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Abstract

Mycorrhizal fungi are critical components of terrestrial habitats and agroecosystems. Recently, Mucoromycotina fine root
endophyte fungi (MucFRE) were found to engage in nutritional mutualism with Lycopodiella inundata, which belongs to one
of the earliest vascular plant lineages known to associate with MucFRE. The extent to which this mutualism plays a role in
resilient plant populations can only be understood by examining its occurrence rate and phenological patterns. To test for
prevalence and seasonality in colonization, we examined 1305 individual L. inundata roots from 275 plants collected during
spring and autumn 2019 across 11 semi-natural heathlands in Britain and the Netherlands. We quantified presence/absence of
fine root endophyte (FRE) hyphae and vesicles and explored possible relationships between temperature and precipitation in the
months immediately before sampling. Fine root endophyte hyphae were dominant in all of the examined heathlands, and every
colonized root had FRE in both cortical cells and root hairs. However, we found significant differences in colonization between
the two seasons at every site. Overall, 14% of L. inundata roots were colonized in spring (2.4% with vesicles) compared with
86% in autumn (7.6% with vesicles). Colonization levels between populations were also significantly different, correlating with
temperature and precipitation, suggesting some local environments may be more conducive to root and related hyphal growth.
These marked seasonal differences in host-plant colonization suggest that results about FRE from single time point collections
should be carefully interpreted. Our findings are relevant to habitat restoration, species conservation plans, agricultural bio-
inoculation treatments, and microbial diversity studies.

Keywords FRE - Glomeromycotina - Heathland ecology - Marsh clubmoss - Mucoromycotina - Mycorrhizal phenology -
Plant-fungus interaction

Introduction

Nutritional mutualistic exchange between mycorrhizal fungi
and plant roots coevolved over millions of years (Pirozynski
and Malloch 1975; Brundrett 2002; Bidartondo et al. 2011;
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Strullu-Derrien et al. 2014; Field et al. 2015a). This interaction
is fundamental to plant resilience, particularly in stressful en-
vironments (Smith and Read 2010; Kowal et al. 2016) and
ecosystem function above and below ground (Hart and
Klironomos 2003; Giovannetti 2008). It is well established
that endophytic fungi associate with early-diverging vascular
plant genera such as Lycopodium (Winter and Friedman 2008;
Imhof et al. 2013) and Lycopodiella (Rimington et al. 2015).
Importantly, Lycopodiella was recently found to engage in a
nutritional mutualism with Mucoromycotina fine root endo-
phytes (MucFRE) (Hoysted et al. 2019); thus, they are not
canonical ‘endophytes’, i.e. asymptomatic or cryptic in the
host plant (Davis and Shaw 2008), but mycorrhizal
(Rimington et al. 2020). MucFRE are the only mycorrhizal
fungi to have been detected in Lycopodiella inundata roots
(Rimington et al. 2015; Hoysted et al. 2019), in sharp contrast
to other vascular plants where fine root endophytes (FRE) and
Glomeromycotina (Glomeromycota) arbuscular mycorrhizal
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fungi (AMF) or other ‘coarse endophytes’ coexist. This pro-
vides a unique opportunity to study exclusive FRE coloniza-
tion in a vascular plant.

Lycopodiella inundata (L.) Holub (marsh clubmoss) is a
rare herbaceous lycopod (Garcia Criado et al. 2017) found in
nutrient-poor wet habitats across the Northern Hemisphere
(Hulten and Fries 1986). In Britain and Europe, L. inundata
associates with seasonally inundated heathland vegetation
(Byfield and Stewart 2008), often along tracks and at the
edges of oligotrophic lakes (Smyth et al. 2015; Korzeniak
and Onete 2016; Price 2019). The plant’s spore-driven life
history alternates between two generations—gametophytic
and sporophytic. The annual rhizomatous stem extension is
accompanied by roots with copious hairs (elongated epider-
mal cells typically measuring 100—-1000 um in length and
20 wm in diameter). The sporophyte’s strobili emerge from
the stem in late summer, producing a singular terminal spore-
bearing, cone-like structure. These spores result in diminutive
gametophytes from late summer to spring. The stems spread
mainly by creeping axes which can also successfully repro-
duce through vegetative fragmentation (Byfield and Stewart
2008). Dry hot summers and freezing winter temperatures
influence both the degree to which the stem will die back
above ground and/or continue to produce new roots below
ground. However, the extent and necessity for fungal symbi-
osis in mature wild populations of L. inundata are unknown.

