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a b s t r a c t

This paper studies the SEIRD epidemic model for COVID-19. First, I show that the model
is poorly identified from the observed number of deaths and confirmed cases. There
are many sets of parameters that are observationally equivalent in the short run but
lead to markedly different long run forecasts. Second, I show that the basic reproduction
number R0 can be identified from the data, conditional on epidemiologic parameters, and
propose several nonlinear SUR approaches to estimate R0. I examine the performance of
these methods using Monte Carlo studies and demonstrate that they yield fairly accurate
estimates of R0. Next, I apply these methods to estimate R0 for the US, California, and
Japan, and document heterogeneity in the value of R0 across regions. My estimation
approach accounts for possible underreporting of the number of cases. I demonstrate
that if one fails to take underreporting into account and estimates R0 from the reported
cases data, the resulting estimate of R0 may be biased downward and the resulting
forecasts may exaggerate the long run number of deaths. Finally, I discuss how auxiliary
information from random tests can be used to calibrate the initial parameters of the
model and narrow down the range of possible forecasts of the future number of deaths.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The SIR (Susceptible, Infectious, Recovered) model and its variations are widely used in epidemiology to model the
spread of epidemics. Since the outbreak of COVID-19, it has seen increased popularity among economists who are
trying to assess the economic consequences of the coronavirus and various mitigation policies, such as Acemoglu et al.
(2020), Atkeson (2020b,c), Avery et al. (2020), Berger et al. (2020), Eichenbaum et al. (2020), Ellison (2020), Fernandez-
Villaverde and Jones (2020), Piguillem and Shi (2020), Toda (2020), and others. In this paper, I study identification and
estimation of the modification of the SIR model called SEIRD (Susceptible, Exposed, Infectious, Recovered, and Dead) and
present several findings.

First, I show that the SEIRD model has too many degrees of freedom and is poorly identified from the short run data
on the number of deaths and confirmed cases. Conditional on the values of epidemiologic parameters, i.e. parameters
that reflect the clinical progression of the disease, the only model parameter that is identified is the basic reproduction
number R0. While R0 governs the speed of spread of the virus, the key driver of the long run number of deaths in the
model is the infection fatality rate (IFR), which is not identified separately from initial values. As a result, models that are
observationally equivalent in the short run can produce markedly different long run forecasts of the number of deaths.

Second, I propose several nonlinear seemingly unrelated regressions (SUR) approaches to estimate R0 based on the
deaths and confirmed cases data. The approaches I consider differ in whether they use cumulative or daily data and how

E-mail address: ikorolev@binghamton.edu.
https://doi.org/10.1016/j.jeconom.2020.07.038
0304-4076/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jeconom.2020.07.038
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeconom.2020.07.038&domain=pdf
mailto:ikorolev@binghamton.edu
https://doi.org/10.1016/j.jeconom.2020.07.038


64 I. Korolev / Journal of Econometrics 220 (2021) 63–85

t
m
(
t

e
i
b

t
o
a
b

f
i
i
t
t

u
C

2

u
t
p
t
T
a

i
a

t
n
d

hey introduce errors in the model. I study the performance of different approaches in simulations and find that the
ethods based on cumulative data typically outperform those based on daily data in terms of the mean squared error

MSE) of the estimate of R0. While there is no clear ranking of the approaches based on the data in levels or logarithms,
he former do not involve trimming and thus may be more convenient in practice.

Next, I estimate the basic reproduction number R0 for the US, California, and Japan for different values of epidemiologic
parameters. I show that there is substantial heterogeneity in the values of R0: for the same values of epidemiologic
parameters, the estimates of R0 for the US and California are about 2–4 times higher than for Japan. Moreover, the
estimates of R0 are highly sensitive to the values of epidemiologic parameters. There is no agreement in the medical
literature on the length of the incubation and infectious period for COVID-19, and different values of these parameters
result in the estimates of R0 for the US that range from under 5 to around 17. Despite these large differences in the
stimates of R0, the resulting models lead to virtually identical fit of the observed data. These findings highlight that there
s no single value of R0 that is consistent with the data, at least in the short run. The appropriate value of R0 depends
oth on the region and on the model.
My model and estimation strategy take into account possible underreporting of the number of COVID-19 cases. Even

hough the fraction of all cases that is reported is not identified, I show that it is important to allow it to differ from
ne. I demonstrate that if one does not take underreporting into account and estimates R0 from the confirmed cases data,
ssuming that all cases are reported, the estimate of R0 may be biased downward and the long run number of deaths may
e overestimated.
Finally, I use the example of Iceland to show how auxiliary data can be used to narrow down the range of possible

orecasts of the long run number of deaths from the epidemic. I use the results of presumably random testing conducted
n Iceland to calibrate the initial conditions of the model and show that doing so results in a more than 4-fold reduction
n the range of possible forecasts. This finding highlights the importance of random testing. Once more countries conduct
ests of random samples of population for having COVID-19 as well as for having antibodies to it, it may become possible
o calibrate the initial values better and obtain more precise forecasts about the future.

The remainder of the paper is organized as follows. Section 2 presents the SEIRD model. Section 3 describes the data I
se. Section 4 discusses identification of the model. Section 5 outlines the estimation procedure. Section 6 contains Monte
arlo evidence. Section 7 presents the empirical results. Section 8 concludes. Appendix A presents additional results.

. Model

In this paper I study a version of the SEIR model that includes dead among its compartments. Similar models have been
sed in epidemiology by Chowell et al. (2007), Lin et al. (2020), Wang et al. (2020), and others. More advanced versions of
he model with more compartments are considered in Chowell et al. (2003, 2006). I consider a model with five groups of
eople: susceptible (S), exposed (E), infectious (I), recovered (R), and dead (D). Susceptible are those who have not gotten
he virus yet and can become infected. Exposed are those who have gotten the virus but cannot transmit it to others yet.
his corresponds to the so called incubation period. Infectious are those who have the virus and are contagious. Recovered
re those who were sick in the past but have recovered from the virus. Dead are those who have died because of the virus.
Including the exposed compartment in the model is important because, according to the CDC, COVID-19 involves an

ncubation period of up to 14 days.1 As a result, the SEIRD model should reflect the progression of the epidemic more
ccurately than a simpler SIRD model that does not include an incubation period.
The number of people in different groups evolves over time as follows:

dS(t)
dt

= −β
S(t)
N

I(t) (2.1)

dE(t)
dt

= β
S(t)
N

I(t) − σE(t) (2.2)

dI(t)
dt

= σE(t) − γ I(t) (2.3)

dR(t)
dt

= (1 − α)γ I(t) (2.4)

dD(t)
dt

= αγ I(t) (2.5)

dC(t)
dt

= λγ I(t) (2.6)

N is the population size of a given country or region. I assume that it is fixed and does not vary over time. I could model
he dynamics of the population size to account for the fact that some people die from the disease, but then I would also
eed to model births and deaths due to other causes. In order to avoid these complications, I simply fix N , as is commonly
one in the literature. C(t) is the cumulative number of cases confirmed. It does not affect the model dynamics but is used

1 https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html.

https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html
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to match the model to the confirmed cases data. In my main analysis, I assume that it is the people who are infectious,
rather than exposed, who are tested for the virus. In my robustness checks, I replace I(t) in Eq. (2.6) with E(t) and find
hat the results remain virtually unchanged.

The evolution of the SEIRD model depends on several parameters. I will refer to γ and σ as epidemiologic parameters.
he parameter γ reflects the estimated duration of illness. Its estimates in the literature vary from 1/18 (e.g. Wang et al.
2020)) to 1/5 (e.g. Lin et al. (2020)). The parameter σ reflects the estimated incubation period of the disease. Its estimates
n the literature vary from 1/5 (e.g. Wang et al. (2020), Lauer et al. (2020)) to 1/3 (Lin et al. (2020)).

The parameter β reflects the rate at which infectious people interact with others. It is often written as β = R0γ , where
0, called the basic reproduction number, measures the transmission of the disease with no mitigation efforts. Liu et al.
2020) review the literature on the estimation of R0 for COVID-19 and conclude that the average and median estimates in
he literature are around 3. However, Sanche et al. (2020) estimate that R0 in China was equal to 5.7, much higher than
ound in the previous literature.

The parameter α is the infection fatality rate (IFR). As discussed in Korolev (2020), the IFR has serious limitations
nd heavily depends on the composition of people who get sick. The IFR may also not be constant over time and can
ubstantially increase if the health care system becomes overwhelmed. However, for simplicity, I assume that α is fixed
nd try to estimate it. Finally, λ is the proportion of all COVID-19 cases that is reported. It is also estimated.
The initial conditions for the number of recovered and dead are R(0) = 0 and D(0) = 0. Because the evolution of the

odel does not depend on initial number of confirmed cases C(0), its choice does not affect my identification results.
or simplicity, I set C(0) = 0. Any other fixed value could be used, or C(0) could be estimated. Next, I need to pick the
nitial number of infectious I(0) and exposed E(0). I discuss their choice later in the paper. Finally, the initial number of
usceptible people is S(0) = N − I(0) − E(0) − R(0) − D(0) = N − I(0) − E(0).

. Data

In my estimation, I use the deaths and confirmed cases data for COVID-19. The country level data is collected by the
enter for Systems Science and Engineering at Johns Hopkins University and is available online.2 The state level data for
he US is collected by the New York Times and is also available online.3 The population of different countries and regions
s taken from World Population Prospects 2019 by United Nations4 and from the US Census Bureau.5

I use T = 60 observations in my sample, with the first observation being January 22, 2020 (for the US and Japan)
r January 25, 2020 (for California). Around that time, cases of coronavirus were widely registered outside China, e.g. in
he US (January 21),6 Germany (January 27),7 and the UK (January 31).8 However, as I show below, the initial conditions
nd the epidemic start date are not identified separately from the IFR and the fraction of cases reported. I discuss the
dentification challenges in more detail below.

