governing ongoing disease, 

and to enable the efficient removal of medication-generated metabolites. As such, meningeal 

lymphatics might facilitate and synergize (and in some cases salvage) existing and new 

therapies for a range of brain disorders, even those for which meningeal lymphatics are not 

the central player in disease pathogenesis.

Neurodegenerative disease:  Alzheimer’s, Parkinson’s, stroke and brain trauma 
Alzheimer’s disease (AD) presents a huge challenge to healthcare worldwide, and is 

characterized pathologically by amyloid plaques and tau tangles (Bateman et al., 2012). 

However, both in human disease and in mouse models, plaques do not necessarily correlate 

well with cognitive dysfunction (Musiek and Holtzman, 2015), although their targeting 

remains a preferred therapeutic approach (Sevigny et al., 2017). In mouse AD models, 

antibodies against amyloid and tau proteins lead to the clearance of plaques and tangles 

(Bacskai et al., 2001; Bard et al., 2000). However, many clinical trials using anti-amyloid 

antibodies have failed, although the few still in progress appear to hold out some hope of 

success (Howard and Liu, 2020; Logovinsky et al., 2016; Salloway et al., 2014).

Based on rodent and human evidence, only a small portion (~0.1%) of peripherally injected 

antibodies reach the brain, presumably by crossing the blood brain barrier (BBB), although 

the existence of other pathways needs to be further explored (Rustenhoven and Kipnis, 
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2019). It seems likely that anti-amyloid antibodies, once in the brain, are dispersed via the 

glymphatic route. The glymphatic system is a fluid conduit through the brain parenchyma 

(Peng et al., 2016; Yang et al., 2013), which together with meningeal lymphatics represents a 

system responsible for brain perfusion. In rodents, abstraction of meningeal lymphatic 

vessels results in impaired glymphatic flow, whereas meningeal lymphatic enhancement via 

VEGF-C treatment, improves glymphatic perfusion (Da Mesquita et al., 2018a; Da Mesquita 

et al., 2018b; see Figure 6B for further details). Likewise, the removal of dissociated plaque 

contents (which might be even more toxic than the plaques) likely occurs via glymphatic/

lymphatic pathways (Da Mesquita et al., 2018a; Patel et al., 2019), in addition to its removal 

via blood-brain barrier (Kisler et al., 2017; Sweeney et al., 2016; Sweeney et al., 2018; 

Tarasoff-Conway et al., 2015). Given the age-related impairment of both pathways (Da 

Mesquita et al., 2018a; Kress et al., 2014), it is possible that the toxic remnants of dissolved 

plaques might not be adequately excreted in aged AD patients. Moreover, the remaining 

antibodies might cause vascular damage and microglial overactivation, leading to continued 

synapse loss and neurodegeneration (Hong et al., 2016). In the future, enhanced meningeal 

lymphatics might be used to support the targeting of Aß and tau, to facilitate the removal of 

generated neurotoxins, and might be used prophylactically to delay disease onset in those 

with a family history of early onset AD (Da Mesquita et al., 2018a).

Meningeal lymphatics also play a role in Parkinson’s disease (PD), a neurodegenerative 

disorder characterized by the death of dopaminergic neurons and by the pathological 

aggregation of α-synuclein (Irwin et al., 2013; Moore et al., 2005). When meningeal 

lymphatics were ligated in mice, it worsened the disease phenotype as a result of meningeal 

lymphatic dysfunction (Zou et al., 2019). Likewise, meningeal lymphatic disruption was 

accompanied by worsened outcomes in different models of experimental stroke (Chen et al., 

2019; Yanev et al., 2020), and lymphatics were recently shown to function also in a brain 

concussion model, where they seem to regulate the extent of edema, the degree of microglial 

activation, and overall neuronal degeneration (Bolte et al., 2019). Together, these findings 

suggest that meningeal lymphatics may be a viable therapeutic target for neurological 

disorders, associated with protein accumulation/aggregation. Future studies are needed to 

address the function of meningeal lymphatics in human neurodegenerative disorders, as well 

as establish a stronger link to human diseases.

Multiple sclerosis and brain tumors—Multiple sclerosis (MS) is an autoimmune 

disease mediated by autoreactive T cells, which orchestrate a multicellular immune attack on 

the brain (Steinman, 2014; Yednock et al., 1992). This autoimmune attack is mimicked in 

mice that have experimental autoimmune encephalomyelitis (EAE), which is used as a 

model of MS (Wekerle et al., 1994). Surgical resection of cervical lymph nodes (CLN) in 

EAE mice was found to ameliorate disease development and progression (van Zwam et al., 

2009). Interestingly, before inflammation was observed in the EAE brain, it was detectable 

in the meninges, where many T cells locate in close proximity to the meningeal lymphatics 

(Louveau et al., 2018). As in the case of deep cervical lymph node (dCLN) resection, the 

ablation or surgical ligation of meningeal lymphatics inhibited disease development and 

progression (Louveau et al., 2018). Just as intriguing was the finding that the transcriptional 

profiles of autoreactive T cells isolated from the dCLNs of mice with ongoing disease 
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differed from those of healthy control dCLNs, and from those that had been disconnected 

from the meningeal lymphatics. This suggests that molecular cues from the brain/meninges 

drain into the dCLNs, where they interact with autoreactive T cells and consequently acquire 

an encephalitogenic phenotype (Louveau et al., 2018). Although the ablation of meningeal 

lymphatics is unlikely to serve as a therapeutic strategy, determining the molecular 

mediators that drain through these vessels and endow T cells with destructive phenotypes 

might lead to therapeutic interventions that can target these molecular mediators.