Fine root endophyte fungi have a global distribution and
are important in both agricultural and semi-natural systems
across a broad range of host plant families (Field et al.
2015a; Orchard et al. 2017a). These fungi were once consid-
ered a single species, Glomus tenue (basionym Rhizophagus
tenuis) in the Glomeromycota or Glomeromycotina (Orchard
et al. 2017b). They are now recognized as a group of taxa in
the subphylum Mucoromycotina (Orchard et al. 2017a) within
the genus Planticonsortium C. Walker et D. Redecker gen.
nov. (Walker et al. 2018).

Here we investigated the prevalence of FRE colonization
by examining large, geographically diverse populations of
L. inundata sporophyte roots to determine whether they are
universally and/or preferentially associating with FRE. There
have been only a few reports specifically studying FRE colo-
nization during a plant’s growth season (Thippayarugs et al.
1999; Fuchs and Haselwandter 2004; Bueno de Mesquita
et al. 2018a, 2018b). Thus, by examining roots in the begin-
ning of the growth season (spring) and 6 months later at the
end (autumn), we aim to address the question of seasonality
by assessing whether there are different levels of colonization
across populations over time. We hypothesized that there are
distinct seasonal patterns in FRE colonization on a par with
phenological developments in the host plant and its root
growth rate, as well as differences between sites based on local
climate variations. We evaluated local temperature and pre-
cipitation in the months leading up to plant root collection to
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gain further insight into abiotic drivers affecting root growth
of this phylogenetically ancient plant and, relatedly, the im-
portant FRE fungal group. We also aimed to identify factors
affecting retention of contracting L. inundata populations,
informing conservation and restoration plans.

Methods
Site selection and sampling

We selected 11 heathland sites based on the population distri-
bution of L. inundata. Seven lowland UK heathlands and one
metapopulation in the Netherlands provided a west to east
oceanic climate gradient, and we added three northern
Scotland heathlands to maximally contrast precipitation and
temperature. Site visits were ordered according to latitude and
scheduled as close together as possible (Supplemental
Table 1). Over a 6-month growth season, we repeated site
visits across all 11 study populations of L. inundata but new
subplots (or clusters) were used to avoid over-collecting.
Spring collections occurred over 8 weeks, commencing mid-
April 2019, and autumn collections over 6 weeks, commenc-
ing mid-September 2019. We generated three to five random
1-m? subplots depending on the area covered by the
L. inundata population. At Munday, Beinn Damh Estate and
Aldershot, where the area of the site was too small to differ-
entiate 1-m” subplots, we sampled from three plant clusters as
far apart as possible. We collected six L. inundata plants from
each 1-m? subplot (or cluster at Munday and Beinn Damh) but
only three from Aldershot, where the population size has rap-
idly declined in recent years. Care was taken to collect only
plants from the current season with photosynthetic tissue
appearing healthy without decay. We also recorded (for each
subplot) evidence of spore germination by counting miniscule
individual plants, and strobili production by estimating the
percentage of L. inundata with strobili.

Root processing and analysis

Field-collected plants were placed in cold storage (4 °C) with
their soil intact. To minimize under-detection of FRE, samples
were processed within 3 days of collection (Orchard et al.
2017c). Soil was loosened from the plant roots by intermit-
tently soaking and placing them under running tap water, tak-
ing care that the roots stayed intact (Supplemental Fig. 1).
Remaining soil was gently brushed from the roots with a soft
paintbrush. We measured plant length, root length and root
density (number of roots per cm rhizome length) of the intact
specimen (autumn only). If roots were branching, we added
the branch length to total root length.