I limit the sample to the first 60 observations because several states in the US issued stay home orders in March,
.g. California on March 19 and New York on March 22.9 One may be worried that these measures affected the value of
he basic reproduction number R0. By considering the first 60 observations, i.e. the data up to March 21 (for the US and
apan) or March 24 (for California), I should be able to address this concern. I consider alternative sample sizes in the
obustness checks.

One may be concerned that the number of deaths because of the virus is misreported. It could be underreported
ecause some people who die from the virus are not tested or overreported because some people who test positive for
he virus actually die from other causes. If misreporting is constant over time, then the esimate of R0 will be correct but
he estimate of α will be biased. If the degree of deaths misreporting varies over time, then the estimate of R0 may be
iased. Similarly, if the fraction of cases that is reported changes over time, this may result in biased estimates of R0.

. Identification

In this section, I study identification of the model parameters based on the deaths and confirmed cases data. There are
everal earlier papers on identification of the parameters of the SIR and related models, e.g. Marinov et al. (2014), Magal
nd Webb (2018), and Ducrot et al. (2019), but they are not directly applicable in the current setting. In particular,
hey do not study whether the parameters are identified based on the short run data only. Atkeson (2020a), written
oncurrently and independently of this paper, attempts to answer the question similar to mine in the context of the

2 https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series.
3 https://github.com/nytimes/covid-19-data.
4 https://population.un.org/wpp/Download/Standard/Population/.
5 https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-total.html.
6 https://www.cdc.gov/media/releases/2020/p0121-novel-coronavirus-travel-case.html.
7 https://www.dw.com/en/germany-confirms-human-transmission-of-coronavirus/a-52169007.
8 https://www.bbc.co.uk/news/health-51325192.
9 https://www.nytimes.com/interactive/2020/us/coronavirus-stay-at-home-order.html.

https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series
https://github.com/nytimes/covid-19-data
https://population.un.org/wpp/Download/Standard/Population/
https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-total.html
https://www.cdc.gov/media/releases/2020/p0121-novel-coronavirus-travel-case.html
https://www.dw.com/en/germany-confirms-human-transmission-of-coronavirus/a-52169007
https://www.bbc.co.uk/news/health-51325192
https://www.nytimes.com/interactive/2020/us/coronavirus-stay-at-home-order.html


66 I. Korolev / Journal of Econometrics 220 (2021) 63–85

u
b

r
i
n
d
I
p
i

p
t

sual SIR model. Manski and Molinari (2020) discuss identification problems in estimating the COVID-19 infection rate,
ut they do not consider SIR type models studied in this paper.
In the econometrics literature, identification studies whether the parameters of the model would be known if the

esearcher knew the population that data is drawn from (see, e.g., Lewbel (2019)). In the context of this paper, the question
s somewhat different: if we observed the evolution of deaths D(t) and confirmed cases C(t) in the short run without any
oise, would we then know the parameters of the model? Or, in other words, do different parameter values lead to
ifferent realizations of the observable data in the short run? Because the SEIRD model is difficult to solve in closed form,
simulate the deaths and reported cases paths from models with different parameter values and investigate whether these
aths are identical instead of studying identification theoretically. I present a more rigorous treatment of identification
n the simplified SIRD, rather than SEIRD, model in Supplementary Appendix A.1 and obtain similar results.

First, I assume that epidemiologic parameters γ and σ are known constants and study identification of the remaining
arameters. The parameters of the model then include the basic reproduction number R0, the infection fatality rate α,
he fraction λ of all cases that is reported, and the initial conditions: the number of infectious people I(0) = I0, the
number of exposed people E(0) = E0, and the time T0 that has passed since the epidemic started. For instance, T0 = 1
means that the epidemic just started and the initial values (E0, I0) correspond to the first period we observe. T0 = 2
means that the epidemic started last period and the current period corresponds to (E(1), I(1)). T0 = 10 means that the
epidemic started 9 periods ago from values (E0, I0) and the current values are (E(9), I(9)). I denote the vector of parameters
θ = (R0, α, λ, E0, I0, T0) and study whether these parameters can be identified based on the short run (say, 60 days) data.

The upper panel of Fig. 1 plots the simulated paths of deaths and confirmed cases for three sets of parameters:
θ1

= (5, 0.01, 0.2, 2, 2, 2), θ2
= (5, 0.005, 0.1, 4, 4, 2), and θ3

= (5, 0.004, 0.08, 2, 2, 10). The first two sets of parameters
share the same start date and reproduction number, but differ in the initial values and the values of α and λ. Essentially,
the epidemic that corresponds to the second set of parameters just scales the first epidemic up by a factor of two, but
cuts the fatality rate and the reported fraction of cases in half. As a result, these two epidemics are indistinguishable in
the short run. In other words, we cannot tell from the short run data whether we observe a large epidemic with a low
fatality rate and large number of unreported cases, or a small epidemic with a high fatality rate and small number of
unreported cases.

The third epidemic starts from the same values of (E0, I0) as the first one, but nine periods ago instead of last period.
At the same time it reduces the fatality rate and the observable fraction by a factor of 2.5. It produces more cases in the
current period than the first epidemic, but a smaller fraction of them is reported and a smaller fraction leads to death. As
a result, the third epidemic is indistinguishable from the first one.

While the three sets of parameters are indistinguishable in the short run, the middle panel of Fig. 1 shows that the
resulting epidemics lead to very different long run deaths forecasts. The epidemic with the highest fatality rate α will
result in about twice as many deaths as any of the other two epidemics.

Next, I study identification of R0. The bottom panel of Fig. 1 shows that R0 affects the curvature of the deaths and
reported cases curves, while other parameters only tilt it around the origin. As a result, R0 can be uniquely identified
from the curvature of deaths and confirmed cases.

Fig. 2 parallels Fig. 1, but plots the logarithms of deaths and reported cases rather than their levels. It starts from day
30 rather than day 1, because logarithms are very sensitive to small values of different variables that are observed in
the very beginning of the epidemic. The figure shows that changes in the initial conditions, the fatality rate α, or the
observable fraction of cases λ shift the lines up or down without affecting their slope, while changes in the reproduction
number R0 change the slope of the lines. Thus, R0 can be identified from the slope of the log series, but the remaining
parameters cannot be separately identified.

Because one cannot separately identify α, λ, E0, I0, and T0, I set T0 = 1 and I0 = 0. In my empirical analysis, I will
generally set E0 = 1, unless it leads to computational issues. The model with the lowest possible value of E0 corresponds to
the highest possible value of the IFR and yields the upper bound on the long run number of deaths. I consider alternative
choices of E0 in the robustness checks.

Next, Fig. 3 explores the role of different parameters in the evolution of the model. It demonstrates that changes in the
value of R0 primarily affect the timing of the epidemic but have little effect on the total death toll. The values of α and
λ affect the number of deaths and reported cases respectively, but they have no effect on the model dynamics. Finally,
the initial values E0 and I0 affect the timing of the model, but to a much smaller extent than the value of R0. Thus, if we
are interested in modeling the evolution of the epidemic and its burden in terms of the number of deaths, the primary
parameters of interest are R0 and α, while the remaining model parameters can be viewed as nuisance parameters.

5. Estimation

In this section, I turn to estimation of the SEIRD model. In order to rationalize the model with the observed data, one
needs to introduce errors in the model. There are several possible ways to introduce errors, and they can lead to different
estimation approaches. First, one could introduce errors directly in the cumulative numbers. They would be given by

Dobs(t) = D(t, R0, α) + εD(t), (5.1)

Cobs(t) = C(t, R0, λ) + εC (t), (5.2)
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Fig. 1. Parameter identification. The upper panel shows the short run number of deaths and reported cases for three sets of parameters
θ1

= (5, 0.01, 0.2, 2, 2, 2), θ2
= (5, 0.005, 0.1, 4, 4, 2), and θ3

= (5, 0.004, 0.08, 2, 2, 10), where θ = (R0, α, λ, E0, I0, T0). The middle panel shows the
ong run forecasts from these models. The lower panel fixes the initial conditions and shows the short run number of deaths and reported cases
or (R0, α, λ) = (5, 0.01, 0.2), (3, 0.01, 0.2), and (3, 0.05, 0.8).

here E[(εD(t), εC (t))] = 0. D(t, R0, α) and C(t, R0, λ) denote the cumulative number of deaths and reported cases in
he model,10 while Dobs(t) and Cobs(t) denote the cumulative number of deaths and reported cases observed in the data.
ecause the errors εD(t) and εC (t) enter the cumulative equations, they would likely exhibit strong autocorrelation.
One could introduce errors that are possibly independent over time by modeling the daily numbers of deaths and

eported cases. Denote by ∆A(t) the first differences in the series A(t). Then ∆Dobs(t) and ∆Cobs(t) would correspond to
he observed daily number of deaths and reported cases. One could model them as

∆Dobs(t) = ∆D(t, R0, α) + ηD(t), (5.3)

10 The dependence of the modeled number of deaths and reported cases on the parameters is now made explicit.
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Fig. 2. Parameter identification in logarithms. The upper panel shows the logarithms of the short run number of deaths and reported cases for
three sets of parameters θ1

= (5, 0.01, 0.2, 2, 2, 2), θ2
= (5, 0.005, 0.1, 4, 4, 2), and θ3

= (5, 0.004, 0.08, 2, 2, 10), where θ = (R0, α, λ, E0, I0, T0). The
ower panel fixes the initial conditions and shows the logarithms of the short run number of deaths and reported cases for (R0, α, λ) = (5, 0.01, 0.2),
3, 0.01, 0.2), and (3, 0.05, 0.8).