In general, anti-tumor immunotherapies aim to boost the immune response by preventing 

immune suppression. In the case of brain tumors, however, the story is more complicated 

because of the phenomenon of ‘CNS immune privilege’ (Brent, 1997; Medawar, 1948), 

which renders the peripheral immune system largely blind to brain-derived proteins. For this 

reason, and because checkpoint inhibitors cannot efficiently access the brain, brain tumors 

are highly aggressive (Lim et al., 2018). Although the mechanism underlying CNS immune 

privilege has yet to be elucidated, recent studies in mice have shown that VEGFC-induced 

enhancement of meningeal lymphatic function leads to improved anti-tumor T cell immunity 

against brain tumors and the efficient rejection of tumors (Hu et al., 2020; Song et al., 2020). 

By contrast, the ablation of the meningeal lymphatics further accelerated tumor growth (Hu 

et al., 2020). An unexpected finding, moreover, was the synergistic effect of VEGFC 

combined with checkpoint inhibitors on tumor regression (Song et al., 2020). These results 

are encouraging, given the aggressive nature of brain tumors and the lack of efficient 

therapies, and may indeed advance therapeutic approaches for treating brain tumors.

Age-related cognitive decline—Aging is characterized by the continual reduction in 

function of many vital systems. The lymphatic vasculature does not escape the impact of age 

and deteriorates throughout the body, including in the meninges. A typical characteristic of 

the age-related deterioration observed in meningeal lymphatics is their reduced diameter and 

branching, accompanied by impaired drainage into the dCLNs (Ahn et al., 2019; Da 

Mesquita et al., 2018a). Aging is also associated with impaired glymphatic flow (Kress et 

al., 2014). Interestingly, however, impaired meningeal lymphatic vessel function, 

characteristic of aged mice, could be rescued by treatment with VEGFC. Meningeal 

lymphatics, unlike other tissue lymphatics, depend on VEGFC for both development and 

maintenance (Ahn et al., 2019; Antila et al., 2017). In old mice, VEGFC treatment resulted 

in increased lymphatic vessel diameter and their improved function (Da Mesquita et al., 

2018a). Interestingly, such therapy also improved glymphatic flow through the brain 

parenchyma and, most unexpectedly, resulted in cognitive enhancements in aged mice (Da 

Mesquita et al., 2018a). These benefits were abolished when the meningeal lymphatics were 

surgically ligated (Da Mesquita et al., 2018a). These findings raise intriguing questions 

regarding the role of meningeal lymphatics in brain aging and health and should be further 

explored in animal models and in humans.

Lymphatics in ocular disease

Recent studies revealed that some mammalian vessels exhibit mixed blood endothelial cell 

and lymphatic endothelial cell molecular features. Among those is the Schlemm’s Canal 

(SC), an endothelium-lined vascular channel in the eye required to maintain fluid 
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homeostasis by draining aqueous humor from the intraocular chamber into the systemic 

circulation (Kizhatil et al., 2014). A defective SC elevates ocular pressure leading to 

glaucoma, a degenerative, age-related eye disease.

Glaucoma—Glaucoma is a group of heterogeneous diseases characterized by chronic 

degenerative optic neuropathy, and is the second leading cause of irreversible blindness, 

affecting 3.5% of the population aged 40–80 years worldwide (Kwon et al., 2009; Quigley 

and Broman, 2006; Weinreb et al., 2014). Primary congenital glaucoma is a severe form of 

the disease with an unclear etiology, characterized by infant/early-childhood ocular 

hypertension, enlarged eye globes (buphthalmos) and optic neuropathy, which can result in 

vision loss and blindness (deLuise and Anderson, 1983; Sarfarazi and Stoilov, 2000; Souma 

et al., 2016). The most important risk factor for glaucoma is chronic elevated intraocular 

pressure (IOP), a consequence of impaired aqueous humor outflow (AHO) that eventually 

leads to the irreversible loss of retinal ganglion cells (Kwon et al., 2009; Weinreb et al., 

2014). IOP is determined by the balance between the rate of production and rate of removal 

of the aqueous humor (AH). AH is constantly produced by the ciliary epithelium in the 

posterior chamber, flows into the anterior chamber and exits the eye mainly through the 

trabecular meshwork (TM) into the SC, and is drained into episcleral veins via aqueous 

veins (Salloway et al.). In humans, 80% of fluid drainage is through the conventional or 

trabecular AHO pathway (Aihara et al., 2003; Alm and Nilsson, 2009; Aspelund et al., 2014; 

Kwon et al., 2009; Tamm, 2009).