Mycorrhiza (2020) 30:577-587

579

Root staining protocol

After the above root measurements were obtained, the entire
root (typically 1 cm long) was cut in half proximal to the root
cap and placed in a 2-ml microcentrifuge tube (three individ-
ual root halves per tube) containing 70% (v/v) ethanol, for
staining and microscopic examination. The remaining half of
the root was preserved for molecular examination (described
below). Care was taken to distribute proximal and distal root
halves evenly between the two batches. We modified existing
staining protocols (Vierheilig et al. 1998; Wilkes et al. 2019)
as follows. The roots were cleared by boiling them in 10%
(w/w) KOH for 20 min and heated a further 30 min at 60 °C.
After rinsing 3% in dH,0, the roots were stained in a 10% (v/v)
Sheaffer blue ink +25% (v/v) glacial acetic acid solution at
100 °C for 3 min. Without further rinsing, the roots were left
overnight to de-stain in 1% acetic acid. We prepared semi-
permanent slides (76 x 26 mm/0.8—1 mm) by placing 200 pl
0of'50% (v/v) glycerol solution on the slide, adding 1-2 roots in
the droplet, placing a cover slip (18mm?/0.16-0.19 mm) and
sealing with clear nail polish.

Identification and quantification of FRE fungal
structures

To identify FRE hyphae, we examined the individual
root samples under a compound light microscope at x
40 to x 100 magnification using pre-established morpho-
logical and quantitative parameters for hyphae (i.e. fine,
smooth fine, rough fine) and vesicles (i.e. terminal/
intercalary and pyriform/globose) (Supplemental
Table 2) (Thippayarugs et al. 1999; Orchard et al.
2017a; Hoysted et al. 2019). We ascribed aseptate hy-
phae and swellings/vesicles as representative of MucFRE
based on the diameter of fungal structures (hyphae <
2 um; vesicles <15 pum).
In all roots we recorded absence/presence of:

1. FRE hyphae. Hyphae were identified as present only if
observed clearly within cell walls of at least three root
cells. We also noted whether these occurred in root hair
cells.

2. FRE vesicles.

3. Terminally branching fine hyphae, i.e. arbuscule-like
structures.

‘Coarse’ aseptate hyphae >3 um, if present, also were
recorded.

In a subset of colonized roots from two sites representing
latitudinal, temperature and precipitation extremes (Coulin
Estate, Scotland, and Thursley Common, England), we
measured:

1. Percentage of FRE hyphal cover. Using an eyepiece mi-
crometer (magnification x 63), we subdivided the roots
into 250-pum sections lengthwise and six columns across
their width (three at each side of the vascular bundle).
Percentage cover was calculated as the number of delin-
eated grid boxes containing hyphae (modified from
McGonigle et al. 1990 and Sun and Tang 2012) divided
by the total number of boxes.

2. Percentage of FRE hyphal cover attributable to root hair
cells, calculated as the number of delineated grid boxes
containing colonized root hair cells divided by the total
number of colonized boxes.

Molecular identification

The remaining root halves (see above) from all 11 sites
were stored in CTAB lysis buffer (Bainard et al. 2010).
We were able to analyse only one sample from Munday,
Scotland, prior to precautionary closing of the laboratory
due to COVID-19. The DNA extraction and PCRs were
performed according to the methods described by
Bidartondo et al. (2011), and the fungal 18S region
was amplified using the universal primers NS1 (White
et al. 1990) and EF3 (Smit et al. 1999). Cloning and
sequencing techniques were performed as described in
Rimington et al. (2015). Resulting 18S rRNA amplicons
(~ 1100 bp length) were cloned (TOPO TA, Invitrogen)
and sequenced using an Applied Biosystems Genetic
Analyser 3730 (Waltham, MA, USA). Sequences were
edited and assembled with Geneious v7.1.9 (http://
www.geneious.com) and identified using the NCBI
BLAST blastn algorithm (Altschul et al. 1997).

