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Abstract

Background: Machine learning models for repeated measurements are limited. Using
topological data analysis (TDA), we present a classifier for repeated measurements
which samples from the data space and builds a network graph based on the data
topology. A machine learning model with cross-validation is then applied for
classification. When test this on three case studies, accuracy exceeds an alternative
support vector machine (SVM) voting model in most situations tested, with additional
benefits such as reporting data subsets with high purity along with feature values.

Results: For 100 examples of 3 different tree species, the model reached 80%
classification accuracy after 30 datapoints, which was improved to 90% after increased
sampling to 400 datapoints. The alternative SVM classifier achieved a maximum
accuracy of 68.7%. Using data from 100 examples from each class of 6 different random
point processes, the classifier achieved 96.8% accuracy, vastly outperforming the SVM.
Using two outcomes in neuron spiking data, the TDA classifier was similarly accurate to
the SVM in one case (both converged to 97.8% accuracy), but was outperformed in the
other (relative accuracies 79.8% and 92.2%, respectively).

Conclusions: This algorithm and software can be beneficial for repeated
measurement data common in biological sciences, as both an accurate classifier and a
feature selection tool.

Keywords: Topological data analysis, Machine learning, Multiple measurement
analysis

Background
Topological data analysis (TDA) is a recently emerging method for analyzing large-scale
data using geometry and methods from algebraic topology. By considering geometric
and topological features of multi-dimensional data arising from various distance metrics
imposed on the data, complex relationships within the data can be preserved and jointly
considered. This often leads to better results than using standard analytical tools.
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There have been several publications in biological research fields which have utilized
TDA successfully. These include modeling RNA hairpin folding [1], Type-2 diabetes
(T2D) subgrouping using clinical parameters [2], and classification of breast cancer
tumors based on gene expression patterns [3].
Despite this, TDA software typically allows only singular measurements. That is, data

is often input using a single measurement point per sample. Frequently in biological data
collection, multiple measurement points are taken per sample. This may occur during
sampling over some time interval, or repeated measures which are indicative of sampling
from a distribution of events for each individual or sample. In this case, current meth-
ods are insufficient to classify these data accurately, since all measurement points are not
considered together and in an informative manner.
To address these issues, we have developed a TDA based algorithm suitable for

repeated measurements which is made publicly available. This method is inspired
by the Mapper algorithm and contains a classifier built on the Mapper graph gen-
erated. This is accomplished using internal cross-validation using multiple boot-
straps, and as a result the partitioning is robust against overfitting. The end result
is a set of subgroupings of the relevant classes in the data which can then be
used as a starting point for further investigation into mechanisms behind data
classification.
We test this method on three unique datasets. The first is a simulation of six differ-

ent point processes on a unit square. The second example is data from 3D modeling of
various tree species, using laser scanning methods to determine characteristics of tree
branches. These branches act as multiple measurements from a single tree and are then
used as an input to the model. The third data set is spiking activity of neuron commu-
nities in a reconstructed brain network. Neuron communities allow to make multiple
measurements from a single network. We demonstrate the accuracy of this method as
compared to a support vector machine (SVM) based classifier as well as determining how
the accuracy changes over sampling rates, when the data available may be too large to run
in total.
This paper adds to bioinformatics methods by extending TDA to classification prob-

lems within various fields, particularly for repeated measurements data for whichmethod
developing is lacking, as well as by integrating machine learning to Mapper graphs. Addi-
tionally, the sampling method used adds to the utility when large amounts of data are
gathered, and classification of subsets is required. This work, and its related software,
allow a user to create classifications based on large-scale data with repeated measure-
ments, and also can report important criterion of nodes of interest, i.e. features in
common with those samples which geometrically partition based on class membership,
which can be used to interrogate biological processes which may be relevant for the
classification and further analyses.
The paper takes the following form: first, we make a case for the use of topological

data analysis while introducing theMapper algorithm. Then, we introduce enhancements
made to theMapper algorithm to enable multiple measurements, sampling, data aggrega-
tion and classification using machine learning. We then describe three datasets used for
testing purposes, each of which is indicative of a different data structure. Next, we present
the results of these tests and comparisons between the methods tested. Finally, we discuss
the relevance of these findings and present conclusions.