In glaucoma, aqueous drainage into the SC is reduced, such that aqueous outflow resistance 

rises and IOP increases, resulting in optic neuropathy (Figure 4) (Almasieh et al., 2012). The 

absence or hypoplasia of the SC or alterations to its mechanobiology have been implicated 

in primary congenital glaucoma (Overby et al., 2014; Perry et al., 2012; Smith et al., 2000). 

A reduced SC area is also seen in primary open angle glaucoma (Kagemann et al., 2010), 

and is caused by IOP elevation in healthy eyes due to the partial collapse of the canal 

(Kagemann et al., 2014).

Similar to lymphatic vessels, the SC forms a blind-ended tube that does not contain blood, 

but transports aqueous humor and antigen presenting cells into the venous circulation 

through the episcleral vein (Kwon et al., 2009; Ramos et al., 2007; Schlemm, 1830). It has 

been recently discovered that the SC is a hybrid vessel with both blood and lymphatic 

molecular and morphological features (Aspelund et al., 2014; Kizhatil et al., 2014; Park et 

al., 2014; Ramos et al., 2007; Truong et al., 2014). As seen with primary lymphatics, the SC 

is formed by a continuous, non-fenestrated endothelial cell (EC) monolayer, is surrounded 

by a discontinuous basement membrane, lacks pericytes or smooth muscle cells, and has a 

basal-to-apical direction of flow (Aspelund et al., 2014; Hamanaka et al., 1992; Ramos et al., 

2007). As shown in mice, the SC originates from the choroidal vein, and its ECs acquire a 

lymphatic fate via the upregulation of Prox1 (Aspelund et al., 2014; Kizhatil et al., 2014; 

Park et al., 2014; Thomson et al., 2014).

The molecular regulation of SC development also shares similarities with that of the 

lymphatic vasculature. For example, as shown in mice, Vegfr3 signaling is required for SC 

development (Aspelund et al., 2014), and Prox1 and Tie2 (Tek) signaling are required for SC 

Oliver et al. Page 20

Cell. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



development and maintenance (Kim et al., 2017; Park et al., 2014; Thackaberry et al., 2019; 

Thomson et al., 2014). Mice lacking ANGPT1, ANGPT2 or TIE2 have no SC and develop 

glaucoma (Kim et al., 2017; Thomson et al., 2017). The pharmacological reactivation of 

Tie2-TEK signaling could thus provide new therapeutic approaches to treating high-pressure 

glaucoma in the future.

Lymphatics in Inflammatory bowel disease

Inflammatory bowel diseases (IBDs) include ulcerative colitis (UC) and Crohn’s disease 

(CD), and are characterized by chronic inflammation of the gastrointestinal tract in 

genetically susceptible individuals exposed to environmental risk factors (D’Alessio et al., 

2015). Increased lymphangiogenesis and lymphatic vascular dysfunction, such as 

lymphangiectasia and intralymphatic lymphocyte stasis, have long been described as 

pathological features of CD.

Crohn’s disease—CD is a major form of IBD that generally affects the terminal portion 

of the small bowel, is difficult to diagnose and for which there is no cure. Although the 

pathophysiology of IBD remains unknown, alterations in the intestinal lymphatics are an 

accepted feature of IBD (Rahier et al., 2013), particularly in CD patients (Van Kruiningen 

and Colombel, 2008; von der Weid et al., 2011). For example, increased lymphangiogenesis 

and lymphatic vascular dysfunction, such as lymphangiectasia and intralymphatic 

lymphocyte stasis, are considered pathological features of CD. In CD, the expansion of 

mesenteric fat onto the intestinal wall near the terminal ileum (known as creeping fat, Figure 

4) characterizes the same sites of the intestine in which strictures form, resulting in surgery 

in severely affected CD patients (von der Weid et al., 2011). It has been recently proposed 

that fatty acids released from adipocytes within the creeping fat directly shift the metabolic 

state of muscle cells in the intestinal muscularis externa to drive muscle proliferation and 

fibrosis, thereby producing strictures (Mao et al., 2019). A possible source of those fatty 

acids could be the nearby lymphatics, which serve as the essential route for dietary fat 

transport in the form of chylomicron particles. This possibility has been recently supported 

by work identifying abnormal lymphatic patterning in CD patients (Randolph et al., 2016). 

Prior studies in mice suggested that lymph stasis and/or chylomicron leakage from defective 

lymphatics into nearby mesenteric tissue could promote fat accumulation (Harvey et al., 

2005); therefore, they could be a major contributor to CD and could exacerbate experimental 

ileitis. It can be argued that lymphatic defects and the leakage of fatty cargo into the 

mesentery, a defect associated with an inflammatory response, leads to fat accumulation, 

obesity and also negatively affects the progression of GI pathological alterations, including 

CD. Such defects are likely caused by defective LEC junction permeability and/or leakiness 

in the intestinal and mesenteric lymphatics (Harvey et al., 2005; Zhang et al., 2018). As seen 

in Prox1+/− obese mice (Harvey et al., 2005), defective and leaky lymphatics in CD patients 

could cause an increase in fat accumulation and inflammation.

