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Abstract
Despite numerous studies in the field of congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency, some
clinical variability of the presentation and discrepancies in the genotype/phenotype correlation are still unexplained. Some,
but not all, discordant phenotypes caused by mutations with known enzyme activity have been explained by in silico
structural changes in the 21-hydroxylase protein. The incidence of P30L mutation varies in different populations and is most
frequently found in several Central and Southeast European countries as well as Mexico. Patients carrying P30L mutation
present predominantly as non-classical CAH; however, simple virilizing forms are found in up to 50% of patients. Taking
into consideration the residual 21-hydroxulase activity present with P30L mutation this is unexpected. Different mechanisms
for increased androgenization in patients carrying P30L mutation have been proposed including influence of different
residues, accompanying promotor allele variability or mutations, and individual androgene sensitivity. Early diagnosis of
patients who would present with SV is important in order to improve outcome. Outcome studies of CAH have confirmed the
uniqueness of this mutation such as difficulties in phenotype classification, different fertility, growth, and psychologic issues
in comparison with other genotypes. Additional studies of P30L mutation are warranted.

Keywords Nonclassic ● Simple virilizing ● P30L ● CYP21A2 ● Diagnosis ● Therapy

Introduction

Congenital adrenal hyperplasia (CAH) is a family of auto-
somal recessive disorders caused by mutations of genes
involved in the steroidogenesis pathway [1–4]. The most
common cause of CAH, occurring in 95–99% of cases, is
21-hydroxylase deficiency (21OHD), followed by
11β-hydroxylase deficiency, 17α-hydroxylase/17,20-lyase
deficiency, 3β-hydroxy-steroid dehydrogenase type 2 defi-
ciency, P450 oxidoreductase deficiency, lipoid CAH, and

cholesterol side chain cleavage enzyme deficiency [4–10].
Mutations in the cytochrome P450 (CYP) 21A2 (CYP21A2)
gene result in 21OHD. The cytochromes P450 comprise a
superfamily of heme-containing mono-oxygenases that play
central roles in the metabolism of a wide variety of endo-
genous compounds including steroids, drugs, and
carcinogens.

CAH can clinically be manifested in a variety of forms,
depending on the amount of the functioning enzyme. The
common classification consists of two major forms, classi-
cal and nonclassical [1, 11]. Classical form of 21OHD
appears with an incidence of 1:10,000–1:20,000 live births
in different populations [4, 12–14], and is rising with the
early detection by neonatal screening [15]. The phenotype
of patients with a classical 21OHD is different depending
on the degree of the remaining 21-hydroxylase enzyme
activity. In a majority of patients with classical 21OHD
(75%), 21-hydroxylase activity is completely absent caus-
ing life-threatening cortisol and aldosterone deficiency (salt-
wasting form [SW]) accompanied with hyperandrogenemia
causing sexual ambiguity in affected females [2, 16, 17]. If
the remaining enzyme activity is low but present (<2%),
simple virilizing (SV) form of the disease occurs which
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appears in 25% of cases with the classical form. SV is
characterized by a cortisol deficiency accompanied with
hyperandrogenemia inducing virilization of the external
genitalia in females and hyperandrogenemia in boys, often
noticed by precocious puberty. The nonclassical form of
21OHD (NC) is common, one of the most common reces-
sive disease in humans (1/200–1/1000 in Caucasians),
especially in certain ethnicities such as Eastern European
Jews, Finland being an exception with the lowest incidence
[18–22]. The enzyme activity in NC CAH is preserved
(~20–60%) with symptoms appearing later in life, mostly in
preadolescent, adolescent or young adult period
[20, 23, 24]. Oligoamenorrhea, hirsutism, and impaired
fertility are common symptoms.