Riihimäki et al. BMC Bioinformatics          (2020) 21:336 Page 3 of 18

Case for topological data analysis
Topology of finite point sets

Topological data analysis (TDA) is not about fitting known mathematical shapes studied
in topology to datapoints, but rather aims at extracting features of data based on geom-
etry and topology encoded in the distribution of datapoints [4, 5]. Connections between
datapoints correspond to relationships in the data and topological methods give insight
into this relational structure. Mathematically, topology studies geometric structures only
up to qualitative features, and essentially topological methods are robust against small
perturbations. This is highly desirable with biological data. It allows two datasets to be
close even under inherent biological variability and measurement noise. Stable results
have been a focus of the theoretical development of TDA from early on [6].
Ametric on a setM is a function d : M ×M →[ 0,∞), where [ 0,∞) denotes the set of

non-negative real numbers. It is required that, for any points x, y, z inM, d(x, y) = d(y, x),
d(x, x) = 0, and d(x, z) ≤ d(x, y) + d(y, z). A metric onM thus provides a way to measure
distances between points ofM and we refer to the pair (M, d) as ametric space. In TDA
the initial input is given by a dataset with a chosen metric on its points. We refer to such
inputs also as point clouds.
When a point cloud is distributed unevenly, geometric structures called simplicial

complexes derived from the data can yield important information about dataset’s struc-
ture. Given a datasetM, a simplicial complex onM is a collection of non-empty subsets of
M, called simplices, such that any subset of a simplex is also a simplex. For example, when
(M, d) is a metric space, for any positive real number r, the collection consisting of subsets
{x0, . . . , xk} ⊂ M, for which d(xi, xj) ≤ r for every i, j in {0, . . . , k}, is a simplicial complex
called theVietoris-Rips complex at scale r. Two datapoints at most distance r apart create
a simplex, which can be geometrically described as an edge. These Vietoris-Rips com-
plexes encode geometric features of the data such as connected components, or clusters,
and holes. Detecting holes in data has gathered interest for example in database commu-
nity [7]. Homology is an algebraic method to measure the amount of geometric features
of different degrees. Homology in degree zero counts the number of clusters, homology
in degree 1 counts the number of 1-dimensional loops, etc. Computing homology is effec-
tively matrix computations with so called boundary matrices that contain information on
how different simplices are connected to each other. See Fig. 1 for an example of a simpli-
cial complex and its homology. An early success of TDA using homological methods came
in [8] where it was discovered that the space of patches of natural images conforms to a
well-known geometric object. Since then, TDA has enjoyed a multitude of applications
in various areas of science, for example in [9] for finding differences in the brain arteries
between ages and sexes. For a more comprehensive list of references we refer to [5].

Mapper construction

Another early advance came in [3] where a TDA algorithm called Mapper was used
to find a new subgroup of breast cancer with an excellent survival prognosis. Figure 2
provides an easy visual complement to the explanation of the Mapper algorithm below.
Mapper models data as a graph by refining standard clustering algorithms with topo-
logical ideas. Namely, global clustering of the data may be inefficient, especially when
the data’s distance metric is not Euclidean. Instead, data is partitioned according to some
intervals of real numbers R. These intervals are created by using a filter function f ,
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Fig. 1 Five datapoints in two-dimensional space and the associated simplicial complex. The full simplicial
complex is the purple 2-simplex and the three connected 1-simplices drawn here dashed. The boundary
matrices are ∂1 and ∂2. Homology of this complex in degree 0 is 1 saying that there is one connected
component. Homology in degree 1 is 1 indicating the loop created by the dashed 1-simplices