The intestine contains only initial lymphatics, while collecting lymphatics are only present 

in the mesentery. Lacteals (Figure 1) drain into the submucosal lymphatic network and then 

to the mesenteric collecting lymphatics. Dietary fats and fat-soluble vitamins are released 

from the lacteals as lipoprotein particles (chylomicrons). Lacteals take up chylomicrons and 
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other interstitial fluid components from the villi, which are then transported through the 

mesenteric lymphatics to the thoracic duct. This drains into the venous circulation where 

lymph fluids are metabolized by the liver (Bernier-Latmani and Petrova, 2017; Dixon, 2010; 

Randolph and Miller, 2014; Zhang et al., 2018). Lacteals respond to high VEGF-A levels by 

zippering up their endothelial cell junctions, impairing chylomicron passage and making 

mice resistant to diet-induced obesity (Zhang et al., 2018). Interestingly, button junctions, 

necessary for initial lymphatics permeability and interstitial fluid uptake, are lost during 

inflammation in mice (Yao et al., 2012). Thus, although inflammation leads to increased 

lymphatic vessel density in patients with IBD (Alexander et al., 2010; D’Alessio et al., 2014; 

Rahier et al., 2013) (Figure 4), some of the functional aspects of these lymphatics might be 

defective, such that they might be unable to promote efficient draining and inflammation 

resolution. Given the adipogenic properties of lymph, and the role of inflammation in 

adipose tissue expansion, it is conceivable that chronic lymph leakage in CD contributes to 

the generation of creeping fat. In turn, increased visceral adiposity might sustain chronic 

inflammation and lymphatic dysfunction through the release of pro-inflammatory signals. 

Leukocyte aggregates that form within the lymphatic vasculature may be sites of leakage 

due to absence of a capsular structure, or such aggregates may obstruct lymph flow 

(Randolph et al., 2016). Genomic studies have identified various loci associated with IBD, 

and most are related to immunity or mucosal barrier functions, but thus far none are related 

to lymphatic function (Huang et al., 2017). However, impaired lymphatic function in mice 

generated by blockade of Vegfr3 activity (Becker et al., 2015; Davis et al., 2017; Jurisic et 

al., 2013) or by lymphatic deletion of the calcitonin receptor-like receptor (Calcrl) (Davis et 

al., 2017) has been shown to exacerbate IBD and colitis symptoms, whereas delivery of 

VEGF-C to stimulate lymphatic function improves disease outcomes in mouse models 

(D’Alessio et al., 2014). Patients with the largest number of lymphatic vessels correlate with 

those that are most protected from disease recurrence (Rahier et al., 2013) (Figure 4).

Together with lymphatic vasculature dysfunction, macrophages (MΦs) and other immune 

cells are also major contributors to IBD (Friedrich et al., 2019), such that one can envision 

that the immune response converges with lymphatic impairments in the pathogenesis of 

IBD. In this respect, it is important to consider whether foreign antigens that travel to lymph 

nodes through the lymphatic vasculature contribute to IBD. In Crohn’s disease, for instance, 

the disease is most common near the terminal ileum where the microbiome begins to 

become enriched. Food antigens taken up proximally drive immune tolerance as they drain 

to distinct lymph node compartments, whereas immune responses that may drive 

inflammatory responses occur in other lymph nodes, and are influenced by the local 

microbiome or pathogens (Esterházy et al., 2019). With respect to the abundant lipids in 

lymph, chylomicrons are typically taken up more proximally in the duodenum and jejunum 

(Esterházy et al., 2019; Wang et al., 2016). However, other lipid- carrying vehicles, such as 

HDL, which can strongly influence inflammatory reactions in IBD models (Gerster et al., 

2015) and impact LEC survival in the presence of pro-inflammatory cytokines, are produced 

at the ileum (Haberman et al., 2014). It is possible that lipid carrying vehicles interact 

cooperatively with the immune response to affect lymph cargo, lymphatic vessels, and the 

course of disease.
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This accumulating data involving the lymphatic vasculature as a contributing factor in CD 

will lead to a more detailed anatomical characterization of these vessels in CD patients. It 

could also be possible that in the future, promoting lymphatic growth in those patients could 

improve their condition. Also, the identification of biomarkers of defective lymphatics 

should facilitate the specific diagnoses of this condition. Overall, while much remains to be 

understood, therapeutics designed to improve lymphatic function might be beneficial in IBD.