The CYP21A2 gene is located on chromosome 6.21p in
the region of class III of the human leukocyte antigen [25].
Several other genes are located in this region forming a
module. CYP21A2 is located 30 kb upstream of its non-
functional pseudogene CYP21A1 [26]. Both genes consist
of ten exons, and have high sequence homology (98%
exonic nucleotide homology and 96% intronic homology)
[7, 26, 27]; however, the pseudogene is nonfunctional.
Gene changes comprise large deletions, 8 bp deletions, gene
conversions due to crossing-over with the adjacent pseu-
dogene, and point mutations in the gene itself [20, 28]. The
pseudogene is prone to mutations (e.g., splicing, frameshift,
and insertions) which can be transferred to the functional
gene by microconversion events. Most frequently CYP21A2
mutations occur as a result of recombination with the
pseudogene (75%). The remaining 20–25% of mutations
consist of deletions or chimeric genes, both appearing as a
result of unequal crossing-over. Only 1% of mutations
appear de novo [1]. The number of reported CYP21A2
mutations increases continuously from around 130 [28–32]
to over 230 in the last large reports [33, 34]. Most patients
with 21OHD are compound heterozygotes carrying differ-
ent mutated alleles. In consanguineous populations, homo-
zygocity is more common compared with admixed
populations. Specific expression variations might also be a
problem such as the leaky intron 2 mutation and alternative
splicing or duplication of Q318X allele [35, 36].

Mutations are classified as severe, moderate, and mild
based upon the enzyme activity and the phenotype they
most frequently induce. The phenotype depends on the
activity of the milder mutation in compound heterozygotes
since it is connected with some enzyme activity
[24, 33, 37].

P30L has been classified to the group of the milder
mutations with 20–60% of enzyme activity [1, 38]. Most
frequently, P30L mutation causes mild, i.e., NC pheontype.
However, it can also cause SV form with intensive hyper-
androgenism and virilization [20, 22, 39–41]. The P30L
mutation frequency in different populations and the clinical

outcomes in patients carrying P30L mutation have not been
extensively reviewed.

The aim of this review is to present clinical, including
long-term, outcomes, and molecular findings associated
with the P30L mutation.

Molecular structure of P30L mutation and
functional analysis

Molecular characterization of the CYP21A2 mutations and
their impact upon the structure of the 21-hydroxylase
enzyme influence the phenotype and the severity of the
disease [7, 31, 39, 42–45]. The human crystal structure
model of the 21-hydroxylase enzyme has been unraveled
recently and the impact of numerous different mutations
has been explored, explaining the SW, SV, and NC phe-
notypes [31, 46, 47]. The CYP21A2 molecule resides in
the membranes of endoplasmatic reticulum. Different
chaperons and cellular proteins assist the proper folding of
the protein. The enzyme has a triangular prism shape and
contains 16 helices and 9 β-sheets with a heme located
centrally [31]. There are two binding sites for 17-
hydroxyprogesterone (17OHP), proximal and distal, both
in the proximity of the heme moiety. Hydrogen bonds of
residues connected to the heme, as well as the electron
transfer are crucial for the proper function of the enzyme
[31, 33, 47]. Mutations which cause irregular clashes with
heme of the enzyme, disruption of hydrogen bonds, sub-
strate binding, mutations causing impaired secondary
structure or structural stability, all abrogate the enzyme
function and cause the severe SW form of the disease
[31, 46, 48–50]. On the other hand, mutations causing only
reduction in the enzyme anchoring, but allow some resi-
dual function, cause SV or NC 21OHD. Moreover, inter-
ruption of inter- and intra-protein interactions or
hydrophobic environment disruption may cause unex-
pected phenotypes. Thus I172N can occasionally cause
NC, and V281L can be found rarely in SW form [31, 51].

P30L mutation in exon 1 of CYP21A2 gene is a mild
missense single base pair mutation (g.89 C>T), which
belongs to the pseudogene-derived mutations. It decrea-
ses 21-hydroxylase activity to 20–60% according differ-
ent authors [1, 38, 52], frequently causing NC 21OHD. It
is not associated with particular HLA antigens in contrast
to V281L which is associated with the haplotype B14;
DR1 [1].