Analyses of abiotic factors

Average monthly temperature and cumulative monthly
precipitation data for the 4 months immediately preceding
sample collection were tabulated for each site. To evalu-
ate the temporal evolution of associations with these var-
iables, we also analysed these abiotic records for each
individual month, i.e. month 4, 3 and 2, and the precise
30 days prior to collection (the latter, to account for dif-
ferent collection dates occurring mid-month). We used
year 2019 records from the nearest weather stations
(www.worldweatheronline.com) as follows: Thursley,
Thursley Common; Bere Regis, Hyde Bog; Watergate,
Stannon Park; Trenant, Park Lake; Kinlochewe, Coulin;
Shieldaig, Munday; Strathcarron, Beinn Dambh;
Lyndhurst, Matley Heath; Bramshaw, Stadbury Hill;
Hampshire, Aldershot; Strabechtse Heide.
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Statistical analysis

To investigate differences in root length, number of roots per
plant and root density (per cm rhizome length) among sites,
one-way ANOVAs were used. The data were all found to pass
normality (D’Agostino-Pearson) and homoscedasticity
(Brown-Forsythe) tests. To test the relative contributions of
site and season on both the percentage of individual roots, and
roots/plant colonized per site, two-way ANOVAs were used,
followed by Sidak’s post hoc multiple-comparisons tests.
After logit-transforming, all data were found to pass normality
and homoscedasticity. The percentage colonization (accord-
ing to the above criteria) was measured as the proportion of
total roots evaluated per site, and as the weighted average of
roots colonized per plant per site. Aldershot was excluded
from this analysis because of the low number of roots sampled
(n=2 in spring). Fisher’s exact test was used to compare
spring and autumn overall percentages of roots containing
FRE vesicles. The subsample of roots (from Coulin and
Thursley only) in which we quantified extent of colonization
within an entire individual root (percentage of colonization
per root) was analysed using unpaired ¢ tests with Welch’s
correction.

Potential correlations between (logit-transformed) root col-
onization and other root measurements (number of roots per
rhizome, root length or root density) per site and local temper-
ature and precipitation historic records for each individual
month (described above) were tested using Pearson’s r.
Statistical tests were carried out with Prism (version 8.4).
Statistical significance was established as p <0.05.

Results

In total we processed and analysed 1305 roots, 586 from 129
plants in spring and 719 from 146 plants in autumn
(Supplemental Table 3). There was no evidence of spore ger-
mination in the spring, and only a few L. inundata seedlings
were recorded in autumn at four of the eleven sites: Thursley,
Hyde Bog, Matley Heath and Stadbury. By the autumn sam-
pling, strobili development had occurred at all sites except
Munday. Overall, 32% of the plants produced strobili over
the summer. Although we found significant differences across
sites for all root measurements (roots per plant, root density
and root length, p < 0.0001), correlations between these mea-
surements and FRE colonization were weak and not statisti-
cally significant (Table 1).

Identification and quantification of fungal structures
All colonized roots, regardless of season, were predominantly

colonized with FRE hyphae and vesicles/swellings except for
Aldershot’s roots, which had hyphae only but did not have
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vesicles. Figure 1 shows examples of fine hyphae measuring
0.3—<2 pwm in diameter with 5-15-um intercalary vesicles
and swellings, consistent with the signature morphotype for
MucFRE (Orchard et al. 2017a; Hoysted et al. 2019).
Terminal fine branching arbuscule-like structures were ob-
served in <0.1% of the roots (autumn-collected only)
(Fig. 1g). Between 2 and 10% of the roots from the Dutch
and southern English sites had wide, knobbly aseptate hyphae
(Supplemental Fig. 2). Of these, only a minority (1%) of the
roots had vesicles/swellings (Supplemental Fig. 2C,G), which
were larger than those typical of MucFRE. We did not observe
this hyphal morphotype in the Scottish roots. We found sta-
tistically significant differences in MucFRE-like hyphal pres-
ence in spring vs. autumn for both season and site in both the
percentage of colonized individual roots/site and percentage
of roots colonized per plant (p <0.0001, two-way ANOVA,
Table 2, Fig. 2, Supplemental Table 3). The interaction terms
between season and site also were significant, indicating the
effects of season and site are interdependent.

Overall, 14% of the individual roots were colonized in
spring vs. 86% in autumn. Regardless of season, all colonized
roots had FRE present in root hair cells. Vesicles and swell-
ings were significantly more prevalent in the autumn vs.
spring for all sites. Overall, vesicles were present in 8.8% of
total roots analysed in the autumn, as opposed to 2.4% in the
spring (Fisher’s exact test, p < 0.0001).