Conclusions

In summary, many novel functional roles for the lymphatic vasculature in health and disease 

have recently been identified and there is little doubt that this trajectory of discovery will 

continue in the future. As an example, it was recently reported that superficial dermal 

lymphatics in mouse and human exhibit a dynamic spatial association with the hair follicle 

stem cell niche and more importantly, that they play additional functional roles during skin 

regeneration (Gur-Cohen et al., 2019; Peña-Jimenez et al., 2019; Yoon et al., 2019). A 

significant implication of recent advances in the field of lymphangiogenesis research is the 

realization that subtle and sometimes asymptomatic alterations in the optimal function of the 

lymphatic vasculature could be responsible for pathological conditions ranging from obesity 

to cardiovascular disease to aging. Progress in deepening our understanding of the genes and 

signaling pathways important for tissue specific lymphatic vessel development and function 

has the potential to modify the traditional management of diseases in which lymphatic vessel 

dysfunction is implicated, as well as provide novel tools able to facilitate the diagnosis, 

prognosis and treatment options for a range of human pathologies. Accordingly, the 

identification of easily accessible and reliable biomarkers of symptomatic and asymptomatic 

lymphatic malfunction would be a valuable asset to facilitate the diagnosis of those 

pathological conditions in the future.
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Figure 1: Overview of the main structures forming the mammalian lymphatic system:
A) The lymphatic vasculature (green) is an arborized network that runs in parallel to the 

blood vasculature (red and blue). Smaller caliber initial lymphatics absorb the fluid that 

continuously leaks out from the blood capillary bed and drain their contents (lymph) into 

larger caliber collecting lymphatics specialized for transport. Lymph is filtered through 

lymph nodes before entering thoracic or right lymphatic ducts, which returns the lymph to 

the blood circulation via two pairs of bilaterally located lymphovenous valves. B) Initial 

lymphatics comprise a single layer of loosely connected lymphatic endothelial cells (LECs) 

lacking a continuous basement membrane and perivascular mural cells. LECs within initial 

lymphatics are inter-connected through discontinuous button-like junctions that facilitate the 

uptake of interstitial fluid and macromolecules released by the blood vasculature. C) In 

collecting lymphatics, LECs are connected to each other through tighter, continuous zipper-

like junctions, and are covered with specialized muscle cells (SMC) that provide contractile 
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activity to assist lymph flow. Collecting lymphatic vessels have valves that regulate the 

unidirectional flow of lymph, as well as a coordinated contraction of muscle cells that 

facilitates the transport of lymph back to the blood circulation. D) The lymph nodes (more 

than 200 in humans), along stretches of collecting lymphatics, are highly organized with 

segregated compartments of B and T lymphocytes, with lymphatic endothelial cells helping 

to form the subcapsular and medullary sinuses. The nodes are fed by blood vessels with a 

specialized postcapillary venule called the high endothelial venule that allows cellular entry 

into nodes via the blood, in addition to afferent lymphatic cell entry. E) the absorption of 

dietary fats and fat-soluble vitamins is dependent on intestinal villi, finger-like, enterocyte-

lined extensions of the gut wall, containing a blood capillary network (red/blue) and one or 

two central lymphatic vessels (green) termed lacteals. In mammals, dietary lipids are 

repackaged in enterocytes into large triglyceride-loaded particles or “chylomicrons” which 

are taken up by the lacteals.
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Figure 2: Key events underlying construction of the mammalian lymphatic vasculature during 
embryonic development.
LEC specification and formation of LEC progenitors is initiated upon SOX18 and 

COUPTFII-mediated induction of Prox1 expression in embryonic venous endothelial cells, 

initially in the cardinal veins (CV). In turn, Prox1 activates the expression of Vegfr3, and 

Vegfr3 regulates Prox1 by establishing a feedback loop necessary to maintain the identity of 

LEC progenitors. Vegfc-mediated activation of Vegfr3 signaling is necessary to maintain 

Prox1 expression in LEC progenitors. Proteolytic processing of Vegfc by Ccbe1 and 

Adamts3 is required for lymphatic development to occur. Prox1+ LEC progenitors 

subsequently bud off from the CV and intersomitic vessels (ISV) and start to express 

differentiation markers such as podoplanin (Pdpn). Additional LEC progenitor cell sources 

contributing to lymphatic vasculature formation in other tissues include hemogenic 

endothelium in the case of mesenteric lymphatics, the second heart field in the case of 

ventral cardiac lymphatics and a group of cells within the dermal blood capillary bed which 
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contribute to the dorsal dermal lymphatic vasculature. The initial lymphatic plexus is 

progressively arborized and lumenized and once flow within the network is initiated, valve 

development, crucial for unidirectional flow begins. Changes in cell polarity and the 

deposition of extracellular matrix are crucial for the generation of functional valves (shown 

in organge). An integral stage of lymphatic vessel maturation involves the recruitment of 

lymphatic muscle cells (magenta to the collecting lymphatics, acting to propel lymph back 

to the bloodstream. Schematic representing the lymphovenous valves. Most Prox1-

expressing LEC progenitors bud off from the veins; however, a small subpopulation remains 

and forms the lymphovenous valves at the junction of the jugular and subclavian veins 

(SCV). Each of the valve’s two leaflets has two layers of PROX1+ ECs: an inner PROX1+/ 

PDPN+ layer continuous with the lymph sac and an outer PROX1+/PDPN− layer 

continuous with the veins. Left: The region of an E13.5 embryo in which the jugular and 

subclavian veins join to form the lymphovenous valves. Right: A frontal view of the boxed 

region shown at left. EJV, external jugular vein; IJV, internal jugular vein; LS, lymph sac; 