P30 residue is located at the N-terminal site of the
enzyme near to the transmembrane region. It is lodged in a
hydrophobic cavity of the enzyme and is crucial for
attachment of P450 to the membrane. When prolin is
replaced with glutamin (P30Q g89 C>A) its hydrophilic
properties disrupt the hydrophobic network and affects the
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attachment of the enzyme to the membrane with SW form
as a result. Replacement of prolin with leucine (P30L g89
C>T), which is hydrophobic residue, interferes with the
proper orientation of the enzyme with respect to the
microsomal membrane segment, orienting the protein away
from membrane, but not improper folding of the protein.
Therefore P30L mutation is better tolerated [46, 53]. Ana-
lyzing the protein stability of P30L mutation has shown that
the half-life is significantly reduced compared with other
mild mutations [31, 54]. Enzymes carrying P30L mutations
were initially structurally studied in detail and confirmed as
a cause of NC form in 1991 [53]. The authors used
recombinant vaccine virus to express two mutant enzymes
carrying P30L as a pathologic mutation and Ser268Thr
conferring normal polymorphism as a first control. The wild
type of the enzyme was used as a second control. The
normal polymorphism showed 100% enzyme activity, the
same as the wild type, whereas, the enzyme activity of P30L
mutation was 60% for 17OHP and only 25% for binding
progesterone as a substrate. The speed of metabolism
affected by P30L mutation for 17OHP and progesterone
compared with the wild type was 12- and 21-fold lower,
respectively [53]. Furthermore, enzymatic activity with
P30L mutation was rapidly lost when the cells were lyzed,
suggesting relative enzyme instability [1]. Using computa-
tional methods Neves Cruz et al. evaluated the structural
impact and the effect on the steroid binding as well as
protein structural conformation of different CYP21A2
mutations [47]. P30L mutation is located peripherally at the
N end of the enzyme and is involved in moderate change of
enzyme stability (Fig. 1). However, it showed conserved

metallic coordination between the heme group and the
Cys428 residue of the polypeptide chain with an average
distance of 2.5 Å which is similar with the wild type. This is
pivotal for the preservation of the P450 enzymes activity,
therefore P30L mutation is frequently associated with the
NC phenotype [47]. In a study by Tussie-Luna et al. the
mutation was present in 28% (5/18) of patients with hor-
monal evidence of NC CAH. However, all patients carrying
the P30L mutation were symptomatic, in contrast to 69% (9/
13) displaying other NC mutations. It is worth mentioning
that four out of five patients with P30L had clitoromegaly
compared with none of those carrying other NC mutations
(e.g., V281L) [53]. Clitoromegaly was also reported in NC
patients carrying P30L in China [55]. This shows that the
P30L mutation, although the enzyme activity is preserved
sufficiently, causes a more severe form of NC or even a SV
form. E.g., in one family, the proband had P30L/I172N, and
presented as SV form with clitoromegaly, hirsutism,
delayed menarche, and severely impaired fertility [40].

It is still not known whether in certain patients with P30L
mutation other residues are unfavorable, and the enzyme,
although present, cannot function appropriately causing
increased virilization corresponding to SV CAH [31]. Some
authors believe that decreased activity in P30L is due to
amino acid residues affecting other functions such as heme
coordination, posttranslational modifications, or interface
with other interacting proteins or ligands [32, 53]. The P30L
mutation obviously has additional regulators, or posttransla-
tional inhibitors of enzyme activity. Some additional residues
might also have influence [33]. Simultaneous transfer of
mutation in the promotor region together with the P30L
mutation from the pseudogene has been described causing a
fivefold decrease of the gene activity and causing SV form
[56]. Moreover, different allele variations in the promotor
region of CYP21A2 gene causing 50% lower transcriptional
activity of 21-hydroxylase have been identified in SV
patients carrying P30L mutation [57]. The presence of uni-
dentified rare mutations modulating the phenotype cannot be
excluded; however, it is unlikely due to the frequent occur-
rence of SV form with P30L mutation in studies with meti-
culous genotyping. Some other factors modifying phenotype
have also been suggested such as the CAG repeats of the
androgen receptor and other genes encoding proteins other
than cytochrome P450 type II enzyme with a 21-hydroxylase
activity, as well as alternative pathway of androgen bio-
synthesis causing fetal virilization in females [58–60].

Prevalence of P30L mutation

The frequency of different CYP21A2 mutations are vari-
able in different populations and ethnicities [7, 16, 45, 61–
63]. The most common mutations are deletion or large

Fig. 1 Spatial localization of the mutant residues P30L and V281L in
the CYP21A2 protein showing their peripheral localization. P30L is
localized at the N terminus of the protein responsible for the orienta-
tion toward the membrane of the endoplasmatic reticulum
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gene conversion, I2 splice, V281L, and I172N
[7, 14, 16, 37, 45]. In populations with consanguinity the
variability is lower compared with admixed populations
[64, 65]. Different reports show that the P30L is not
among the most common mutations. Its frequency is
between 0 and 46% in different populations (Table 1)
[14, 16, 18, 19, 23, 37, 45, 55, 62, 63, 66–78]. Interest-
ingly, P30L mutation occur more frequently in Central and
Southeast Europe, including Balkans, and Mexico
[39, 62, 63, 68, 74, 79, 80].