Extent of hyphal colonization

Fine root endophyte hyphal spatial colonization was analysed
in a subset of n =32 colonized roots from Coulin (Scotland)
and Thursley (England). The percentage of an individual root
colonized by FRE was significantly different in spring and
autumn for Coulin but not Thursley (Table 3); however, only
two Thursley roots were colonized in spring. Hyphae typically
occurred above the root cap and showed a marked propensity
to occur in root hairs. Root hair colonization contributed to
28.8% total root colonization in spring and 43.7% in autumn.

Molecular identification

There was one identifiable sequence originating from a plant-
host root sample colonized by FRE hyphae (morphologically
representative of the colonized roots across all 11 sites). This
sample from Munday in Scotland matched with
Mucoromycotina and aligned best (> 86%) with isolate
BVMT 30 from Lunularia cruciata (GenBank
MH174565.1).

Abiotic factors

Temperature and precipitation data for 2019 showed sig-
nificant differences across sites. The Scottish sites had
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Table 1 Mean measurements of

root per rhizome, root density and ~ Root measurement ANOVA (df) FRE colonization correlation

root length and correlations with

FRE colonization at all sites Mean' SD Fap )4 Pearson P
Roots/thizome 10 25 3.70¢11,185) <0.0001 —0.486 0.109
Density/thizome cm 2.6 0.7 582111185 <0.0001 -0.249 0.434
Root length (mm) 10.5 2.4 9.8911,185) <0.0001 0.127 0.695

df degrees of freedom

! Based on end of growth season measurements of 197 individual plant rhizomes across all 11 sites

the highest rainfall both annually and monthly, and the
Dutch site and Hyde Bog the lowest. We also noted peak
rainfall occurring 2 months earlier for Scotland than all
the other sites. The lowest monthly and annual average
temperatures occurred in Coulin, Scotland. The sites with
temperature extremes leading to the autumn collections,
Aldershot with the highest (mean=16.2 °C) and Coulin
with the lowest (mean=3.1 °C), had an inverse

relationship with colonization. Correlation analyses
(Fig. 3) showed strong negative correlations between
mean temperature for the 30 days and 2 months preced-
ing root sampling and percentage of roots colonized for
both seasons. Cumulative precipitation 30 days preceding
root sampling was not significantly correlated with the
spring roots but was positively correlated with the au-
tumn roots. We found the correlation strength
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Fig. 1 Fine root endophyte (FRE) hyphae with vesicles and fan-like
structures in mature Lycopodiella inundata sporophytes. Root hair cells
(a—e), showing examples of fine hyphae and a—c intercalary vesicles or
hyphal swellings ranging 2-10 pm. Some hyphae were seen entering
through the root hair tip (labelled h* in b). e Two adjacent root hair cells
with bundles of FRE strands twisting and branching throughout, here
colonizing cortical cells but skipping epidermal cells. f Schematic sketch
of a Lycopodiella inundata plant illustrating a root, root hair cells, fine
hyphae, vesicle, spores and epidermal and cortical cells (expanded shaded
box on bottom). The dotted square in e highlights a root hair position

between epidermal cells illustrated in the equivalent dotted box of the
sketch. Fan-like FRE (g) were observed branching and twisting through-
out the root. h An individual cortical and i, j epidermal cells with FRE. k
Previously published FRE and arbuscules (inset) in Trifolium
subterraneum root (adapted from Orchard et al. 2017a New Phytologist
with permission). All micrographs are acidified Sheaffer blue ink. Labels:
‘th’ root hair; ‘h’ fine hyphae; ‘v’ intercalary vesicle; ‘s’ spore; ‘cc’
cortical cell; ‘ec’ epidermal cell. All scale bars 20 pum, unless detailed
otherwise
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Table 2 Comparison of spring

and autumn presence of FRE % FRE colonized Season Site Season x site

hyphae in roots and roots per

plants across 10 sites Fuap P Fuap p Flan p
Roots/site 5 101(1 1258) <0.0001 262.2(91258) <0.0001 145~4(91258) <0.0001
Roots/plant/site 247(1251) <0.0001 255(9’ 251) <0.0001 178(9251) <0.0001
df degrees of freedom

diminishing in relation to the time series data. By  Discussion

4 months preceding sampling, no correlation was signif-
icant (Supplemental Fig. 3); thus, we present here only
the 30 days preceding root sampling. Correlations be-
tween temperature and precipitation, and root measures,
were not statistically significant except for root density
per rthizome centimetre, which showed a strong positive
correlation with temperature (Table 4).