LV, lymphovenous valve; SVC, superior vena cava
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Figure 3. Traditional lymphatic-associated processes.
Lymphatic malfunction leads to vascular malformations, and primary and secondary 

lymphedema. Lymphedema is a disfiguring, disabling, and occasionally life-threatening 

disease that is characterized by fluid accumulation and the chronic and disabling swelling of 

the extremities. Dilated damaged and leaky lymphatics do not support the normal flow of 

lymph and promote unilateral edema and increased adipose tissue accumulation in the 

affected leg. Lymphatic vessels serve as a route by which tumor cells metastasize. Tumor 

lymphangiogenesis induced at the location of the primary tumor can facilitate the entry of 

metastatic tumor cells into lymphatic vessels and lymph nodes, while also supporting 

immunity to tumors for immune-mediated rejection. Lymphatic function is also important 

during immune and inflammatory responses. Initial lymphatics composed of a single layer 

of loosely connected LECs (in green) lack a continuous basement membrane and lymphatic 

muscle cells. These vessels are highly permeable to interstitial fluid and macromolecules, 

pathogens, and immune cells (i.e, leukocytes, neutrophils, macrophages). The initial 

lymphatics drain into larger collecting lymphatics in which LECs are connected to each 

other through tighter, continuous zipper-like junctions, are covered with muscle-like cells 

and have valves that regulate the unidirectional flow of lymph.
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Figure 4. Schematic representation of the major novel functional roles of the lymphatic 
vasculature in health and disease.
Recent work has uncovered important roles for the lymphatic vasculature in normal and 

pathological processes. Conditions in which lymphatic vessels are implicated include 

obesity, IBD/Crohn’s disease, cardiovascular pathologies (atherosclerosis and myocardial 

infarction), glaucoma and neurological diseases (Alzheimer’s, Parkinson’s, stroke and brain 

trauma, multiple sclerosis and brain tumors, age-related cognitive decline). In obesity, a 

direct link between asymptomatic defective and leaky lymphatics and increased 

adipogenesis and obesity was demonstrated so far in mice (Prox1+/−). It is possible that 

similar alterations are also responsible in certain forms of obesity in humans. In Crohn’s 

disease, lymphatics proliferate at the inflamed gut wall where creeping fat is frequently also 

observed, but this proliferation is counterbalanced by leukocyte-rich obstructions present in 

the collecting lymphatics. These regions may also be leaky, and leakiness as discussed for 

obesity, in turn, may drive creeping fat. Crohn’s disease patients with the least lymphatic 
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expansion are more likely to experience relapse after bowel resection. Recent studies 

suggested a beneficial role for lymphatics in restoring heart function after cardiac injury and 

that cardiac lymphatic vessels could be therapeutic targets to restore cardiac function after 

injury. In cardiovascular diseases, atherosclerosis, characterized by the accumulation of 

plaques comprising fat, cholesterol and immune cells inside the arterial vessel wall, results 

in the narrowing and hardening of arterial walls, limiting blood flow from the heart. 

Lymphatics are found at atherosclerotic sites in the adventitial layer of coronary arteries. 

Myocardial infarction is a life-threatening condition that occurs when blood flow to the heart 

abruptly cuts off, usually as a consequence of blockage in the coronary arteries, resulting in 

tissue damage and massive cardiomyocyte death that leads to the formation of fibrotic tissue, 

pathological remodeling and eventually heart failure. In glaucoma, resistance to aqueous 

humor outflow is increased, reducing drainage through the Schlemm’s canal and resulting in 

elevated intraocular pressure and optic neuropathy. Lymphatics are also important novel 

players in a variety of neurological disorders. It is likely that additional novel functional 

roles of the lymphatic vasculature in normal and pathological settings will be identified.
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Figure 5: A role for lymph nodes in the containment of tumor metastases and infection.
A traditional function of lymphatic vessels is their association with lymph nodes. More 

detailed structure of lymph nodes is shown in Figures 1 and 3. As shown in the left panel, 

lymph nodes effectively contain pathogens, in part by coordinating the recruitment of 

neutrophils through high endothelial venules of the blood stream that, separately from 

lymphatics, invest lymph nodes. Lymph nodes also serve a key role in containing activated 

antigen-presenting cells that express tissue factor (factor 3, F3) that functions to initiate 

coagulation. Finally, lymph nodes often limit metastases that arrive to the lymph node; that 

is, many metastases to lymph nodes are stopped therein and do not account for distal spread 

of the tumor. Each putative, distinct tumor clone is shown in a separate color. Right panel 

depicts outcomes that can occur if lymph node containment dramatically fails. The resulting 

severe disease risks that emerge under these conditions include enhanced tumor spread, 

sepsis and spread of infection from organ to organ, and infection-associated disseminated 

intravascular coagulation (DIC) that results from failed lymph node containment of F3-

expressing antigen-presenting cells and their arrival to blood, as seen in Ebola virus 

infection.
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Figure 6. Lymphatic/glymphatic connection in health and disease.
(A) The brain is a highly active organ and its waste products (metabolites, cellular debris, 

misfolded proteins) need to be removed. The most recently proposed mechanism for brain 

waste disposal is the glymphatic pathway, which refers to a framework for fluid flow 

through the brain parenchyma. Cerebrospinal fluid (CSF; depicted in light blue around the 