meaning a function on data under which each point has exactly one value on some inter-
val. Then, local clustering is achieved based on those datapoints which map to the same
interval. The clusters make nodes of theMapper graph. Intervals are overlapping by some
predefined amount. Clusters with non-empty intersection of points mapping to the over-
lap of two adjacent intervals are then joined by an edge in the graph. If three or more
clusters of points have non-empty intersection mapping to the same overlap of intervals,
2- and higher simplices can become present in the Mapper graph. The Mapper construc-
tion thus creates a simplicial complex of clusters representing the structure of data under
the chosen filtering function. This modification to standard clustering gives more insight
into the global structure of data through simplicial constructions as explained above.
There are publicly available mapper versions, such as "Python Mapper", which can be
used to analyze data in this fashion [10].

Enhancedmapper for multiple measurements
This paper builds upon the foundations of the previous section.We have augmentedMap-
per by integrating a sampling procedure for the data, as well as adding a machine learning
classifier which reports the unbiased accuracy of the underlying model. Important nodes
of interest in the Mapper graph can be detected, which may yield important information

Fig. 2 Schematics of the Mapper construction. Filter function f maps datapoints to intervals of real numbers.
Those points mapping to the same interval constitute a cluster under the filtering by f and corresponding
nodes in the Mapper graph. This is indicated, respectively, by blue, red and green intervals and
corresponding blue, red and green nodes below. When two intervals overlap and they have datapoints in
common, the corresponding nodes in the Mapper graph are connected by an edge. This happens for blue
and red nodes but the datapoints in the green node are an isolated cluster
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about the data space, and relationships to the main outcome. We supplement our method
shown in the pseudocode Algorithm 1 with a detailed explanation in this section.
The methodology used in this manuscript is an extension of published work in the TDA

field combined with a machine learning approach. Due to this algorithm being created
for repeated measurements, it is important to note that the term "sample" refers to one
individual or one particular example of, e.g., a tree species, which itself contains many
repeated measurement points. Each of these measurements is referred to as a "datapoint".
The algorithm presented here begins by randomly sampling each sample using some

number of datapoints, less than or equal to the number of datapoints of the smallest
sample included. Thereafter a Mapper graph is constructed, with nodes and edges rep-
resenting small clusters of datapoints and connections between the clusters as described
above. Within the intervals, local clustering of datapoints is conducted and guided by
standard methods. The choice of linkage method here can be changed by the user.
For purposes of our algorithm edges are not necessary, and only the nodes’ contents
themselves are used for analyses.
The next step of the algorithm is to add a machine learning on top of the graph struc-

ture. Nodes contain a number of datapoints from each of the samples based on data
geometry detected by the chosen filtering function. This node information can be sum-
marized in an n by m matrix where n is the number of samples and m is the number of
nodes in the graph, and entries are the number of datapoints in a given node that come
from the sample corresponding to n. These are then fed into a classifier, in this case a

Algorithm 1: Pseudocode description of our enhancedMapper algorithm for multiple
measurements.
Data: multi-class data set of repeated measurements D
Result: cross-validated classification accuracies from TDA algorithm, SVM and

sparse Logistic Regression
g = number of Mapper graphs to build;
n = list of number of points to sample from each class in D;
r = number of runs for classification accuracies;
for sampling s in n do

for g times do
sample s from data;
create filter function based on first PCA;
create a graph according to the Mapper algorithm without overlap;
create feature vectors fromMapper graph;
for r runs do

determine average 5x cross-validated accuracy using sparse Logistic
Regression;
determine average 5x cross-validated accuracy using SVM;

end
end
return average accuracies for all graphs;

end
return average accuracies for all samplings;
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sparse logistic regression model was used for both binary and multi-class outcomes using
the sklearn module SVC [11]. After an unbiased classification accuracy is obtained, the
last step is to rerun the entire data set, constructing a Mapper graph from which feature
selection can then occur based on the resultant classifier.
In order to avoid overfitting at any step, careful measures are needed. First, since