Clinical presentation and genotype/
phenotype correlation

Although a good genotype–phenotype correlation has been
established in up to 95% of patients with CAH [31, 45, 52],
many outliers have been described, of which a significant
number is due to the P30L mutation.

The enzyme activity is quite high in individuals with
P30L mutations and mild form of CAH would be expected
in all patients carrying it independently of the mutation on
the other allele. Mild form is indeed the most frequent or the
only presentation of P30L mutation in many; however,
more severe forms are also present in a significant number
of patients in other populations (Table 1) [33, 39, 45].

The NC form of CAH was initially called late-onset as
clinical presentation was observed in adolescents and
adults [38, 81, 82]. Presentation of NC CAH is subtle and
diagnosis requires different diagnostic tests to exclude
other metabolic problems. Moreover, clinical expression
of NC CAH is variable in patients carrying the same
mutation [1, 20, 45, 65]. In patients with NC CAH pre-
dominant signs are those of mild androgen excess.
Therefore, in females the diagnosis is made mostly in late
childhood, adolescence, or young adulthood due to
symptoms as premature pubarche, acne, hirsutism, male-
pattern alopecia, polycystic ovary syndrome (PCOS), and
subfertility [11, 65, 79]. However, there are females with

Table 1 Prevalence of P30L and V281L mutations in different populations and corresponding phenotypes

Country Number of alleles P30L Form of CAH V281L Form of CAH Reference

Argentina 908 0.9% NC, SV 26.2% NC Marino et al. [16]

Brazil 960 0.6% SV, NC 26.6% NC de Carvalho et al. [66]

Chile 146 0% 10.5% SV Fardella et al. [67]

China 460 0.2% NC 0.2% NC Wang et al. [78]

Czech Republic 174 6.5% SV, NC 5.1% NC Kotaska et al. [68]

Croatia 186 5.9% SV, NC 0% Dumic et al. [69]

Denmark 136 2.2% NC 4.4% NC Ohlsson et al. [70]

Francea 322 3.6% NC 55.9% NC Bidet et al. [23]

Finland 156 0% 2.6% NC Jaaskelainen et al. [19]

Germany 310 2.6% SV, NC 2.9% NC Krone et al. [37]

Greece 222 11.3% SV, NC 41.1% NC Dracopoulou-Vabouli et al. [71]

Italy 146 2.7% NC 11% NC Carrera et al. [18]

Indiab 124 46% SV ND Marumudi et al. [72]

Japanc,d 30 1.5 % SV, NC ND Kashimada et al. [73]

Macedonia 122 19.7% SV, NC 2.1% NC Anastasovska et al. [63]

Mexico 94 8.5% SV, NC 8.5% NC Ordonez Sanchez et al. [74]

Netherlands 396 0.3% NC 2.2% NC Stikkelbroeck et al. [14]

Romania 66 19.7% SV 0% Grigorescu-Sido et al. [75]

Serbia 122 13% SV, NC 4.6% NC, SV Milacic et al. [62]

Spain 58 2.6% NC 15.8% NC Ezquieta et al. [76]

Sweden 400 1.6% NC 5.7% NC Wedell et al. [77]

USA 3005 2.6 % SV, NC 23.9% NC New et al. [45]

ND not done
aCohort consist of women with NC only
bOnly investigating classic CAH
cPatients detected on neonatal screening
dIn NC patients clitoromegaly was noted
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minimal or no symptoms, even after a long life [83].
Despite of similar 17OHP levels in patients with other
mild mutations, NC patients with P30L mutation can show
stronger virilization with clitoromegaly and advanced bone
maturation [84]. Although I172N mutation is considered
typically associated with SV, it seems that unlike other
mild mutations, P30L mutation generates a continuum of
phenotypes between NC and SV as well as a typical SV
[33, 45, 85]. In a multinational study of 1507 families with
CAH, SV form of CAH was found in 17/74 patients
having P30L mutation (23%) [45]. Even 66% of patients
with P30L mutation express unexpected virilization
requiring extensive reconstructive surgery [86]. Moreover,
in a study of a large cohort of patients with 21OHD of
Greek origin, the phenotype of P30L mutation was equally
distributed between SV and NC (19.1% vs 21.4%) [71].
The genotype/phenotype concordance in this study
decreased as the severity of the disease diminished. Risk
for short stature should be taken into consideration since
NC and even SV sometimes are diagnosed late [87, 88],
although in the majority final height was within the normal
range [89–91].