Il Spring

[ Autumn

% colonized roots/plant by site

% colonized individual roots by site

RE G EILSS Y&

v\\%
Fig. 2 Comparison of spring and autumn 2019 roots colonized by fine
root endophytes across all sites. (Top) percentage of colonized individual
roots by site (two-way ANOVA, season: F( 12s58,=5101, p<0.0001;
site: Fo 1258)=262.2, p <0.0001). (Bottom) percentage of colonized in-
dividual roots per plant by site (two-way ANOVA, season: F(; 251, =247,
 <0.0001; site: Fiops1)=255, p<0.0001). Values for n for each site are
shown in Supplemental Table 2. Error bars = SE. There are no bars in
spring for both Aldershot (AL) (n =2 roots) and Netherlands (NL) (n=
109 roots) as they had no colonized roots. The graph uses raw percentage
data while the two-way ANOVA results reflect logit-transformed data
(Table 2). Abbreviations of site names are detailed in Supplemental
Table 1
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Plant phenology is an indicator for fungal
colonization

We detected significant differences in the percentage of FRE
colonization in individual roots/site and colonized roots/plant
at the beginning of the host plant’s growing season versus the
end. These differences were seen across all 11 sites. Some
sites presented more dramatic differences than others, e.g. in
the Netherlands, no roots were colonized by FRE hyphae in
the spring but 87% were colonized in the autumn. This sea-
sonal change most likely relates to root growth rate responses
(and relatedly FRE colonization) to climate history because
there were strong correlations between root density (i.e. roots
per rhizome cm) and site-specific temperature in the months
leading up to autumn sample collection.

Considering these results, we suggest caution in the inter-
pretation of previous ecological studies examining root colo-
nization from samples collected at a single time (Urcelay et al.
2011; Bueno de Mesquita et al. 2018b; Pereira et al. 2020).
Conclusions about the potential influence of edaphic or envi-
ronmental variables on colonization may have been related
more to seasonality than to a true influence of these variables.
Sampling and analysis following hyphal dormancy (Kabir
etal. 1997) may also explain why some plants had previously
been classified as ‘non-mycorrhizal’, e.g. Buddleja davidii
(Dickie et al. 2007), or yielded a low overall mycorrhizal rate
based on fungi identified molecularly, e.g. 13% of previously
sampled L. inundata roots (Rimington et al. 2015).

There are numerous reports studying phenology of AMF,
particularly in grasslands (Bohrer et al. 2004; Escudero and
Mendoza 2005; Lingfei et al. 2005; Mandyam and
Jumpponen 2008) and agricultural fields (Saif and Khan
1975; Kabir et al. 1997; Tian et al. 2011), in contrast to the
scarcity of studies examining FRE phenology. A recent meta-
analysis of temporal changes in AMF and FRE colonization
(Bueno de Mesquita et al. 2018a) found that 75% of the stud-
ies detected temporal changes over the growth season.
However, the inclusion of FRE as distinguished taxonomical-
ly from AMF was not clear.

In the single previous mycorrhizal phenology study includ-
ing L. inundata, more colonization was found in the spring
than autumn (Fuchs and Haselwandter 2004), in sharp
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Table 3 Quantification of

MucFRE-like hyphal spatial col- Area coverage (%): spring

Area coverage (%): autumn Welch’s ¢ test

onization of individual roots

Site Mean SD Mean SD t df P
Coulin 10.3 1.7 33.50 15.79 4295 11.23 0.001
Thursley 35.0 21.2 22.23 18.31 0.199 3.402 0.853
df degrees of freedom