this method samples from some data space, multiple samplings are conducted and the
results are averaged to more accurately represent the sample distribution. Next, cross-
validation is conducted, as is running multiple classifiers per graph in order to find
the average results so that a particular data partitioning does not result in an over- or
under-estimation of the classification accuracy.
The general procedure we used was to first determine the sampling rates to use for

each data set. The sampling rates were chosen from the list [10, 20, 30, 40, 50, 60, 70,
80, 90, 100, 150, 200, 400, 500], using a maximum of 100 points for the point processes
data, 400 points for the tree species, and 500 points for the neuron spiking data. For
each sampling rate in the point process and neuron datasets, 10 runs were conducted
of the entire procedure, and the classification accuracy was averaged for these runs.
For tree species, this was increased to 100 runs due to larger variability in the results.
Within each run, a graph was built upon which a cross-validated classifier could be built.
The logistic regression model was created using 3-fold cross-validation, resulting in an
out-of-sample prediction on each sample in the dataset. The procedure of building a
classifier was repeated for an alternative model, namely an SVM model with the opti-
mal kernel determined via testing. This kernel was linear for the tree data and radial
basis function (RBF) for the point processes and neuron spiking data. For alternative
accuracy, the model was built on the sampled data as opposed to the Mapper graph
to provide the strongest possible alternative model. This also employed 3-fold cross-
validation at the sample level, where a sample’s out-of-sample prediction was based on
the majority vote of its datapoints in the training SVM. The alternative models were
also constructed 10 and 100 times to account for variability on cross-validation sample
assignment.
Lastly, a single model to indicate feature importance was conducted on tree species data

using the graphing procedure and 400 sample points. Thereafter, information regarding
the node size, average feature values for this node, and node purity were generated. Node
purity is described as the proportion of datapoints in the node which belong to the largest
class, such that the minimum can be 1/classes, and the maximum is 1. The average feature
values for this node were determined by calculating the arithmetic mean of each feature
for data in the node, providing a comparative mechanism to examine differences between
nodes. This provides information regarding how values influence the outcome in a more
complex manner than obtained with classical methods. The results are shown in Table 1
and we elaborate on this below in “Results” section.

Datasets employed
Three datasets were employed for this study. The first was a simulation of six different
point processes on the unit square. The second was a collection of branch data obtained
from laser scanning of botanical trees. The third dataset we investigated was neuronal
spiketrain data obtained from the Blue Brain reconstruction of a rat somatosensory
cortex.
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Table 1 Top nodes by numbers of datapoints included, and average node feature values, of the tree
species data with 400 datapoints from each tree sample

Node number Datapoints Purity Branch order Branch length Branch height Branch angle

17 23479 0.405 2.570 0.612 14.202 1.532

18 22887 0.604 2.627 0.655 17.436 1.511

14 22668 0.581 2.481 0.543 11.141 1.505

22 17634 0.766 2.710 0.650 20.322 1.494

10 13763 0.634 2.264 0.559 8.145 1.467

7 4481 0.536 1.641 0.758 5.076 1.393

6 3535 0.778 2.956 0.392 4.864 1.485

26 2614 0.600 1.947 0.860 23.349 1.453

2 2317 0.556 1.634 0.669 2.129 1.237

25 1821 0.784 3.484 0.439 23.041 1.543

9 1523 0.724 4.292 0.298 7.843 1.520

3 839 0.770 2.771 0.390 2.594 1.851

12 781 0.647 4.702 0.289 11.031 1.933
1Purity is defined as the highest proportion of datapoints in the node that come from a single class.
2Branch order is the level of branching: 0 for trunk, 1 for branches originating from trunk etc.
3Branch length is the branch length in meters.
4Branch height is the height of branch’s starting point above ground in meters.
5Branch angle is defined as the angle between branch’s direction at its starting point and upward z-direction in radians