In a Central European study the major
genotype–phenotype discrepancies were detected for P30L
and I172N mutation [80]. Similar findings have been
confirmed in other studies [52, 69, 92]. In a study of 400
families in Argentina, P30L mutation, although rare
(0.6%), the SV to NC phenotype ratio was 1:1 [16].
Moreover, in countries with high prevalence of the P30L
mutation, in either a homozygous or compound hetero-
zygote state, patients are prone to have increased vir-
ilization and fertility issues subsequently placing them in-
between the NC and SV forms or even pure SV form
[37, 40]. In the Republic of North Macedonia, where the
prevalence of P30L mutation is among the highest in the
world, the number of patients with SV form is very high
[63]. Even when it is not a SV form, the clinical mani-
festation is with stronger signs of virilization, earlier
adrenarche, clitoromegaly, and some patients require
higher doses of glucocorticoids compared with other
patients with NC form [55, 66, 93]. Moreover, genotypes
P30L/I2 splice, P30L/Q318X, and P30L/8Δbp are espe-
cially associated with SV form of CAH (Table 2) [45].
Classical presentation of SV in two sisters with clitor-
omegaly, no breast development, and severely impaired
fertility having P30L/I172N genotype has recently been
described [40].

SV phenotype in girls is easier to recognize due to cli-
toromegaly, or severe atypical genital in newborn girls, but
in boys the genital pigmentation might be missed, and early
pubarche and advanced penile growth may be the first signs
[41, 71, 86]. If not treated with glucocorticoids SV pro-
gresses steadily during childhood causing early puberty,

short adult stature, and fertility issues in both genders
including testicular adrenal rest tumors (TARTs) in men.

Thus, it might be advisable to be very cautious with the
interpretation of the results of neonatal screening when
P30L mutation is detected, since it might be the first sign of
the SV phenotype which may manifest clinically later in
childhood. Moreover, virilized girls without SW and fast
growing boys with advanced bone age may not always have
I172N but P30L mutation as shown in different studies
[11, 24, 39, 73, 86].

Diagnosis

The diagnosis of classical forms of 21OHD is based upon
the clinical picture, blood electrolyte analysis, 17OHP
levels, and androgens including testosterone, dehy-
droepiandrosterone sulfate (DHEAS), and androstenedione.
Most patients have a basal morning 17OHP values above
30 nmol/L. However, some patients with suspected NC
CAH may have lower basal 17OHP levels and a level
between 6 and 30 nmol/L could warrant an ACTH-
stimulation test [20, 41, 82, 94]. Levels above 30 nmol/L
on ACTH-stimulation test, which is the golden standard for
diagnosis of 21OHD, are considered diagnostic
[22, 28, 41, 95]. Severe CYP21A2 mutations have higher
17OHP levels both basal and post ACTH-stimulation [23].
Measurement of progesterone, 17-hydroxypregnenolone,
11-deoxycortisol, DHEAS, deoxycorticosterone, and
androstenedione may be warranted in order to distinguish
other forms of disturbed steroidogenesis. There are limited
data on the biochemical parameters in patients with P30L
mutation but these show similar 17OHP and testosterone
levels as those with other mild mutations and cannot predict
the severity of the clinical presentation [53, 96, 97]. Due to
late diagnosis of NC and even SV forms, special attention
should be given to children who grow faster than expected
during early years of life, and follow them thoroughly for

Table 2 Influence of different genotypes containing P30L mutation on
the phenotype

Genotype SV NC SW

P30L/del 7.2% 86.6% 7.2%

P30L/P30L 32.3% 66.7% 0%

P30L/I2 splice 65.2% 17.4% 17.4%

P30L/8Δbp 50% 50% 0%

P30L/I172N 22.2% 77.8% 0%

P30L/V281L 12.5% 87.5% 0%

P30L/Q318X 60% 40% 0%

P30L/R356W 33.3% 66.7% 0%

Data extracted from New et al. [45]
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signs of early puberty. Bone maturation in these patients is
of utmost importance for the diagnosis and follow-up [98].
Differences in the time of presentation and speed of pro-
gression in patients with P30L mutation remain to be elu-
cidated. It should be noted that the different national
neonatal screening programs are developed to diagnose
classic CAH, and many NC newborns will not be detected if
additional molecular testing is not applied as a second tier
[28, 99]. It might be advisable to preform strict follow-up
even in newborns with no symptoms where P30L mutation
is detected.