∆Cobs(t) = ∆C(t, R0, λ) + ηC (t), (5.4)

here E[(ηD(t), ηC (t))] = 0. In fact, the model in Eqs. (5.1) and (5.2) can be viewed as the model in Eqs. (5.3) and (5.4) if
D(t) =

∑t
s=1 ηD(s) and εC (t) =

∑t
s=1 ηC (s).

Alternatively, one could assume that additive errors enter the equations for the logarithms of the daily numbers of
eaths and reported cases rather than their levels:

log(∆Dobs(t)) = log(∆D(t, R0, α)) + νD(t), (5.5)

log(∆Cobs(t)) = log(∆C(t, R0, λ)) + νC (t), (5.6)

here E[(νD(t), νC (t))] = 0. This model implies that

∆Dobs(t) = ∆D(t, R0, α) exp(νD(t)), (5.7)

∆Cobs(t) = ∆C(t, R0, λ) exp(νC (t)), (5.8)

.e. the errors in the daily numbers are multiplicative.
Yet another estimation approach introduces errors in the logarithms of the cumulative number of deaths and reported

ases:

log(Dobs(t)) = log(D(t, R0, α)) + ζD(t), (5.9)

log(Cobs(t)) = log(C(t, R0, λ)) + ζC (t), (5.10)

ith where E[(ζD(t), ζC (t))] = 0.
There is no agreement on the choice of the model and estimation method in the literature. Chowell et al. (2007)

stimate the model using the cumulative number of cases, i.e. Eq. (5.2). In turn, Toda (2020) uses the natural logarithm of
he cumulative number of cases, i.e. Eq. (5.10). Finally, Fernandez-Villaverde and Jones (2020) estimate the model using
he daily number of deaths, i.e. Eq. (5.3).

All these papers use data either on the number of reported cases or on the number of deaths, but not both. In contrast,
estimate the model using both series simultaneously. All four models (5.1)–(5.2), (5.3)–(5.4), (5.5)–(5.6), and (5.9)–(5.10)
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Fig. 3. Role of different parameters. The upper panel shows the evolution of the number of deaths. The middle panel shows the evolution of the
number of reported cases. The lower panel shows the evolution of the (unobserved) number of infectious cases. Left: (R0, α) = (7, 0.01), (5, 0.01),
nd (7, 0.005). Right: (λ, E0) = (0.2, 2), (0.1, 2), and (0.2, 10).

an be viewed as versions of the nonlinear SUR model (see, e.g., Gallant (1975) and Chapter 9 in Davidson and MacKinnon
1993)). This model has the following form:

yj(t) = fj(t, θ ) + uj(t), E[uj(t)] = 0, j = 1, 2,

here j = 1 corresponds to the deaths equation and j = 2 corresponds to the reported cases equation. The parameters
re θ = (R0, α, λ). R0 enters both equations, α only enters the deaths equation, and λ only the cases equation. While it is
ossible to estimate the model equation by equation, this would result in two different estimates of R0 and could lead to
fficiency loss. Instead, as is usually done in the SUR literature, I estimate both equations jointly. Let Y (t) = (y1(t), y2(t))′,
(t, θ ) = (f1(t, θ ), f2(t, θ ))′, U(t) = (u1(t), u2(t))′. Then the objective function is given by

QT (θ ) =
1
T

T∑
(Y (t) − F (t, θ ))′W−1(Y (t) − F (t, θ )),
t=1
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here W is a 2 × 2 weighing matrix. Several choices of W are possible. The simplest possible choice is W = I , a 2 × 2
identity matrix, which assigns the same weight to both equations. Another possibility is

W =

(
σ̂ 2
1 0
0 σ̂ 2

2

)
,

here σ̂ 2
j =

1
T

∑t
t=1 ũj(t)2 is the estimate of the variance of the error terms equation by equation, ũj(t) = yj(t) − fj(t, θ̃ )

re the residuals based on some preliminary estimates θ̃ of θ . These preliminary estimates could be the equation by
quation estimates (with different values of R0 for the two equations) or the estimates based on the known weighting
atrix W = I . This choice of W accounts for possibly different variances of the error terms in two equations but discards
ossible correlation between them.
Yet another choice is given by

W =
1
T

T∑
t=1

Ũ(t)Ũ(t)′,

where Ũ(t) = (ũ1(t), ũ2(t))′, and ũj(t) are the same as above. This choice of the weighting matrix accounts not only for
possibly different variances of the error terms, but also for the correlation between them.

Finally, if one suspects heteroskedasticity, one could use the objective function

QT (θ ) =
1
T

T∑
t=1

(Y (t) − F (t, θ ))′W (t)−1(Y (t) − F (t, θ )),

whereW (t) is an estimate of the variance of U(t) that is allowed to vary over t . Because estimatingW (t) may be somewhat
tricky, I do not consider this class of estimators in this paper.

While inference is also beyond the scope of this paper, I note that there are several interesting directions for future
research. First, one could study how to conduct inference on the model parameters, e.g. the basic reproduction number R0.
While there are certain methods that would seem reasonable, such as the asymptotic SUR standard errors or the bootstrap
(as in Chowell et al. (2007)), one would need to carefully account for partial identification of model parameters, possible
heteroskedasticity and autocorrelation in the errors, and for the fact that the estimates of α and λ may be close to the
boundary of the parameter space (0 or 1). Second, one could be able to develop specification tests based on the difference
between different estimates, e.g. with different weighting matrices, along the lines of Hausman (1978) and White (1981).

6. Simulations

In this section I investigate the performance of different estimation methods described above in a number of Monte
Carlo studies. I consider several data generating processes (DGPs). In the first DGP, the deterministic part of the model is
exactly as in Eqs. (2.1)–(2.6), while the errors are introduced as in Eqs. (5.3)–(5.4). I generate the simulated data as follows.
First, I simulate the model from Eqs. (2.1)–(2.6) for the parameter values R0 = 5.75, α = 0.0067, λ = 0.12. Second, I
construct the daily values of deaths and reported cases from the simulated model. Next, I draw the realizations of deaths
and reported cases at time t from the Poisson distributions with means ∆D(t, R0, α) and ∆C(t, R0, λ) respectively. In other
words,

∆D∗(t, R0, α) ∼ Poisson(∆D(t, R0, α)), ∆C∗(t, R0, λ) ∼ Poisson(∆C(t, R0, λ)),

where the star superscript denotes simulated values. Thus, E[∆D∗(t, R0, α)] = ∆D(t, R0, α) and E[∆C∗(t, R0, λ)] =

∆C(t, R0, λ), so the errors in the simulated daily deaths and reported cases have mean zero by construction. Finally,
I reconstruct the cumulative series D∗(t, R0, α) and C∗(t, R0, λ) and estimate the parameters using all of the methods
discussed above. In the DGP, the initial values are E0 = 2, I0 = 0. In the estimation, I try several fixed choices of E0 as well
as attempt to estimate E0 and I0. When I estimate E0 and I0, I restrict my attention to the approaches based on cumulative
numbers, because the approaches based on daily numbers turn out to be prone to numerical issues.11

Tables 1–4 report the mean, bias, standard deviation, and MSE of the estimates of R0 across 500 simulation draws.
I consider two estimation approaches when logarithms are used: one trims all observations with Dobs(t) ≤ 25 or
Cobs(t) ≤ 75, another one uses all observations with Dobs(t) > 0 and Cobs(t) > 0. I refer to the former approach as
‘‘Trim’’ and to the latter as ‘‘No Trim’’ in the tables.

As we can see, the estimation methods based on taking the logarithms without trimming have the largest bias and
standard deviation, and as a result the worst MSE. Among the remaining four approaches, the ones based on cumulative
numbers (or their logarithms) tend to outperform the ones based on the daily numbers (or their logarithms). Overall, it
appears that estimation based on the cumulative numbers, done in levels rather than logarithms, leads to the lowest MSE
of the estimates of R0, and the estimation results are pretty insensitive to the choice of the weighting matrix W .

11 Supplementary Appendix A.2 presents some additional computational details.
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Table 1
Mean of estimates of R0 for DGP (5.3)–(5.4).