Point processes

Point process refers to a configuration of points in a spatial domain according to some
probability distribution. They are used to model, for example, the location of infection
centers in epidemiology and spike patterns of neurons in computational neuroscience.
Point processes have gathered interest in TDA community as case studies, see for example
[12–14]. Let X ∼ PD(k) denote that random variable X follows probability distribution
PDwith parameter k. In particular, Poisson(λ) denotes the Poisson distribution with event
rate λ. We simulated 500 samples of the following six point processes, samples containing
on average 200 datapoints. Figure 3 displays example realizations from each class.
Poisson: We first sampled number of events N, where N ∼ Poisson(λ). We then

sampled N points from a uniform distribution defined on the unit square [ 0, 1]×[ 0, 1].
Here λ = 400.

Fig. 3 Example simulations of six different point processes used in the study
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Normal: Again a number of events N was sampled from Poisson(λ), λ = 400. We
then created N coordinate pairs (x, y), where both x and y are sampled from a normal
distribution N(μ, σ 2) with mean μ and standard deviation σ . Here μ = 0.5 and σ = 0.2.
Matern: A Poisson process as above were simulated with event rate κ . Obtained

points represent parent points, or cluster centers, on the unit square. For each parent, a
number of child points N was sampled from Poisson(μ). A disk of radius r centered on
each parent point was defined. Then, for each parent the corresponding number of child
points N were placed on the disk. Child points were uniformly distributed on the disks.
Note that parent points are not part of the actual data set. We set κ=80, μ=5 and r = 0.1.
Thomas: A Thomas process is similar to AMatern process except that instead of uni-

form distributions, child points were sampled from bivariate normal distributions defined
on the disks. The distributions were centered on the parents and had diagonal covariance
diag(σ 2, σ 2). Here σ = 0.1.
Baddeley-Silverman: For this process, the unit square was divided into equal

size tiles with side lengths 1
28 . Then for each tile number of points N was sampled,

N ∼ Baddeley-Silverman. The Baddeley-Silverman distribution is a discrete distribution
defined on values (0, 1, 10) with probabilities ( 1

10 ,
8
9 ,

1
90 ). For each tile, associated number

of points N were then uniformly distributed on the tile.
Iterated function system (IFS): We also generated point sets with an iterated func-

tion system. For this, a discrete distribution is defined on values (0, 1, 2, 3, 4) with
corresponding probabilities

( 1
3 ,

1
6 ,

1
6 ,

1
6 ,

1
6
)
. We denote this distribution by IFS. A num-

ber of points N was then sampled, N ∼ Poisson(λ), λ = 400. Starting from an initial
point (x0, y0) on the unit square, N new points are generated by the recursive formula
(xn, yn) = fi(xn−1, yn−1), where n ∈ {1, ...,N}, i ∼ IFS and the functions fi are given as
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Tree branch data

The second dataset came from Terrestrial Laser Scanning (TLS) of different tree species,
representing a classification problem to correctly assign tree species from collected data.
In this study we used data from Silver birch, Scots pine and Norway spruce. The scans
were made in the location of Punkaharju in Finland. TLS produces point clouds of tree
surfaces in 3D space. These point clouds can contain tens of millions of points and are not
very useful for analysing tree data. Amethod of Quantitative Structural Modelling (QSM)
for reconstructing treemodels fromTLS scans was developed in [15]. This method recon-
structs trees by fitting cylinders in the point clouds. Figures 4 and 5 show, respectively,
examples of laser scanned point cloud of a Finnish spruce and its QSM reconstruction.
Reconstructed models make it possible to obtain diverse data from trees. For example,
lengths and volumes of individual branches are obtained by summing the lengths and vol-
umes of the cylinders making up the branch. QSMs also contain the topological structure
of trees as parent-child relations between branches. For us, a branch means only the main
stem excluding the child branches as shown in Fig. 6.
Tree structures are ubiquitous in biological organisms. Some recent studies have

applied topological data analysis methods on brain arteries [9] and neurons [16].
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Fig. 4 Example of laser scanned spruce point cloud. Courtesy of Raisa Mäkipää, see Acknowledgements
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Fig. 5 Example of QSM reconstructed model of the spruce point cloud in Fig. 5. Courtesy of Pasi Raumonen,
see Acknowledgements
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Fig. 6 The purple main stem is the branch in our datasets, and is the parent branch of the black child branches