Therapy and follow-up

The goals of therapy in SV and NC forms, including
patients with P30L mutation, are to substitute cortisol
(especially in SV), reverse hyperandrogenism to ensure
normal growth and timely puberty, preserve fertility as
well as to avoid the long-term complications [100–102].
Hydrocortisone is the drug of choice in newborn and
children with confirmed SV form [103]. However,
appropriate glucocorticoid regimen (hydrocortisone,
prednisolone, dexamethasone, or combinations) with or
without mineralocorticoid therapy in adults is still
uncertain [104–106]. Some SV patients may benefit from
adding mineralocorticoids based on the studies showing
higher plasma renin activity in SV patients including
patients carrying P30L mutation. It is due to accumula-
tion of some steroid precursors which can cause, espe-
cially in poorly controlled patients, aldosterone mediated
transactivation of the human mineralocorticoid receptor.
[107–109]. Adding mineralocorticoids in SV patients
may provide decreased renin activity and may enable
decrease of glucocorticoid dose. Mineralocorticoids have
occasionally been used in NC CAH as well [110–113].
Therapy should be carefully tapered according to the
growth pattern and hormonal results. There are trials to
simplify frequent blood sampling with adrenal specific
androgens measurements in saliva, hair, or urine samples
[114–117]. Therapy changes with aging of the patients,
fertility treatment is necessary in some females with
CAH, both classic and nonclassic and men who develop
TARTs, but also treatment of late complications of the
disease and supraphysiological glucocorticoid supple-
mentation [3, 81, 82, 111].

Therapy in patients with P30L mutations depends on
the clinical picture, and consist mostly of improving
symptoms, not biochemical findings. Achieving normal
final height should be among the main goals. Transition
from pediatric to adult care is of utmost importance since
many patients could be lost from follow-up during this
period [100, 118–120].

Somatic outcomes

Growth and puberty

Growth is affected in both females and males with CAH.
Early prepubertal growth spurt due to early puberty is typical.
Final height was affected (−2.5 SD) in earlier works, and
significantly less (−1.0 SD for classic and −0.4 SD for NC
form) in later works [91, 121–123], probably due to improved
therapy and compliance. Hyperandrogenism can result in
early closure of epiphyses. However, supraphysiological
glucocorticoid supplementation may also lead to short adult
height [122]. Close follow-up and fine tapering of therapy can
improve the adult height, especially if the bone age
advancement is detected before 8 years of age [3, 91, 124]. In
SV form growth in early childhood in females is normal;
however, in boys it is significantly faster and ends within
0.5 SD of target height [121]. The shorter stature in SV form
is due to the early puberty, advanced bone age, and lack of
important pubertal growth spurt [124, 125]. A high hydro-
cortisone dose during puberty may affect growth due to
deterioration of the metabolic control [126–128]. Growth in
NC form is often below the target height but within the
normal range [96, 129, 130]. Careful tapering of therapy
might provide height within the normal range and within the
genetic potential.

There are no specific data on the influence of different
mutations, yet the growth in patients with P30L mutation is
expected to be affected mostly in males with delayed diag-
nosis of the SV form, and females with early puberty [131].

Puberty in patients with 21OHD occurs earlier compared
with age-related peers [129, 132]. It occurs earlier in SW
form (9.3 years on average in males and 9.2 years in
females) compared with the age-related healthy population.
In SV and NC form it occurred on average at ~8.5 years and
at ~10 years in males and females, respectively
[84, 128, 130]. Central precocious puberty in CAH is rare
[41, 133]. There is no specific study but P30L should
influence puberty onset causing earlier puberty and may
induce secondary central precocious puberty in individuals
with the SV form [84, 133]. In females, early puberty would
be accompanied with clitoromegaly and impaired breast
development [40, 134].