Deaths Cases SUR, Efficient W SUR, Diagonal W SUR, Identity W

Panel A: True E0 = 2 and I0 = 0, Assumed E0 = 2 and I0 = 0

Levels, Cumulative 5.774 5.754 5.757 5.754 5.754
Levels, Daily 5.781 5.755 5.759 5.756 5.756
Logs, Cumulative, Trim 5.771 5.755 5.753 5.751 5.761
Logs, Daily, Trim 5.799 5.763 5.757 5.758 5.776
Logs, Cumulative, No Trim 5.613 5.786 5.728 5.727 5.691
Logs, Daily, No Trim 4.725 5.786 5.664 5.640 5.239

Panel B: True E0 = 2 and I0 = 0, Assumed E0 = 1 and I0 = 0

Levels, Cumulative 5.773 5.754 5.757 5.754 5.754
Levels, Daily 5.780 5.755 5.759 5.755 5.755
Logs, Cumulative, Trim 5.770 5.755 5.753 5.750 5.761
Logs, Daily, Trim 5.796 5.763 5.757 5.758 5.775
Logs, Cumulative, No Trim 5.613 5.786 5.728 5.727 5.690
Logs, Daily, No Trim 4.725 5.786 5.662 5.638 5.246

Panel C: True E0 = 2 and I0 = 0, Assumed E0 = 16 and I0 = 0

Levels, Cumulative 5.788 5.765 5.769 5.765 5.765
Levels, Daily 5.801 5.781 5.789 5.797 5.781
Logs, Cumulative, Trim 5.782 5.762 5.761 5.758 5.769
Logs, Daily, Trim 5.857 5.777 5.770 5.771 5.792
Logs, Cumulative, No Trim 5.623 5.789 5.731 5.730 5.694
Logs, Daily, No Trim 4.725 5.793 5.669 5.644 5.241

Panel D: True E0 = 2 and I0 = 0, Estimated E0 and I0
Levels, Cumulative 5.774 5.755 5.763 5.764 5.769
Logs, Cumulative, Trim 5.772 5.756 5.755 5.754 5.762
Logs, Cumulative, No Trim 5.617 5.788 5.732 5.731 5.693

The table presents the mean of the estimates of R0 across 500 simulation draws. The true value is R0 = 5.755. The estimates in
the first column are based on the deaths data only. The estimates in the second column are based on the reported cases data
only. The estimates in the remaining three columns combine the deaths and reported cases data and use different weighting
matrices.

Table 2
Bias of estimates of R0 for DGP (5.3)–(5.4).

Deaths Cases SUR, Efficient W SUR, Diagonal W SUR, Identity W

Panel A: True E0 = 2 and I0 = 0, Assumed E0 = 2 and I0 = 0

Levels, Cumulative 0.019 −0.001 0.002 −0.001 −0.001
Levels, Daily 0.026 0.000 0.005 0.001 0.002
Logs, Cumulative, Trim 0.016 0.001 −0.001 −0.004 0.006
Logs, Daily, Trim 0.045 0.009 0.003 0.003 0.022
Logs, Cumulative, No Trim −0.141 0.032 −0.026 −0.028 −0.064
Logs, Daily, No Trim −1.030 0.032 −0.091 −0.115 −0.515

Panel B: True E0 = 2 and I0 = 0, Assumed E0 = 1 and I0 = 0

Levels, Cumulative 0.018 −0.001 0.002 −0.001 −0.001
Levels, Daily 0.025 0.000 0.004 0.000 0.000
Logs, Cumulative, Trim 0.016 0.000 −0.001 −0.004 0.006
Logs, Daily, Trim 0.042 0.009 0.003 0.003 0.021
Logs, Cumulative, No Trim −0.142 0.031 −0.026 −0.028 −0.064
Logs, Daily, No Trim −1.030 0.031 −0.092 −0.117 −0.508

Panel Dc: True E0 = 2 and I0 = 0, Assumed E0 = 16 and I0 = 0

Levels, Cumulative 0.034 0.011 0.014 0.011 0.011
Levels, Daily 0.046 0.026 0.034 0.043 0.026
Logs, Cumulative, Trim 0.027 0.007 0.007 0.003 0.014
Logs, Daily, Trim 0.102 0.022 0.016 0.016 0.037
Logs, Cumulative, No Trim −0.132 0.035 −0.023 −0.025 −0.060
Logs, Daily, No Trim −1.029 0.038 −0.085 −0.110 −0.514

Panel D: True E0 = 2 and I0 = 0, Estimated E0 and I0
Levels, Cumulative 0.020 0.000 0.009 0.009 0.014
Logs, Cumulative, Trim 0.017 0.001 0.001 0.000 0.007
Logs, Cumulative, No Trim −0.137 0.033 −0.023 −0.023 −0.062

The table presents the average bias of the estimates of R0 across 500 simulation draws. The estimates in the first column are
based on the deaths data only. The estimates in the second column are based on the reported cases data only. The estimates
in the remaining three columns combine the deaths and reported cases data and use different weighting matrices.
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Table 3
Standard deviation of estimates of R0 for DGP (5.3)–(5.4).

Deaths Cases SUR, Efficient W SUR, Diagonal W SUR, Identity W

Panel A: True E0 = 2 and I0 = 0, Assumed E0 = 2 and I0 = 0

Levels, Cumulative 0.317 0.072 0.076 0.072 0.071
Levels, Daily 0.512 0.117 0.118 0.118 0.119
Logs, Cumulative, Trim 0.424 0.089 0.092 0.091 0.219
Logs, Daily, Trim 0.570 0.123 0.119 0.117 0.281
Logs, Cumulative, No Trim 0.826 0.251 0.206 0.224 0.430
Logs, Daily, No Trim 0.470 0.230 0.166 0.217 0.286

Panel B: True E0 = 2 and I0 = 0, Assumed E0 = 1 and I0 = 0

Levels, Cumulative 0.316 0.071 0.075 0.072 0.071
Levels, Daily 0.511 0.116 0.114 0.114 0.116
Logs, Cumulative, Trim 0.423 0.089 0.092 0.091 0.218
Logs, Daily, Trim 0.567 0.123 0.118 0.117 0.280
Logs, Cumulative, No Trim 0.825 0.251 0.206 0.224 0.431
Logs, Daily, No Trim 0.470 0.230 0.170 0.220 0.270

Panel C: True E0 = 2 and I0 = 0, Assumed E0 = 16 and I0 = 0

Levels, Cumulative 0.328 0.073 0.078 0.074 0.073
Levels, Daily 0.500 0.122 0.175 0.255 0.123
Logs, Cumulative, Trim 0.435 0.091 0.093 0.093 0.223
Logs, Daily, Trim 0.719 0.127 0.123 0.121 0.293
Logs, Cumulative, No Trim 0.844 0.253 0.208 0.226 0.434
Logs, Daily, No Trim 0.471 0.235 0.168 0.220 0.287

Panel D: True E0 = 2 and I0 = 0, Estimated E0 and I0
Levels, Cumulative 0.318 0.072 0.083 0.087 0.089
Logs, Cumulative, Trim 0.424 0.090 0.095 0.098 0.219
Logs, Cumulative, No Trim 0.831 0.251 0.212 0.229 0.429

The table presents the standard deviation of the estimates of R0 across 500 simulation draws. The estimates in the first column
are based on the deaths data only. The estimates in the second column are based on the reported cases data only. The estimates
in the remaining three columns combine the deaths and reported cases data and use different weighting matrices.

Table 4
MSE of estimates of R0 for DGP (5.3)–(5.4).

Deaths Cases SUR, Efficient W SUR, Diagonal W SUR, Identity W

Panel A: True E0 = 2 and I0 = 0, Assumed E0 = 2 and I0 = 0

Levels, Cumulative 0.101 0.005 0.006 0.005 0.005
Levels, Daily 0.263 0.014 0.014 0.014 0.014
Logs, Cumulative, Trim 0.180 0.008 0.008 0.008 0.048
Logs, Daily, Trim 0.327 0.015 0.014 0.014 0.079
Logs, Cumulative, No Trim 0.702 0.064 0.043 0.051 0.189
Logs, Daily, No Trim 1.282 0.054 0.036 0.060 0.347

Panel B: True E0 = 2 and I0 = 0, Assumed E0 = 1 and I0 = 0

Levels, Cumulative 0.100 0.005 0.006 0.005 0.005
Levels, Daily 0.262 0.013 0.013 0.013 0.013
Logs, Cumulative, Trim 0.179 0.008 0.008 0.008 0.048
Logs, Daily, Trim 0.323 0.015 0.014 0.014 0.079
Logs, Cumulative, No Trim 0.701 0.064 0.043 0.051 0.190
Logs, Daily, No Trim 1.281 0.054 0.037 0.062 0.331

Panel C: True E0 = 2 and I0 = 0, Assumed E0 = 16 and I0 = 0

Levels, Cumulative 0.109 0.005 0.006 0.006 0.005
Levels, Daily 0.253 0.016 0.032 0.067 0.016
Logs, Cumulative, Trim 0.190 0.008 0.009 0.009 0.050
Logs, Daily, Trim 0.528 0.017 0.015 0.015 0.087
Logs, Cumulative, No Trim 0.729 0.065 0.044 0.052 0.192
Logs, Daily, No Trim 1.281 0.057 0.036 0.060 0.346

Panel D: True E0 = 2 and I0 = 0, Estimated E0 and I0
Levels, Cumulative 0.101 0.005 0.007 0.008 0.008
Logs, Cumulative, Trim 0.180 0.008 0.009 0.010 0.048
Logs, Cumulative, No Trim 0.709 0.064 0.045 0.053 0.188

The table presents the MSE of the estimates of R0 across 500 simulation draws. The estimates in the first column are based
on the deaths data only. The estimates in the second column are based on the reported cases data only. The estimates in the
remaining three columns combine the deaths and reported cases data and use different weighting matrices.
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Table 5
Mean of estimates of α for DGP (5.3)–(5.4).