Biological tree structures are very naturally modelled as tree graphs in 3D space
[17, 18]. This, however, restricts the possibilities to obtain various data from the tree.
Our approach is to view trees as point clouds of data and apply our topological analysis
methods. As a multiple measurement case, we take one data point in a tree data set to be
a branch of the tree with different features extracted from the QSM model. Specifically,
branch datapoints had the features {branch order (0 for trunk, 1 for branches originating
from trunk etc.), branch length in meters, branch height above ground in meters, angle
between branch and upward z-direction in radians}. The trunk of the tree was excluded
from the branch data. We had 100 samples from each tree species class, with each sample
containing variable number of datapoints.

Neuron spiking activity

The Blue Brain project aims to understand the relationship between the structure of
the brain’s neuronal network and the observed activity of this network. To this end, the
project has reconstructed a biologically realistic brain network, or neuronal microcir-
cuitry [19]; more specifically a small region of the rat somatosensory cortex with 31,346
neurons. The reconstructed neurons have well-established morphological types and elec-
trical behaviour inferred from in vitro brain slices. Structurally, the neurons are placed
inside a small 3D volume according to experimentally based estimates of neuron densi-
ties inside the cortex and the synaptic connectivity between the neurons is reconstructed
with models validated against observed anatomical data.
The reconstruction allows to simulate neurons’ electrical activity after injecting the

network with an input signal. Electrical activity is measured as spiking of neurons,
i.e. whether neuron releases built up electric potential, hence transmitting signal to
connected neurons. We used simulation dataset from the study in [20]. In this study
input signals were configured into nine different spatio-temporal patterns and injected
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into the reconstructed microcircuit. These stimuli differed mainly in the degree of
spatio-temporal synchronizaton received by the input neurons.
The neuron dynamics were recorded in a spiketrain.We consider a spiketrain as a vector

of 0’s and 1’s, where each element corresponds to a state of the neuron in time. A vector
element with value 1 means that a neuron spikes at a time associated to the element, value
0 denotes no spiking activity.
Instead of looking at the spiketrains of individual neurons, we looked at spiking rates

of communities of neurons. The neuronal network is a directed graph and community
detection is major theme in network science [21]. We used the reverse idea and instead of
finding communities, we selected communities with some criteria. A neuron community
consists of a center neuron and neurons adjacent to this center. We choose 500 neuron
communities from the full neuronal network around neurons having the highest degree
(=number of incoming edges + number of outgoing edges). The community spiking rate
is defined to be the number of neurons in the community spiking inside a specified time
bin normalized by the number of neurons in the community. One 250 milliseconds brain
activity simulation was therefore turned into a point cloud of 500 points in R

250, where
the vectors’ elements are community spiking rates in every 1 millisecond time bin. The
nine different input signals corresponds to nine different simulation experiments labelled
by nXgY, where n is in {5, 15, 30} labelling the temporal pattern and g is in {0, 1, 2} labelling
the spatial pattern of the input signal. Each simulation was repeated 10 times with some
randomized initial conditions. Altogether, in our nomenclature, we thus had 90 samples
of neuron activity data, where each sample is a point cloud containing 500 datapoints.