brain) is produced by the epithelial cells of the choroid plexus within the brain’s ventricles 

and circulates within the subarachnoid space. At the brain surface the meningeal vasculature 

dives into the brain and through these para-arterial spaces the CSF follows a path towards 

the parenchyma. Pulsating arteries propel CSF through the astroglial endfeet into the 

parenchyma. This process drives the efflux of brain interstitial fluid, carrying metabolites, 

protein aggregates, and other waste products from the parenchyma along para-venous walls, 

back into the CSF. Finally, CSF ends up in the dura mater and this cellular and molecular 

waste is drained by meningeal lymphatic vessels into the deep cervical lymph nodes. Normal 
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meningeal lymphatic drainage ensures proper clearance of brain waste, through maintaining 

appropriate glymphatic function. However, disrupted meningeal lymphatics may underlie 

several neurological disorders. (B) Aging is characterized by dysfunction of many vital 

systems, including the lymphatic vasculature. A typical characteristic of the age-related 

deterioration observed in meningeal lymphatics is their reduced diameter and branching, 

accompanied by impaired drainage into the deep cervical lymph nodes (dCLNs). Impaired 

meningeal lymphatic function may underlie accumulation and aggregation of proteins, 

exacerbating conditions such as Alzheimer’s disease, Parkinson’s disease, and others. Poorly 

functional meningeal lymphatics may also impede immune response against brain tumors. 

Overactive, meningeal lymphatics, however, may result in break of CNS immune privilege, 

leading to pathological neuroinflammation, associated with multiple sclerosis
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Table 1.

Genes and Phenotypes Associated with Symptomatic Lymphatic Disorders

Gene Disease and Phenotype Reference(s)

VEGFR3 Nonne-Milroy disease (Butler et al., 2007; Butler et al., 2009; 
Ferrell et al., 1998; Irrthum et al., 2000; 
Karkkainen et al., 2000)Several heterozygous missense mutations impacting the tyrosine kinase activity of 

vascular endothelial growth factor receptor 3 (VEGFR3) are responsible for this 
disease, characterized by congenital bilateral lower limb lymphedema. Mutations in 
VEGFR3 are also responsible for the mutant mouse strain Chy with defective 
lymphatic vessels, chylous ascites and lymphedematous limb swelling after birth.

FOXC2 Lymphedema-distichiasis (LD) syndrome (Brice et al., 2002; Dagenais et al., 2004; 
Falls and Kertesz, 1964; Fang et al., 
2000; Finegold et al., 2001; 
Ghalamkarpour et al., 2009; Neel and 
Schull, 1954; Petrova et al., 2004; van 
Steensel et al., 2009)

This autosomal dominant disorder is characterized by distichiasis (i.e., double row 
of eyelashes) at birth and bilateral lower limb lymphedema at puberty. The number 
of lymphatic vessels appears normal in patients with LD; however, they have 
impaired lymphatic drainage. This defect is likely a consequence of abnormal valve 
development/function and aberrant mural cell coating in the collecting lymphatic 
vessels of LD patients and Foxc2 mutant mice. The majority of FOXC2 mutations 
are insertions, deletions or nonsense mutations, leading to mRNA decay or 
truncated loss-of-function proteins.

SOX18 Hypotrichosis-lymphedema-telangiectasia (HLTS) syndrome (Francois et al., 2008; Irrthum et al., 
2003; Pennisi et al., 2000)

A rare disease characterized by the absence of eyebrows and eyelashes, edema of 
the inferior members or eyelids, and peripheral vein anomalies. Ragged mice 
carrying point mutations in Sox18 are considered a model for HLTS. These mice 
exhibit defective vasculogenesis and folliculogenesis, as well as lymphatic vessel 
malformations, similar to those of humans with HLTS.

CCBE1 Hennekam lymphangiectasia-lymphedema syndrome type 1 (Alders et al., 2009; Alders et al., 2013; 
Bos et al., 2011; Bui et al., 2016; 
Connell et al., 2010; Hennekam et al., 
1989; Jha et al., 2017; Van Balkom et al., 
2002)

This syndrome is caused by homozygous and compound heterozygous mutations in 
the extracellular collagen and calcium-binding EGF domain-1 protein (CCBE1) and 
is characterized by severe peripheral lymphedema associated with intestinal 
lymphangiectasias, characteristic facial features, growth and mental retardation and 
hydrops fetalis. CCBE1 is important to facilitate the proteolytic cleavage and 
activation of the major VEGFR3 ligand, VEGFC.

FAT4 Hennekam lymphangiectasia-lymphedema syndrome 2 (Alders et al., 2014, Betterman et al., 
2020; Pujol et al., 2017)

Homozygous and compound heterozygous mutations in FAT4, encoding the giant 
atypical cadherin FAT4 were identified in Hennekam syndrome patients in whom no 
CCBE1 mutations were found. FAT4 is important for coordinating LEC polarity in 
response to flow and as a result, regulates lymphatic vessel valve development.