SUR, Efficient W SUR, Diagonal W SUR, Identity W

Panel A: True E0 = 2 and I0 = 0, Assumed E0 = 2 and I0 = 0

Levels, Cumulative 0.0067 0.0068 0.0067
Levels, Daily 0.0068 0.0068 0.0068
Logs, Cumulative, Trim 0.0068 0.0068 0.0071
Logs, Daily, Trim 0.0067 0.0067 0.0071
Logs, Cumulative, No Trim 0.0080 0.0081 0.0098
Logs, Daily, No Trim 0.0091 0.0097 0.0181

Panel B: True E0 = 2 and I0 = 0, Assumed E0 = 1 and I0 = 0

Levels, Cumulative 0.0134 0.0135 0.0135
Levels, Daily 0.0135 0.0136 0.0136
Logs, Cumulative, Trim 0.0136 0.0137 0.0143
Logs, Daily, Trim 0.0134 0.0134 0.0143
Logs, Cumulative, No Trim 0.0160 0.0162 0.0198
Logs, Daily, No Trim 0.0182 0.0194 0.0352

Panel C: True E0 = 2 and I0 = 0, Assumed E0 = 16 and I0 = 0

Levels, Cumulative 0.0008 0.0008 0.0008
Levels, Daily 0.0008 0.0008 0.0008
Logs, Cumulative, Trim 0.0008 0.0008 0.0009
Logs, Daily, Trim 0.0008 0.0008 0.0009
Logs, Cumulative, No Trim 0.0010 0.0010 0.0012
Logs, Daily, No Trim 0.0011 0.0012 0.0023

The table presents the mean of the estimates of α0 across 500 simulation draws. The true value is
α = 0.0067. The estimates in different columns combine the deaths and reported cases data and use
different weighting matrices.

Using incorrect initial conditions (e.g. E0 = 16 instead of E0 = 2) has almost no effect on the quality of resulting
stimates. It introduces small bias but does not affect the standard deviation of the estimates. Because in most cases the
ariance term dominates the squared bias term, the MSE remains almost unchanged. Moreover, in terms of the MSE, it
s actually better to use an incorrect fixed initial condition rather than to estimate it from the data. Estimating E0 and I0
ay reduce bias, but increases variance and hence leads to slightly worse MSE.
Table 5 presents the mean of the estimates of the fatality rate α for different initial conditions. In line with the

dentification results, when E0 increases (decreases), the estimates of α decrease (increase) proportionally. For instance,
he mean of the estimates of α for E0 = 2 is eight times as large as for E0 = 16, but is smaller by a factor of two than for
0 = 1.
Next, I study the robustness of the estimate of R0 to a particular form of model misspecification. In the true DGP, I

eplace Eq. (2.6) with dC(t)
dt = λσE(t), so that the reported cases are based on the number of exposed rather than infectious.

However, I estimate the model as if it was generated by Eqs. (2.1)–(2.6). Table 6 reports the results. As we can see, this
form of misspecification has no noticeable effect on the estimates of R0.

Another DGP I consider is based on the model in Eqs. (2.1)–(2.6) but involves a different way of introducing errors. I
ocus on the model in logarithms of the daily numbers and simulate the data as in Eqs. (5.5)–(5.6), where νD(t) and νC (t)
are both N(0, 0.0252). I then compute ∆D∗(t, R0, α) and ∆C∗(t, R0, λ) by taking exponents and construct the cumulative
eries accordingly. Unlike the previous DGPs, which produced integer values as a result, this DGP will generally produce
he number of deaths and reported cases that are not integers. In addition to this DGP I also consider its modified version
hat rounds the number of daily deaths and reported cases to the nearest integer. The true initial values are E0 = 2, I0 = 0.
In estimation, I use these fixed values as well as attempt to estimate the initial values.

Tables 7–10 report the mean, bias, standard deviation, and mean squared error of the estimates of R0 across 500
simulation draws. The upper two panels of each table correspond to the DGP without rounding, while the bottom
two panels correspond to the DGP with rounding. For the DGP without rounding, the estimation approaches based on
logarithms (either cumulative or daily) without trimming dominate all other approaches in terms of the MSE, and their
performance is insensitive to the choice of the weighting matrix. This is perhaps not surprising, because the model in
logarithms is indeed the true model. However, for the DGP with rounding, this is no longer true: different approaches
yield pretty similar values of MSE.

Overall, based on the simulation results, methods based on the cumulative numbers seem to outperform methods
based on daily values. Relative performance of different estimation approaches (e.g. based on levels versus logarithms)
depends on the true DGP. One advantage of the approach based on levels is that it does not involve trimming.

The use of the SUR approach to estimation with the efficient weighting matrix may be motivated by the desire to obtain
more efficient parameter estimates. Interestingly, this is not always the case in my simulations. While joint estimation
of the model based on the deaths and reported cases data yields better (in terms of the MSE) estimates than estimation
based on the deaths data alone, the MSE of the SUR estimates is often very similar to the MSE of the estimates based
on the reported cases data alone. Moreover, the choice of the weighting matrix does not always affect the MSE of the
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Table 6
Robustness of Estimates of R0 .

Deaths Cases SUR, Efficient W SUR, Diagonal W SUR, Identity W

Panel A: Mean

Levels, Cumulative 5.775 5.753 5.753 5.753 5.753
Levels, Daily 5.814 5.756 5.756 5.757 5.756
Logs, Cumulative, Trim 5.750 5.751 5.752 5.750 5.749
Logs, Daily, Trim 5.832 5.755 5.755 5.755 5.789
Logs, Cumulative, No Trim 5.528 5.764 5.739 5.735 5.642
Logs, Daily, No Trim 4.590 5.777 5.720 5.719 5.225

Panel B: Bias

Levels, Cumulative 0.021 −0.002 −0.001 −0.001 −0.002
Levels, Daily 0.060 0.002 0.002 0.003 0.002
Logs, Cumulative, Trim −0.004 −0.003 −0.003 −0.005 −0.006
Logs, Daily, Trim 0.077 0.001 0.001 0.000 0.034
Logs, Cumulative, No Trim −0.226 0.009 −0.015 −0.019 −0.113
Logs, Daily, No Trim −1.165 0.023 −0.035 −0.036 −0.530

Panel C: Standard Deviation

Levels, Cumulative 0.316 0.041 0.044 0.042 0.041
Levels, Daily 0.508 0.069 0.070 0.069 0.070
Logs, Cumulative, Trim 0.423 0.055 0.057 0.055 0.214
Logs, Daily, Trim 0.567 0.071 0.072 0.071 0.282
Logs, Cumulative, No Trim 0.876 0.153 0.112 0.144 0.433
Logs, Daily, No Trim 0.512 0.165 0.104 0.154 0.199

Panel D: MSE

Levels, Cumulative 0.100 0.002 0.002 0.002 0.002
Levels, Daily 0.262 0.005 0.005 0.005 0.005
Logs, Cumulative, Trim 0.179 0.003 0.003 0.003 0.046
Logs, Daily, Trim 0.327 0.005 0.005 0.005 0.081
Logs, Cumulative, No Trim 0.818 0.023 0.013 0.021 0.201
Logs, Daily, No Trim 1.618 0.028 0.012 0.025 0.320

The table presents the mean, bias, standard deviation, and MSE of the estimates of R0 across 500 simulation
draws when λγ I(t) in Eq. (2.6) is replaced with λσE(t). The true value is R0 = 5.755. Initial conditions: E0 = 2,
I0 = 0. The estimates in the first column are based on the deaths data only. The estimates in the second column
are based on the reported cases data only. The estimates in the remaining three columns combine the deaths
and reported cases data and use different weighting matrices.

esulting estimates: the estimates based on the naive weighting matrix W = I are often as good as the estimates based
n the efficient choice of W .

. Empirical results

This section presents the empirical results. Before I move on to the main results, I discuss computational issues
ssociated with estimation of the model. Based on the arguments from the previous sections, when initial parameters
hange, the estimate of R0 should remain virtually unchanged, while the estimates of α and λ should change proportionally
o the changes in initial parameters. In practice, however, this is not always the case. Both α and λ are constrained to
lie between 0 and 1, and when these constraints are binding or close to binding, changes in the initial values can have a
substantial effect on the estimate of R0.

Tables 11 and 12 compare the estimation results for USA and California for the values of epidemiologic parameters
= 1/4 and γ = 1/10 when the initial conditions change from E0 = 1, I0 = 0 to E0 = 2, I0 = 0. The parameter estimates

for California behave as expected: the estimate of R0 remains virtually unchanged, while the estimates of α and λ are
cut in half. However, for the US as a whole the picture is different. The estimates of R0 change substantially as the initial
conditions change, while the changes in the estimates of α and λ do not follow the expected pattern. For instance, when
the model is estimated in levels, the estimates of α and λ remain virtually unchanged as the initial condition changes.
This example illustrates that when the parameter estimates are close to the boundary, changes in initial conditions may
lead to somewhat unexpected estimation results.

Table 13 presents the estimates of R0 for the US, California, and Japan. All three panels of the table use cumulative
data to estimate the model. The upper panel uses levels, the middle panel uses logarithms with trimming, and the lower
panel uses logarithms without trimming. Different rows within a panel correspond to different choices of the weighting
matrix W .

Because there is no agreement in the medical literature on the appropriate values of epidemiologic parameters γ and
σ , I consider several scenarios in the table: ‘‘fast’’ with σ = 1/3, γ = 1/5, ‘‘medium’’ with σ = 1/4, γ = 1/10, and ‘‘slow’’
ith σ = 1/5, γ = 1/18. I also consider a modified version of the SEIRD model that replaces β

S(t)
N I(t) in Eqs. (2.1) and (2.2)

with β
S(t) (I(t) + qE(t)) for q = 0.5. This version of the model assumes that people in the exposed compartment can be
N
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Table 7
Mean of Estimates of R0 for DGP (5.5)–(5.6).