Results
The first set of analyses was to test the algorithm on the point process and tree data. This
was set up as a classification problem, wherein input data was used to predict the label. In
both examples, the filter function used was the coordinate of the datapoint along the first
principle component of the entire dataset, relative to the center of mass, and the metric
was Euclidean distance. The linkage selected for local clustering was complete linkage. For
point processes data, runs testing the TDA model as well as the alternative SVM model
were conducted for sampling rates up to 100 datapoints from the list of sampling rates
above, for both the full six point processes as well as for only normal and poisson point
processes. The reason for the latter test was that the SVM appeared to have difficulty with
the six class problem. The cross-validated accuracies are reported in Fig. 7.
Using six point processes, the TDA accuracy was 60.7% using 10 datapoints, and

increased gradually to 96.8% using 100 datapoints. The alternative SVM model began
with 33.2% using 10 datapoints, and remained at 33.3% during sampling to 100
datapoints.
Using only the two selected point processes, the TDA classifier achieved an accuracy

of 99.6% after 30 datapoints, increasing to 99.98% at 100 datapoints of sampling. The
alternative SVMmodel achieved an accuracy of 99.1% with 100 datapoints.
The results of cross-validation for tree species is shown in Fig. 8. The TDA classifier

had an accuracy of 76.5% using 10 sampled datapoints, increasing in an asymptotic man-
ner until 400 sampled datapoints and an accuracy of 90.1%. The alternative model had
an accuracy of 68.4%, increasing to a maximum of 68.7% using 30 datapoints, thereafter
reducing slightly.
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Fig. 7 Cross-validated prediction accuracy when using a multi-measurement TDA classifier and compared
with an SVM voting classifier. Datasets used were 2 classes of point processes (above) and 6 classes of point
processes (below). Datapoints are the number of points sampled per point process realization

Fig. 8 Cross-validated prediction accuracy when using a multi-measurement TDA classifier and compared
with an SVM voting classifier. The dataset used was tree species, containing 100 samples in 3 classes.
Datapoints are the number of points sampled per individual tree
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Fig. 9 Graph generated using tree data of 100 samples in 3 classes. Each node represents a cluster of
branches which co-aggregate in geometric space. The size of nodes are proportional to the number of
branches, and the color represents the class proportion where darker blue color indicates a stronger
proportion of one class and progressively more red indicates less pure nodes. The axis are in arbitrary units
and the graph is not anchored

The next analysis of the tree data used node output generated from the software. A net-
work graph visualizing the data and nodes created is shown in Fig. 9. Table 1 presents
the top nodes in the full data model using 400 datapoints, ordered by number of dat-
apoints. The purity, i.e. largest class proportion, gives important information about the
suitability of each node as a tool for subgrouping data into unique partitions. The addi-
tional columns signify the average values of each feature for the given node. Similarly, this
data can be used to find nodes with certain characteristics which are present in the data
which inform the class membership. Ideally, this data can be used on the original dataset
to better understand data partitioning and subclusters of various classes.
The final analysis of neuron spiking data gave differing results for classifying outputs

related to temporal patterns n and spacial patterns g. Under n, the samples are divided into
three classes. Under g, the samples are divided into nine classes corresponding to nine
different n-g combinations. For temporal pattern classification, both methods resulted in
high classification accuracies with even small numbers of datapoints sampled. The TDA
classifier slightly outperformed the SVM in general, with both converging to 97.8% accu-
racy at 500 datapoints. For spatial pattern classification, the TDA classifier obtained 63.2%
accuracy using 10 datapoints, compared with 83.2% for the SVM. This increase in accu-
racy for the SVM continued over all samplings, as shown in Fig. 10, with accuracies for
the classifiers at 500 datapoints being 79.8% and 92.2% for the TDA and SVM methods,
respectively.