contradiction to our results. The explanation for this different
result is not clear to us but may relate to a small sample group
biasing results, lack of separation between FRE from AMF
during analysis and/or lack of molecular identification of fun-
gi in that study. In a single-site experiment examining fungal
colonization of four forb species (Polygonum bistortoides,
Gentiana algida, Artemisia scopulorum and Geum rossii)
over a 3-month alpine growing season, Bueno de Mesquita
et al. (2018a) demonstrated colonization (potentially of FRE,
as well as AMF and dark septate endophytes) peaked as an-
giosperm fruiting began and AMF vesicles increased as plants
produced seeds. Soil temperature and moisture, and plant phe-
nology, contributed to root colonization levels, depending on
plant species. They also found fungal propagules from the soil
colonized new roots within days. In our study, we found FRE
colonization, including vesicles in L. inundata, also may be
peaking at the onset of strobilus formation. Ten of the 11
populations had produced strobili by September/October

before we collected our samples. In another FRE colonization
study using pot cultures, significant differences in Trifolium
subterraneum FRE colonization were documented at the be-
ginning and end of the growing season (Thippayarugs et al.
1999). However, FRE colonization comparisons between
T. subterraneum and L. inundata are limited by the different
host-plant root life cycles; L. inundata produces roots annual-
ly but older roots remain until the rhizomatous stem dies back.

Colonization differences correlate with temperature
and precipitation

Colonization differences across study sites strongly correlated
with temperature data, suggesting local environmental vari-
ables are contributing to root colonization differences, likely
as a by-product of root development. Interestingly, the site
with significantly higher presence of hyphae in the spring,
Coulin, had the lowest monthly temperatures suggesting the

Fig. 3 Correlation between G 29 p )
abiotic factors and colonized roots = spring
per season. (Left) cumulative o 200 100 430 2000 20 o s 8 10 12
precipitation 30 days preceding 5 5
root sampling (Pearson r, spring: s¢g 5¢
r=0.384, p =ns; autumn: r= 58 21 58 21 &
0.610, p =0.04). (Right) mean c 2 c g 4
i K ® o ]
temperatur.e 30 days precedmg S Z 4 S E 4 r=-0.719,p=0.01
root sampling (Pearson r, spring: B g ES ®
r=—0.719, p=0.01; autumn: r = - >
—0.854, p=0.001). Each dot 61 -6
represents a site. ns =not e o o o
significant .| .
cumulative precipitation (mm) temperature °C
5 51
. e —&— autumn
41 e 41 ©
-3 T
g E 3 SE 3
® O ® O r=-0.854, p = 0.001
N - e N =
£ 2 ® c 8 o
S g S8
3E ,. r=0610.p=004 Q& | ®
0 = o=
T =2
{7 1
0 T T T T 1 0 T T T 1
50 100 150 200 250 5 10 15 20

cumulative precipitation (mm)

temperature °C
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Table 4 Correlations between mean root measurements with mean
temperature and cumulative precipitation at all sites

Root measurement Temperature' Precipitation’

Pearsonr p Pearsonr p

Roots/thizome 0.278 0.383 —0.387 0.214
Roots/rhizome cm (density) 0.729 0.007 0.054 0.868
Root length (mm) —0.341 0.278 0.113 0.727

! Based on 30 days preceding root sampling

roots are able to grow while temperatures are low or FRE may
have preferential temperature regimes triggering growth.
Alternatively, FRE may be adept at colonizing roots when
root growth is slow (Torti et al. 1997), in the case of
L. inundata, because of low temperatures. Our analyses show-
ing strong correlations between temperature and both root
density and FRE colonization further support the possibility
that host root growth rates and (interconnectedly) FRE hyphal
growth may be initiated or inhibited at certain temperature
limits. Notwithstanding the correlations, we do not infer
causation.

Precipitation histories for spring did not correlate with FRE
root colonization; however, the months leading up to the autumn
collection did. This might indicate precipitation is more impor-
tant to FRE activity when temperatures are elevated, but again,
FRE interaction with root growth rates must be considered.
Therefore, we can only speculate whether Aldershot has the
most vulnerable population across the study because of its
higher temperatures and lower precipitation rates than the other
sites. None of the spring root samples from the Netherlands were
colonized compared with 51% at Coulin, Scotland. This ex-
treme appears related to both temperature and precipitation his-
tories. Until we understand these factors fully, we suggest that
population restoration and conservation efforts focus on areas
with the most suitable temperature and precipitation regimes.