Deaths Cases SUR, Efficient W SUR, Diagonal W SUR, Identity W

Panel A: No Rounding, True E0 = 2 and I0 = 0, Assumed E0 = 2 and I0 = 0

Levels, Cumulative 5.755 5.755 5.755 5.755 5.755
Levels, Daily 5.762 5.752 5.757 5.758 5.753
Logs, Cumulative, Trim 5.755 5.753 5.754 5.754 5.754
Logs, Daily, Trim 5.756 5.755 5.756 5.756 5.755
Logs, Cumulative, No Trim 5.755 5.755 5.755 5.755 5.755
Logs, Daily, No Trim 5.755 5.755 5.755 5.755 5.755

Panel B: No Rounding, True E0 = 2 and I0 = 0, Estimated E0 and I0
Levels, Cumulative 5.757 5.756 5.759 5.760 5.766
Logs, Cumulative, Trim 5.756 5.754 5.757 5.759 5.755
Logs, Cumulative, No Trim 5.757 5.759 5.757 5.757 5.757

Panel C: Rounding, True E0 = 2 and I0 = 0, Assumed E0 = 2 and I0 = 0

Levels, Cumulative 5.836 5.760 5.771 5.776 5.760
Levels, Daily 5.772 5.752 5.762 5.762 5.753
Logs, Cumulative, Trim 5.878 5.761 5.783 5.789 5.819
Logs, Daily, Trim 5.777 5.755 5.764 5.764 5.766
Logs, Cumulative, No Trim 6.424 5.793 5.772 5.795 6.104
Logs, Daily, No Trim 5.483 5.759 5.750 5.752 5.620

Panel D: Rounding, True E0 = 2 and I0 = 0, Estimated E0 and I0
Levels, Cumulative 5.837 5.761 5.777 5.788 5.770
Logs, Cumulative, Trim 5.879 5.761 5.785 5.792 5.820
Logs, Cumulative, No Trim 6.425 5.793 5.772 5.795 6.105

The table presents the mean of the estimates of R0 across 500 simulation draws for different estimation methods. The true
value is R0 = 5.755. The estimates in the first column are based on the deaths data only. The estimates in the second column
are based on the reported cases data only. The estimates in the remaining three columns combine the deaths and reported
cases data and use different weighting matrices.

Table 8
Bias of estimates of R0 for DGP (5.5)–(5.6).

Deaths Cases SUR, Efficient W SUR, Diagonal W SUR, Identity W

Panel A: No Rounding, True E0 = 2 and I0 = 0, Assumed E0 = 2 and I0 = 0

Levels, Cumulative 0.0007 0.0004 0.0009 0.0005 0.0002
Levels, Daily 0.0078 −0.0027 0.0026 0.0031 −0.0013
Logs, Cumulative, Trim 0.0003 −0.0013 −0.0007 −0.0009 −0.0005
Logs, Daily, Trim 0.0011 −0.0001 0.0012 0.0011 0.0004
Logs, Cumulative, No Trim 0.0002 0.0003 0.0002 0.0002 0.0002
Logs, Daily, No Trim 0.0001 0.0002 0.0002 0.0002 0.0002

Panel B: No Rounding, True E0 = 2 and I0 = 0, Estimated E0 and I0
Levels, Cumulative 0.0020 0.0014 0.0040 0.0054 0.0110
Logs, Cumulative, Trim 0.0010 −0.0006 0.0025 0.0040 0.0001
Logs, Cumulative, No Trim 0.0029 0.0047 0.0022 0.0022 0.0025

Panel C: Rounding, True E0 = 2 and I0 = 0, Assumed E0 = 2 and I0 = 0

Levels, Cumulative 0.081 0.005 0.016 0.021 0.005
Levels, Daily 0.017 −0.003 0.007 0.008 −0.001
Logs, Cumulative, Trim 0.124 0.006 0.029 0.034 0.065
Logs, Daily, Trim 0.023 0.001 0.010 0.010 0.012
Logs, Cumulative, No Trim 0.669 0.038 0.017 0.040 0.349
Logs, Daily, No Trim −0.271 0.005 −0.005 −0.002 −0.134

Panel D: Rounding, True E0 = 2 and I0 = 0, Estimated E0 and I0
Levels, Cumulative 0.082 0.006 0.022 0.033 0.015
Logs, Cumulative, Trim 0.125 0.007 0.030 0.038 0.066
Logs, Cumulative, No Trim 0.671 0.038 0.018 0.041 0.350

The table presents the average bias of the estimates of R0 across 500 simulation draws for different estimation methods. The
estimates in the first column are based on the deaths data only. The estimates in the second column are based on the reported
cases data only. The estimates in the remaining three columns combine the deaths and reported cases data and use different
weighting matrices.
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Table 9
Standard deviation of estimates of R0 for DGP (5.5)–(5.6).

Deaths Cases SUR, Efficient W SUR, Diagonal W SUR, Identity W

Panel A: No Rounding, True E0 = 2 and I0 = 0, Assumed E0 = 2 and I0 = 0

Levels, Cumulative 0.0364 0.0352 0.0258 0.0255 0.0351
Levels, Daily 0.1110 0.1010 0.0706 0.0693 0.1026
Logs, Cumulative, Trim 0.0260 0.0261 0.0195 0.0188 0.0176
Logs, Daily, Trim 0.0464 0.0451 0.0343 0.0340 0.0325
Logs, Cumulative, No Trim 0.0065 0.0069 0.0049 0.0049 0.0048
Logs, Daily, No Trim 0.0061 0.0064 0.0044 0.0044 0.0044

Panel B: No Rounding, True E0 = 2 and I0 = 0, Estimated E0 and I0
Levels, Cumulative 0.0366 0.0351 0.0270 0.0275 0.0396
Logs, Cumulative, Trim 0.0261 0.0261 0.0227 0.0239 0.0177
Logs, Cumulative, No Trim 0.0075 0.0079 0.0056 0.0056 0.0053

Panel C: Rounding, True E0 = 2 and I0 = 0, Assumed E0 = 2 and I0 = 0

Levels, Cumulative 0.050 0.035 0.037 0.032 0.035
Levels, Daily 0.112 0.101 0.070 0.070 0.103
Logs, Cumulative, Trim 0.060 0.027 0.038 0.031 0.033
Logs, Daily, Trim 0.082 0.046 0.045 0.044 0.047
Logs, Cumulative, No Trim 0.097 0.021 0.022 0.021 0.048
Logs, Daily, No Trim 0.073 0.024 0.023 0.024 0.038

Panel D: Rounding, True E0 = 2 and I0 = 0, Estimated E0 and I0
Levels, Cumulative 0.050 0.035 0.043 0.043 0.040
Logs, Cumulative, Trim 0.060 0.027 0.038 0.034 0.033
Logs, Cumulative, No Trim 0.097 0.021 0.022 0.021 0.048

The table presents the standard deviation of the estimates of R0 across 500 simulation draws for different estimation methods.
The estimates in the first column are based on the deaths data only. The estimates in the second column are based on the
reported cases data only. The estimates in the remaining three columns combine the deaths and reported cases data and use
different weighting matrices.

Table 10
MSE of estimates of R0 for DGP (5.5)–(5.6).

Deaths Cases SUR, Efficient W SUR, Diagonal W SUR, Identity W

Panel A: No Rounding, True E0 = 2 and I0 = 0, Assumed E0 = 2 and I0 = 0

Levels, Cumulative 0.0013 0.0012 0.0007 0.0006 0.0012
Levels, Daily 0.0124 0.0102 0.0050 0.0048 0.0105
Logs, Cumulative, Trim 0.0007 0.0007 0.0004 0.0004 0.0003
Logs, Daily, Trim 0.0022 0.0020 0.0012 0.0012 0.0011
Logs, Cumulative, No Trim 0.00004 0.00005 0.00002 0.00002 0.00002
Logs, Daily, No Trim 0.00004 0.00004 0.00002 0.00002 0.00002

Panel B: No Rounding, True E0 = 2 and I0 = 0, Estimated E0 and I0
Levels, Cumulative 0.0013 0.0012 0.0007 0.0008 0.0017
Logs, Cumulative, Trim 0.0007 0.0007 0.0005 0.0006 0.0003
Logs, Cumulative, No Trim 0.00007 0.00008 0.00004 0.00004 0.00003

Panel C: Rounding, True E0 = 2 and I0 = 0, Assumed E0 = 2 and I0 = 0

Levels, Cumulative 0.009 0.001 0.002 0.001 0.001
Levels, Daily 0.013 0.010 0.005 0.005 0.011
Logs, Cumulative, Trim 0.019 0.001 0.002 0.002 0.005
Logs, Daily, Trim 0.007 0.002 0.002 0.002 0.002
Logs, Cumulative, No Trim 0.457 0.002 0.001 0.002 0.124
Logs, Daily, No Trim 0.079 0.001 0.001 0.001 0.020

Panel D: Rounding, True E0 = 2 and I0 = 0, Estimated E0 and I0
Levels, Cumulative 0.009 0.001 0.002 0.003 0.002
Logs, Cumulative, Trim 0.019 0.001 0.002 0.003 0.005
Logs, Cumulative, No Trim 0.459 0.002 0.001 0.002 0.125

The table presents the MSE of the estimates of R0 across 500 simulation draws for different estimation methods. The estimates
in the first column are based on the deaths data only. The estimates in the second column are based on the reported cases data
only. The estimates in the remaining three columns combine the deaths and reported cases data and use different weighting
matrices.
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Table 11
Estimates of R0 , α, and λ for USA.