Fertility

Fertility in females with all forms of CAH can be impaired,
despite the advances in different therapeutic methods. The role
of hyperandrogenism as a cause of impaired fertility has been
extensively studied [135–137]. In females with SW form
spontaneous fertility in older studies has been reported in only
2.5% and in SV 38% [138]. Additional 2% conceive by
assisted reproductive technology. Other studies show higher

Endocrine (2020) 69:262–277 267



but still low-fertility rate since it has been established that
elevated circulating adrenal androgens and elevated serum
progesterone concentrations may hinder ovulation and embrio
implantation [139–141]. However, all agree that some addi-
tional factors contribute to the low reproductive rate such as
the decreased sexual activity, higher sexual distress, higher
prevalence of homosexuality or bisexuality, and unwillingness
to pursue motherhood [136, 142–145]. Due to individualized
fertility therapy, newer studies show much higher pregnancy
rates in women with CAH approaching the fertility rate in the
general population [81, 140]. Women with SV usually seek
motherhood six times more frequently compared with those
with SW [146]. Women with NC CAH conceive sponta-
neously in 57.2% [147]. Pregnancy in these women is normal
with an outcome similar to the general population [136, 148].
There are no detailed data on fertility issues in patients with
P30L mutation except the report of two female patients with
P30L mutation and SV phenotype requiring genital surgery
and several artificial assisted reproduction cycles [40]. In
populations with a high prevalence of NC CAH, many
females are diagnosed as PCOS [149–151]. NC CAH needs to
be excluded before diagnosing PCOS [22, 82, 152, 153]. In
one study of hirsute women 10% had NC CAH, some of them
with P30L mutation [151]. Whether infertility issues are more
frequent, or if they are more difficult to treat in the P30L
mutation group remains to be elucidated in future studies.

Fertility issues in males with CAH are mostly due to
TARTs. TARTs are common and appear in 40–94% in
males, most commonly in severe forms of CAH [154–157].
They appear earlier and more frequently in patients with a
poor metabolic control. TARTs have been described in
patients with P30L even in childhood [158, 159]. Sperma-
togenesis in males with CAH is impaired and deteriorates
with the age; however, associated obesity, common in older
patients with CAH, might contribute as well [154, 156].
Still fertility was not decreased in 17 males with NC phe-
notype (none with P30L) or in 12 males with P30L com-
pared with 1700 and 1200 matched controls, respectively
[160]. Interestingly, in 221 males with 21OHD studied,
only those born before the introduction of neonatal
screening had impaired fertility [160]. Thus, early diagnosis
may improve fertility in males with 21OHD [3, 160, 161].

Prenatal diagnosis in women with CAH is compromised
by the possible genotype/phenotype discordance, especially
when mutations causing adverse phenotypes such as P30L
are detected [150]. Carriers of mild mutations might end up
with unexpectedly high incidence of offspring with SW or
SV form of the disease [162].

Metabolic and cardiovascular outcomes

Therapy with glucocorticoids and androgen control influ-
ence metabolic status and outcome in all patients with CAH

[163–166]. Long-term glucocorticoid replacement may
cause abdominal obesity and hypertension with an onset
even in youngsters [131, 167–169]. Obesity is frequently
associated with high CRP levels, hypercholesterolemia,
hyperlipidemia, insulin resistance, diabetes, high leptin, and
low adiponectin levels causing a common metabolic syn-
drome in ~20% of patients with a cardiovascular risk
independent of mutations [79, 123, 167, 170]. Very few
studies analyzed cardiovascular outcomes according to the
genotype [111, 123]. Interestingly, in the population study
by Falhammar et al. different mutations had different risk of
cardiovascular events [164]. Males with P30L mutation had
one of the highest risk for any cardiometabolic condition
and obesity as well as a tendency to increased risk for
obstructive sleep apnea [164]. However, females with the
P30L mutation had no cardiometabolic risk in this study but
it should be noted that the number of studied individuals
with this mutation was relatively low (n= 24). The meta-
bolic issues were still present in those patients with CAH
who were born after the introduction of neonatal screening
[164]. Thus, cardiometabolic risk should be carefully
monitored in patients with CAH. In fact, mortality has been
shown to be increased in CAH (2.3 higher in males and 3.5
times in females compared with matched controls), of
which a significant part was cardiovascular mortality [171].