ADAMTS3 Hennekam lymphangiectasia-lymphedema syndrome 3 (Brouillard et al., 2017; Jeltsch et al., 
2014)

This syndrome is caused by loss of activity of the protease a disintegrin and 
metalloproteinase with thrombospondin motifs 3 (ADAMTS3), a protease also 
required for the proteolytic cleavage and activation of VEGFC. In these patients, bi-
allelic missense mutations in ADAMTS3 were identified.

FBXL7 Hennekam lymphangiectasia-lymphedema syndrome (Boone et al., 2020)

Is caused by a homozygous single-exon deletion affecting FBXL7 (F-Box and 
leucine rich repeat protein 7). Data suggests that FBXL7 may be the fourth gene for 
Hennekam syndrome acting via a shared pathway with FAT4.

GJC2 Late-onset autosomal dominant lymphedema (Ferrell et al., 2010; Lyons et al., 2017; 
Ostergaard et al., 2011a)

Missense mutations in GJC2 (gap junction protein gamma-2) were discovered in a 
few families with late-onset autosomal dominant lymphedema affecting all 4 
extremities; although some families showed reduced penetrance. GJC2 is a key 
effector of venous valve development, though the precise role of GJC2 in lymphatic 
vessels remains enigmatic.

GATA2 Emberger syndrome (Geng et al., 2016; Hahn et al., 2011; 
Kazenwadel et al., 2012; Kazenwadel et 
al., 2015; Ostergaard et al., 2011b)Heterozygous, loss of function mutations in GATA-binding protein 2 were identified 

in patients with primary lymphedema with myelodysplasia progressing to acute 
myeloid leukemia (Emberger syndrome). GATA2 is important for the development 
and maintenance of lymphovenous and lymphatic vessel valves.

PTPN14 Choanal atresia and lymphedema (Au et al., 2010)
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Gene Disease and Phenotype Reference(s)

An intragenic deletion encompassing both sides of exon 7 of PTPN14 (protein 
tyrosine phosphatase, non-receptor type 14), a protein that by 
coimmunoprecipitation was shown to interact with VEGFR3 upon activation by 
VEGFC, was identified in a consanguineous family with autosomal recessive 
choanal atresia and lymphedema.

KIF11 MCLMR (Ostergaard et al., 2012)

Heterozygous mutations in KIF11 (kinesin family member 11, a DNAinteracting 
protein encoding the kinesin motor protein EG5) causes MLCRD (microcephaly, 
lymphedema, chorioretinal dysplasia) and CDMMR (chorioretinal dysplasia, 
microcephaly and mental retardation), 2 allelic syndromes that have now been 
regrouped as MCLMR (microcephaly with or without chorioretinopathy, 
lymphedema, or mental retardation). The role of KIF11 in the lymphatic vasculature 
remains to be established.

ITGA9 Integrin-α9 (ITGA9) is mutated in primary lymphedema; missense mutations in this 
gene were reported in fetuses with congenital chylothorax. Similar to humans with 
this condition, Itga9-null mice exhibit chylothorax and die a few days after birth. 
Characterization of Itga9-conditional mutant embryos revealed that ITGA9 is 
required for proper lymphatic vessel valve morphogenesis.

(Bazigou et al., 2009; Huang et al., 2000; 
Ma et al., 2008)

REELIN Congenital lymphedema and accumulation of chylous ascites has also been reported 
in patients with homozygous mutations in REELIN, which encodes an extracellular 
matrix protein guiding neuronal cell migration. At least three patients with such 
mutation exhibited persistent neonatal lymphedema and one has accumulation of 
chyle. Reelin deletion in mice has been demonstrated to result in impaired 
maturation of collecting lymphatic vessels, suggesting that collecting vessel 
dysfunction may underlie the lymphatic defects observed in patients.

(Hong et al., 2000; Lutter et al., 2012)

PIEZO1 Generalized lymphatic dysplasia (GLD) (Fotiou et al., 2015; Nonomura et al., 
2018)

Homozygous and compound heterozygous mutations in PIEZO1 (a mechanically 
activated ion channel) lead to an autosomal recessive form of GLD, a rare form of 
primary lymphoedema characterized by uniform, widespread edema, with systemic 
involvement including intestinal and/or pulmonary lymphangiectasia, pleural 
effusions, chylothorax and/or pericardial effusions. PIEZO1 is important for 
lymphatic vessel valve development.

EPHB4 Lymphatic-related hydrops fetalis (Martin-Almedina et al., 2016)

Ephrin receptor B4 kinase–inactivating missense mutations were identified as 
responsible for autosomal dominant lymphatic-related hydrops fetalis. Hydrops 
fetalis is characterized by fluid accumulation in at least 2 fetal compartments. Most 
cases of hydrops fetalis are nonimmune in nature and approximately 15% are a 
consequence of a lymphatic abnormality. Functional inactivation of Ephb4 in mice 
results in defective lymphovenous valve formation and subcutaneous edema.

CALCRL Hydrops fetalis with lymphatic dysplasia (Mackie et al., 2018)

Nonimmune hydrops fetalis (NIHF) was associated with a recessive, in frame 
deletion in the G protein-coupled receptor, Calcitonin Receptor-Like Receptor 
(hCALCRL).
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