E0 = 1, I0 = 0 E0 = 2, I0 = 0

SUR,
Efficient W

SUR,
Diagonal W

SUR,
Identity W

SUR,
Efficient W

SUR,
Diagonal W

SUR,
Identity W

Panel A: Levels, Cumulative

R0 9.265 9.519 9.743 8.806 9.144 9.291
α 0.00006 0.00004 0.00003 0.00006 0.00004 0.00003
λ 0.0033 0.0024 0.0018 0.0031 0.0020 0.0017

Panel B: Logs, Cumulative, Trim

R0 8.599 8.443 8.368 8.343 8.371 8.386
α 0.00016 0.00019 0.00021 0.00011 0.00011 0.00010
λ 0.0068 0.0083 0.0091 0.0047 0.0046 0.0045

Panel C: Logs, Cumulative, No Trim

R0 10.595 9.584 8.311 10.415 9.673 8.331
α 0.00003 0.00007 0.00030 0.00002 0.00003 0.00014
λ 0.0007 0.0020 0.0082 0.0004 0.0009 0.0040

The table presents the estimates of R0 , α, and λ for γ = 1/10, σ = 1/4, and different initial values.

Table 12
Estimates of R0 , α, and λ for California.

E0 = 1, I0 = 0 E0 = 2, I0 = 0

SUR,
Efficient W

SUR,
Diagonal W

SUR,
Identity W

SUR,
Efficient W

SUR,
Diagonal W

SUR,
Identity W

Panel A: Levels, Cumulative

R0 5.062 5.094 5.058 5.064 5.097 5.060
α 0.0040 0.0038 0.0041 0.0020 0.0019 0.0020
λ 0.217 0.206 0.219 0.108 0.103 0.109

Panel B: Logs, Cumulative, Trim

R0 4.890 4.842 5.060 4.888 4.840 5.064
α 0.0054 0.0059 0.0040 0.0027 0.0029 0.0020
λ 0.292 0.318 0.218 0.147 0.159 0.109

Panel C: Logs, Cumulative, No Trim

R0 5.277 5.308 5.601 5.279 5.309 5.602
α 0.0024 0.0023 0.0015 0.0012 0.0012 0.0008
λ 0.154 0.148 0.099 0.077 0.074 0.049

The table presents the estimates of R0 , α, and λ for γ = 1/10, σ = 1/4, and different initial values.

contagious, but to a lesser extent that people in the infectious compartment. While these exact choices are somewhat
arbitrary, considering several values of epidemiologic parameters instead of just one allows me to better understand their
effect on the estimation results and forecasts.

The initial conditions are E0 = 1, I0 = 0 for the US and California and E0 = 10, I0 = 0 for Japan. The choice of the initial
conditions for Japan is tricky because the estimate of λ is at the upper bound of 1, and the choice of initial conditions
affects the estimate of R0. Given that Bommer and Vollmer (2020) estimate that the detection rate in Japan in March was
around 20%–25%, even the initial condition E0 = 10 may be too low.

As we can see from the table, the estimates of R0 for a given country or region change a lot as epidemiologic parameters
change. For example, the estimate of R0 for the US ranges from under 5 in the ‘‘fast’’ scenario to around 15–18 in the ‘‘slow’’
one. Moreover, for the fixed values of epidemiologic parameters γ and σ , the estimates of R0 differ a lot between regions.
For instance, in the ‘‘medium’’ scenario with σ = 1/4 and γ = 1/10, the estimates of R0 vary from 2.6 for Japan to around 9.5
for the US. While the magnitude of these differences might be surprising, heterogeneity itself is not. If various mitigation
or suppression policies can reduce R0, then one could expect that different countries have different values of R0 due to
the differences in their approaches to dealing with COVID-19, as well as differences in social norms, population density,
etc.

Next, I present my results graphically. I focus on the results for California because they are least prone to numerical
issues, as discussed above. For the sake of space I only present the results from the model estimated in levels. Additional
results are presented in the online supplement.

The upper panel of Fig. 4 plots the fitted values of deaths and reported cases for California from the models with
different values of epidemiologic parameters. The estimates of R0 are based on the efficient weighting matrix W . As we
can see, even though the four models have different values of epidemiologic parameters and different estimates of R0, they
appear to be indistinguishable in the short run: the resulting paths of deaths and reported cases are identical. However,
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Table 13
Estimates of R0 .

σ = 1/3,
γ = 1/5

σ = 1/4,
γ = 1/10

σ = 1/5,
γ = 1/18

σ = 1/4,
γ = 1/10,
q = 0.5

Panel A: Levels

USA
SUR, Efficient W 4.834 9.265 16.698 5.947
SUR, Diagonal W 4.963 9.519 17.399 6.089
SUR, Identity W 5.053 9.743 18.249 6.167

California
SUR, Efficient W 3.043 5.062 8.536 3.852
SUR, Diagonal W 3.058 5.094 8.599 3.872
SUR, Identity W 3.041 5.058 8.528 3.850

Japan
SUR, Efficient W 1.716 2.685 4.566 2.249
SUR, Diagonal W 1.717 2.684 4.559 2.248
SUR, Identity W 1.714 2.681 4.587 2.245

Panel B: Logs, Trim

USA
SUR, Efficient W 4.501 8.599 15.175 5.571
SUR, Diagonal W 4.552 8.443 15.190 5.640
SUR, Identity W 4.581 8.368 15.198 5.679

California
SUR, Efficient W 2.960 4.890 8.199 3.748
SUR, Diagonal W 2.937 4.842 8.105 3.719
SUR, Identity W 3.043 5.060 8.536 3.855

Japan
SUR, Efficient W 1.688 2.569 4.215 2.179
SUR, Diagonal W 1.689 2.570 4.217 2.180
SUR, Identity W 1.700 2.642 4.502 2.219

Panel C: Logs, No Trim

USA
SUR, Efficient W 5.504 10.595 19.545 6.682
SUR, Diagonal W 5.124 9.584 17.543 6.285
SUR, Identity W 4.544 8.311 15.038 5.638

California
SUR, Efficient W 3.143 5.277 8.958 3.979
SUR, Diagonal W 3.157 5.308 9.018 3.997
SUR, Identity W 3.294 5.601 9.595 4.167

Japan
SUR, Efficient W 1.862 2.816 4.710 2.328
SUR, Diagonal W 1.859 2.823 4.731 2.329
SUR, Identity W 1.879 2.821 4.991 2.329

The table presents the estimates of R0 for different countries and different values of epidemiologic parameters σ and
γ . Initial conditions: E0 = 1, I0 = 0 for USA and California, E0 = 10 for Japan. The middle panel trims all observations
with Dobs(t) ≤ 25 or Cobs(t) ≤ 75. The lower panel uses all observations with Dobs(t) > 0 and Cobs(t) > 0.

in the long run the story is different. The lower panel of Fig. 4 demonstrates that the predicted total number of deaths
from the COVID-19 epidemic in the four models ranges from around 70 thousand to more than 300 thousand.

Next, Fig. 5 fixes the values of epidemiologic parameters σ = 1/4 and γ = 1/10 and considers the pessimistic and
optimistic scenarios, given by different initial conditions, for which the resulting models are observationally equivalent.
The pessimistic scenario corresponds to the initial condition E0 = 1, I0 = 0, while the optimistic scenario corresponds to
E0 = 30, I0 = 0. Intuitively, the lower the initial values, the lower the cumulative number of people who have had the
virus, the higher the estimated fatality rate, and the higher the forecasted death toll.

We can see that different initial conditions lead to observationally equivalent models in the short run. However,
there are large differences in estimates of unobserved variables and in long run forecasts. For instance, the model with
E0 = 1, I0 = 0 estimates that the number of people with COVID-19 (here I count people both in the exposed and infectious
compartments) in California on March 22 was around 50 thousand and predicts over 150 thousand deaths in the long
run. In contrast, the model with E0 = 30, I0 = 0 estimates that there were around 1.6 million people with COVID-19 and
predicts less than 5 thousand deaths in the long run, a 32-fold difference.

Next, I demonstrate empirically why it is important to allow the fraction of all cases that is reported to differ from one.
Fig. 6 presents the results for different estimates of R0 in the ‘‘medium’’ scenario with σ = 1/4 and γ = 1/10. One model
corresponds to the pessimistic case scenario from Fig. 5 with R̂0 = 5.06 and E0 = 1. The forecasted long run number
of deaths for that model is around 150 thousand. The remaining two models estimate R0 from the confirmed cases data
assuming that all cases are reported, i.e. λ = 1, and then recover α from the deaths data. The resulting estimates of R0
are lower, 4.18 when the initial condition is I0 = 0, E0 = 1, and 2.90 when the initial condition is I0 = 10, E0 = 10. The
estimates of R0, α, and λ for these models are reported in Table 14. As we can see from the upper panel of the figure,
the resulting models, especially the latter one, provide a poorer fit of the observed data: they cannot generate enough
curvature because of the low R0.

The bottom panel of Fig. 6 shows that the forecasted long run number of deaths from both these models is over 600
thousand, a lot higher than in the pessimistic model with higher R that fits the data well. Thus, estimating R based on
0 0
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Fig. 4. Results for California. The upper panel shows the fit of the actual cumulative deaths and reported cases by models with four different values
of epidemiologic parameters σ and γ . The middle panel shows the fit of the logarithms of the actual cumulative deaths and reported cases for the
ame four models. The lower panel shows the forecasts from the same four models.

Table 14
Estimates of R0 for California, with and without Underreporting.