Discussion
This paper presents a method to analyze data featuring repeated measurements, in order
to obtain high classification accuracy as well as information regarding features in the data
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Fig. 10 Cross-validated prediction accuracy when using a multi-measurement TDA classifier and compared
with an SVM voting classifier. The datasets used were neuron spiking data with two class labelings, the
temporal pattern n and the spatial-temporal pattern g

which are important for the outcome of interest. In biological data, repeated measure-
ments are often obtained, for example when sampling the same individual over time, when
large amounts of data are sampled at a high frequency, or when blood is sampled and data
from cell populations are obtained. This algorithm builds on the Mapper algorithm and
extends it into the realm of machine learning.
The sampling procedure demonstrates that often only a relatively small number of dat-

apoints is required to adequately model the data space in question in order to get high
classification accuracy. Our method is both highly accurate on these datasets when com-
pared with other methods, and importantly is able to determine which nodes are most
responsible for the accuracy of the final model, such that determinations about complex
relationships in the data can be extracted.
When using the algorithm, there are a few caveats that need to be taken into consider-

ation. First, the user must avoid overfitting which could occur if testing a large number
of filter functions and/or metrics, and thereafter selecting the best resultant model. Sec-
ond, the results can be computationally intensive when the number of points sampled is
high, due to runtime scaling to the order of n2. This can be remedied partially by reducing
the size of the intervals in the underlying algorithm, which could be automatically scaled
for larger datasets. Lastly, since this algorithm uses internal cross-validation the accuracy
reported is based on a number of submodels which is equal to the number of cross-
validation intervals. The final model which determines node characteristics includes all
samples, therefore this internal accuracy may differ slightly from that of the unbiased
estimate provided by the cross-validated accuracy.
The cross-validated accuracy of the TDA based classifier exceeds the alternative SVM

voting classifier in most tests and sampling rates presented. This was consistent despite
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using only a single metric and filter function for the TDA model, while selecting the best
kernel for the SVM based on accuracy. However, for determining the spatial pattern g
label in neuronal spiking data, the SVM voting classifier exhibited a systematic increase
in accuracy over the TDAmodel at all samplings. This clearly demonstrates that for some
use cases, the TDA classifier does not provide an increase in accuracy over alternative
methods, possibly due to inherent geometry that was not well suited for the filter function
or clustering method used. These results might be improved by improved selection of
parameters of the TDA model, if the caveats regarding overfitting are observed.
An interesting note about classification accuracies is that with an increased number

of classes, the presented algorithm maintained a high accuracy when all point processes
were used, but was outperformed for neuron spiking spatial patterns g. For six point pro-
cesses, the alternate SVM classifier appears to maintain accuracy with two of the classes,
while confusing the other four classes in a consistent basis, leading to the nearly constant
33% cross-validation accuracy. This surprising phenomenon possibly reflects a large vari-
ation in the data which does not lead to data organization which is accurately partitioned
by a hyperplane. Similarly, a potential explanation for the TDA classifier’s high accuracy
with more point process classes is that differences in point clouds which overlap in multi-
dimensional space could require tools to tease out clusters based on similar geometry.
Likewise, the results of the neuron spiking spatial patterns g indicate that geometric tools
either may not be ideal when the underlying geometry of the data is not well suited for
TDA or may require optimization of parameters for different use cases.

Conclusions
The utility of this algorithm and implementation has broad applicability across the bio-
logical sciences as well as other fields. In particular, methods for obtaining repeated
measurements classification models have been lacking, and our method fills a void in this
manner. Furthermore, the ability to both partition data into its most useful components,
and thereafter extract the features relevant for this partitioning, might allow researchers
to identify which characteristics or variables in the data are most correlated with the
outcomes.
Our algorithm and software can be employed by those who have repeated measure-

ments data, and further extensions to this method can also be made. The application of
topological data analysis demonstrates a scenario wherein data geometry becomes useful,
and depending on the data characteristics, different metrics and filter functions can be
applied. This demonstration of data analysis within the framework of machine learning
and classification algorithms represents a novel utilization of TDA for common needs.
Additional development of methods using topological data analysis might result in fur-

ther advances in classification techniques, and when combined with machine learning,
there is strong potential for these methods in the future.
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