Bone health

Decreased bone mineral density and more fractures have been
shown in some studies of CAH, but was absent in others
[172–178]. Bone mineral density and fractures in patients
with P30L mutations have not been studied in detail.

Autoimmune diseases

Autoimmune diseases have recently been found to be more
frequent in patients with CAH, and their prevalence
increases with age. Compared with controls (n= 2900),
those with P30L mutations (n= 29) had a tendency to
develop more autoimmune disorders in general and espe-
cially rheumatoid arthritis [179]. Whether the onset of glu-
cocortiocoid treatment and the duration of therapy have an
immunomodulating effect remains to be elucidated [180].

Mental outcomes

Engberg et al. analyzed psychiatric diagnoses in 335 women
with CAH compared with 33,500 matched controls [181].
They found that psychiatric diagnoses in general and sub-
stance abuse were more common in women with CAH.
Interestingly, patients with P30L mutation had much more
psychotic disorders and personality disorders in the age group
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>18 years compared with the carriers of other mutations
[181]. Psychotic disorders were increased in both female and
male patients with P30L mutation, especially in those born
before the neonatal screening [182], with personality dis-
orders being more frequent in women with the P30L mutation
[181]. In both genders with 21OHD, alcohol misuse was
increased and so were also suicidal attempts in males. How-
ever, none in the P30L group has been diagnosed with alcohol
misuse or attempted suicide [181, 182]. Similar findings were
found in 226 individuals with CAH (almost all females) were
psychiatric disorders and suicide attempts were more common
than in the general population [166]. Although the genotypes
were not described in the latter study it can be suspected that
very few had P30L mutations. Whether late diagnosis, glu-
cocorticoid therapy, and/or the androgen exposure contributes
to the increased prevalence of psychiatric disorders in CAH,
especially in women, remains to be elucidated [182, 183].
Since the level of hyperandrogenism has generally been
associated with the alcohol and other substances abuse [184],
and patients with P30L are more hyperandrogenic compared
with the carriers of other mild mutations, it would be useful
with larger studies to investigate addictions and psychiatric
issues in this group [183].

Quality of life

Having in mind the complexity of CAH and its complications,
it has to be expected that patients with CAH will have affected
quality of life (QoL) [11, 185]. Life-long therapy, frequent
controls, additional issues as the patient grows, necessary
interventions as well as under- or overtreatment and poor
metabolic control leading to frequent sick-leave in CAH may
result in lower social integration, education, self-confidence,
employment, and lower QoL [186, 187]. Late diagnosis is
associated with depression and decreased self-control. Many
women with CAH are not satisfied with their sexual life and
have later sexual debut or complete lack of sexual activity
[141, 145]. Males with CAH had impaired sexual well-being
in one study [188], but not in another study [186]. The overall
psychosexual aspects of life were affected in these patients
with later sexual debut, fewer pregnancies and children, and an
increased incidence of homosexuality in women [189, 190]. In
a QoL study from Norway including 72 adult participants with
CAH impaired general health perception, vitality and working
ability were found [191]. QoL was correlated to the severity of
the mutations [5]. A recent systematic review reported
increased psychological and psychiatric issues, impaired QoL,
together with reduced satisfaction with reproductive health and
sexual function in male with CAH [192]. QoL in patients with
SV and NC forms can be similar to the controls as shown in
patients diagnosed after the introduction of neonatal screening,
probably due to the timely and more sophisticated treatment
[154, 186].

Conclusion

Patients with P30L mutations have not been studied
extensively. The ethnic variability is wide and P30L
mutation affects mostly people from Central Europe, Bal-
kan countries, and Mexico. P30L confers 20–60% 21-
hydroxylase activity. However, P30L mutation induces a
more severe clinical virilization than the typical NC CAH
and clinical presentation is a continuum between NC and
SV phenotype. Studies of the structure of the mutated
enzyme do not completely explain the discrepancy between
the preserved enzyme activity and the phenotype. There-
fore, the reclassification of this mutation as mild should be
reconsidered. Long-term outcome data in patients with
P30L are limited, but some issues such as psychiatric dis-
orders may be more frequent in this group compared with
the other mild mutations. Further studies of the genotype/
phenotype variations in P30L careers, long-term outcomes,
and treatment options are warranted.
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