Possible Underreporting,
E0 = 1

No Underreporting,
E0 = 1

No Underreporting,
E0 = 10

R0 5.062 4.176 2.908
α 0.004 0.018 0.018
λ 0.217 1 1

The table presents the estimates of R0 , α, and λ for California for γ = 1/10, σ = 1/4. The left panel allows
for underreporting of the number of cases and estimates all parameters from the data on deaths and
reported cases jointly. The right two panels assume that all cases are reported, estimate R0 from the
reported cases data, and then recover α, conditional on the estimated value of R0 , from the deaths data.
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Fig. 5. Pessimistic and optimistic scenarios for California. The upper panel shows the fit of the actual cumulative deaths and reported cases by
odels with different initial conditions. The middle panel shows the fit of the logarithms of the actual cumulative deaths and reported cases by

hese models. The lower panel shows the forecasts from these models. The values of epidemiologic parameters are σ = 1/4, γ = 1/10.

the confirmed cases data under the assumption that all cases are reported leads to the downward bias in the estimate of
R0, poor fit of the observed data, and severe overestimation of the long run number of deaths.

Finally, I study whether additional information can help calibrate the initial conditions using Iceland as an example.
Iceland is an interesting country to study because it was among the first countries to launch wide-scale random, or nearly
random, testing of its population.12 While it is debatable whether testing in Iceland is completely random, my goal here
is to demonstrate how information from these tests could in principle be used to calibrate the initial values. I fix the
epidemiologic parameter values at σ = 1/4 and γ = 1/10. Because the number of deaths in the data is very low, I use the
irst 70, rather than 60, observations to estimate the model.

12 https://www.government.is/news/article/?newsid=f96a270c-66e8-11ea-945f-005056bc4d74.

https://www.government.is/news/article/?newsid=f96a270c-66e8-11ea-945f-005056bc4d74
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Fig. 6. Results for California for different values of R0 . The upper panel shows the fit of the actual cumulative deaths and reported cases by models
with and without underreporting and different initial conditions. The middle panel shows the fit of the logarithms of the actual cumulative deaths
and reported cases by these models. The lower panel shows the forecasts from these models. The values of epidemiologic parameters are σ = 1/4,
γ = 1/10.

The tests done in Iceland by deCode Genetics between March 13 and March 21 found 48 positives among 5,571 people
who were tested for COVID-19, for the positive test rate of 0.86%. The 95% Wilson score confidence interval for the positive
test rate is [0.65%, 1.14%].13 I assume that the fraction of Iceland’s population who had COVID-19 on March 21, when the
results were published, was the same as in the test. I then use the test results to calibrate the initial values in the model
such that the fraction of Iceland’s population with COVID-19 on March 21 in the model is the same as in the test.

Given the population of 341,250, the positive test rate of 0.86% translates into 2,940 cases, with the 95% Wilson score
confidence interval of [2, 220, 3, 891]. I hold I0 = 0 and calibrate E0 so that the sum of exposed and infectious people on
arch 21 matches the these numbers. E0 = 4.25 yields 2,939 cases, E0 = 3.26 yields 2,217 cases, and E0 = 5.51 yields
,892 cases on March 21. For simplicity, I do not require that E0 be an integer.

13 The confidence interval based on the asymptotic normal approximation is [0.62%, 1.10%].
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Fig. 7. Results for Iceland. The figure presents the results for Iceland. The left panel does not use any additional information. The right panel matches
the number of active COVID-19 cases on March 21 to the one estimated based on testing a random sample of population. The upper panel shows
the cumulative deaths fit by models with different initial values E0 . The middle panel shows the cumulative reported cases fit by these models. The
lower panel shows the deaths forecasts from these models.

The results are presented in the right panel of Fig. 7. For comparison, the left panel of Fig. 7 plots the results for
E0 = 1.5 and E0 = 10. As we can see, both in the left and right panel all models are indistinguishable on the available
data. However, in the left panel, the forecasted death toll varies from under 77 for E0 = 10 to 592 for E0 = 1.5; in the
right panel, it varies from 152 for E0 = 5.51 to 264 for E0 = 3.26. Thus, the use of additional information leads to a more
than 4-fold reduction in the range of forecasted deaths for observationally equivalent models. This result demonstrates
the value of auxiliary information that becomes available due to random testing.

8. Conclusion

In this paper, I show that the SEIRD model for COVID-19 is poorly identified from the short run data on deaths and
reported cases. There can be many different models that are indistinguishable in the short run but result in markedly
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different long run forecasts. For instance, the forecasted number of deaths in California in observationally equivalent
models ranges from under 5 thousand to over 150 thousand. Thus, this paper highlights that long run forecasts for COVID-
19 heavily depend on arbitrary choices made by the researcher. Available data cannot be used to determine which model
is correct because there are many models that look identical in the short run.

Next, I propose several nonlinear SUR approaches to estimate the basic reproduction number R0, which is identified
conditional on the values of epidemiologic parameters. Unlike most papers in the literature, which use data either on
deaths or on reported cases, the proposed estimation methods combine these two series. Simulations suggest that the
proposed methods lead to precise estimates of R0.

I then estimate R0 for the US, California, and Japan for different values of epidemiologic parameters. The resulting
stimates of R0 heavily depend on the epidemiologic parameters and are heterogeneous across regions: they are 2–4
imes higher in the US and California than in Japan.

My model takes into account possible underreporting of the number of cases. I demonstrate that the estimates of
0 based on the confirmed cases data under the assumption that all cases are reported may be biased downward. The
esulting models may be inconsistent with the observed data and may dramatically overestimate the long run number of
eaths.
Finally, I demonstrate that auxiliary information from random tests for COVID-19 can help calibrate the initial values

f the model and reduce the range of possible forecasts that are consistent with the observed data. Random, or nearly
andom, tests were conducted in Iceland, and utilizing the information from these tests leads to a more than 4-fold
eduction in the range of the forecasted number of deaths.

The model I consider is fairly simplistic and does not take into account important factors such as possible overloading
f the health care system, mitigation efforts, behavioral responses to the epidemic, etc. There are more sophisticated and
ealistic epidemic models that may be able to predict the spread of COVID-19 and the long run number of deaths better
han the model studied here. However, those models usually have even more parameters, so one may worry that their
dentification would be even more troublesome.
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ppendix A. Additional results

.1. Lack of identification in SIRD models

In this section, I study an approximate solution of the simplified SIRD model to illustrate which model parameters can
e identified from the data. The model is:

dS(t)
dt

= −β
S(t)
N

I(t) (A.1)

dI(t)
dt

= β
S(t)
N

I(t) − γ I(t) (A.2)

dR(t)
dt

= (1 − α)γ I(t) (A.3)

dD(t)
dt

= αγ I(t) (A.4)

dC(t)
dt

= λγ I(t) (A.5)

During the early stages of the epidemic, S(t)/N ≈ 1, so that the equation for the evolution I(t) is, approximately,
dI(t)
dt

≈ (β − γ )I(t) = γ (R0 − 1)I(t)

The solution is given by I(t) = I(0) exp(γ (R0 − 1)t). It is possible to show then that the approximate solutions for D(t)
and C(t) are given by

D(t) ≈
α

R0 − 1
I(0)(exp(γ (R0 − 1)t) − 1) (A.6)

C(t) ≈
λ

R0 − 1
I(0)(exp(γ (R0 − 1)t) − 1), (A.7)

Because D(t) and C(t) depend on α, λ, and I(0) through the products αI(0) and λI(0), α and λ cannot be identified
eparately from I(0). R can be identified for a fixed value of γ , but it cannot be identified separately from γ in general:
0
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ne can increase R0 and decrease γ , so that γ (R0 −1) remains unchanged, and adjust α and λ accordingly so that α
R0−1 I(0)

nd λ
R0−1 I(0) remain unchanged.

Finally, note that for a large enough t , exp(γ (R0 − 1)t) ≫ 1, so that log(exp(γ (R0 − 1)t) − 1) ≈ log exp(γ (R0 − 1)t) =

γ (R0 − 1)t . Thus, for a large enough t ,

logD(t) ≈ γ (R0 − 1)t + logα + log I(0) − log(R0 − 1) (A.8)

log C(t) ≈ γ (R0 − 1)t + log λ + log I(0) − log(R0 − 1) (A.9)

These equations demonstrate that the log series are approximately linear in t and that R0 and γ affect the slope of the
og series, while α, λ, and I(0) only affect the level.

.2. Computational challenges

In this section, I describe some of the computational challenges associated with estimating the SEIRD model. Estimation
onsists of two steps. First, I simulate the model for a given choice of R0, α, and λ using the DifferentialEquations package
in Julia, developed by Rackauckas and Nie (2017). More specifically, the routine takes the model (2.1)–(2.6) and simulates
the paths of S(t), E(t), I(t), R(t), D(t), and C(t) for the given values of R0, α, and λ. Next, I compute the difference between
the modeled and observed quantities (cumulative or daily, in levels or logarithms) and minimize the appropriate nonlinear
objective function using the Optim package.14 I use the Nelder–Mead algorithm to find the solution, as I found that it
outperforms other algorithms available in Optim, such as simulated annealing or particle swarm.

The Nelder–Mead algorithm in Optim does not allow for bounds on the parameters. Because R0 is constrained to be
nonnegative and α and λ are constrained to lie between 0 and 1, I use a reparametrization to ensure that all parameter
estimates satisfy the constraints. Namely, I write R0 = exp(x1), α = exp(x2)/(1 + exp(x2)), λ = exp(x3)/(1 + exp(x3)),
where (x1, x2, x3) are the parameters of the routine. The choice of the parameters R0 = 5.75, α = 0.0067, λ = 0.12, used
in simulations, corresponds to (x1, x2, x3) = (1.75, −5, −2).

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2020.07.038.
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