Other biotic and abiotic factors which may moderate root
growth and subsequent FRE colonization include atmospheric
N deposition, soil chemistry and vegetation community com-
position, all of which also influence belowground microbial
competition (van der Heijden et al. 1998, Wardle et al. 2004).
Nitrogen loads are known to be much higher in the
Netherlands and much of Southern England (de Heer et al.
2017; Lilleskov et al. 2019) compared to the north of Scotland
and can have an effect on mycorrhizal fungi in grasslands
(Ceulemans et al. 2019).

Although direct extrapolations from AMF to FRE are not
appropriate, we expect reciprocal nutrient exchange (Smith
and Smith 2011), governed locally by host-plant root P
(Karandashov and Bucher 2005; Smith et al. 2015) and N
requirements (Hoysted et al. 2019), will result in differences
in the percentage of roots colonized across the 11 sites.
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Conversely, the plant may have an excess of photosynthate
which it can opportunistically provide to compatible symbi-
onts. This will vary given environmental conditions, competi-
tion for surplus resources and ‘sink strength’ (Walder and van
der Heijden 2015), and we expect requirements and coloniza-
tion levels will certainly shift over the host plant’s lifespan
(Field et al. 2015b) as older roots senesce and new roots de-
velop at varying growth rates. The symbiotic carbohydrate
and/or lipid requirements (Jiang et al. 2017; Luginbuehl et al.
2017) of MucFRE may also contribute to colonization re-
sponses. Further studies will be necessary to tease apart the
contribution of the variables affecting FRE colonization of
L. inundata roots as well as host plant retention.

Lycopodiella inundata’s preferential association with
FRE

The overwhelming majority of FRE observed in mature spo-
rophyte roots exhibited typical MucFRE morphological traits.
Coupled with previous molecular findings of MucFRE at
Thursley by Hoysted et al. (2019), this suggests L. inundata
may have a rarely seen plant preference for a symbiotic fungus
(as observed in AMF, Walder and van der Heijden 2015).
Interestingly, we also found that every colonized root had
FRE present in the root hair cells. Whether the thinner root
hair cell walls indicate a preferential entry point for FRE will
require electron microscopic analyses.

Although we obtained molecular confirmation of
Mucoromycotina in one site, and roots from the same
subplots at Thursley had previously been identified by
Hoysted et al. (2019) as MucFRE, we cannot conclusively
confirm the rest are also MucFRE without further molecular
analysis across the remaining sites. However, the possibility
of finding a new phylum with the same anatomical features as
described for the MucFRE seems unlikely.

We also noted a minority of sporophyte roots contained
aseptate hyphae with diameters up to 2.5 um (4% were >
3 um). These large coarse hyphae were seen in a small fraction
of roots in the English and Dutch sites, but not the Scottish.
This may represent multiple FRE species interacting
(Thippayarugs et al. 1999; Orchard et al. 2017a) or opportun-
ism by other unidentified fungi driven by plant nutrient
requirements.

Conclusion

In this large-scale and intensive study, FRE hyphae were over-
whelmingly present at the end of the season—colonizing 14%
of roots in the spring compared with 86% in the autumn—
confirming a strong seasonal pattern for mycorrhizal fungi, at
least in L. inundata. Appreciating that MucFRE presence does
not directly convey functionality (Cosme et al. 2018),
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previous agricultural studies incorporating symbiotic func-
tional responses may have underestimated potential nutrient
exchange between MucFRE colonization and plants due to
harvest time of the host plants. This also may be pertinent to
agricultural studies measuring colonization and growth re-
sponses to different treatments, particularly as root growth rate
could affect the level of fungal colonization (Torti et al. 1997).
Although not directly comparable to L. inundata interactions
with FRE, seasonal variation in the percentage of root length
colonized by AMF was observed in a range of perennial
woodland plants grouped by root growth (season) strategy
(Brundrett and Kendrick 1988). This is a reminder that collec-
tion of samples for large-scale ecological studies, which often
occur over several months, warrants caution in interpreting
results as the interplay of root growth, symbiotic colonization
and season may play a strong role. For plant species habitat
conservation plans, the success of a particular plant-fungus
mutualism can make or break survivability. Our results
strongly indicate that studies of mycorrhizal fungal species
composition or colonization rates must be designed and eval-
uated taking seasonality as a crucial variable.
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