
Iranian Journal of Pharmaceutical Research (2019), 18 (Special Issue): 13-30
DOI: 10.22037/ijpr.2020.112621.13857
Received: October 2019
Accepted: December 2019

Review Paper

Osmolyte-Induced Folding and Stability of Proteins: Concepts 
and Characterization

Somayeh Mojtabavia,b, Nasrin Samadib* and Mohammad Ali Faramarzia*

aDepartment of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of 
Medical Sciences, Tehran, Iran. b Department of Drug and Food Control, Faculty of Pharmacy, 
Tehran University of Medical Sciences, Tehran, Iran.

* Corresponding author: 
    E-mail: faramarz@tums.ac.ir; samadin@tums.ac.ir

Abstract

It is well-known that the typical protein’s three-dimensional structure is relatively unstable in 
harsh conditions. A practical approach to maintain the folded state and thus improve the stability 
and activity of proteins in unusual circumstances is to directly apply stabilizing substances such as 
osmolytes to the protein-containing solutions. Osmolytes as natural occurring organic molecules 
typically called “compatible” solutes, based on the concept that they do not perturb cellular 
components. However, urea and guanidine hydrochloride (GuHCl) as denaturing osmolytes 
destabilize many macromolecular structures and inhibit functions. Several studies have been so 
far performed to explain the actual interaction of an osmolyte with a protein. The present review 
is aimed to achieve a collective knowledge of the progress arise in the field of osmolyte-protein 
interactions. The following is also an overview of the main techniques to measure protein stability 
in the presence of osmolytes.
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Abbreviations

Asn, Asparagine; Asp, Aspartate; cDPG, 
Cyclic-2,3-diphosphoglycerate; Cys, Cys-
tine; DSC, Differential scanning calorimetry; 
DGP, Diglycerol phosphate; DKP, Diketopip-
erazine; DMSP, Dimethylsulfonoproprionate; 
Gln, Glutamine; Glu, Glutamic acid; Gly, Gly-
cine; GuHCl, Guanidine hydrochloride; IEF, 
Isoelectric focusing; ITC, Isothermal titration 
calorimetry; Tm, Melting temperature; MCO, 
Metal-catalyzed oxidation; MDS, Molecu-
lar dynamic simulation; Phe, Phenylalanine; 
L-PGA, Poly-γ- glutamic acid; SDS-PAGE, 
Sodium dodecyl sulfate polyacrylamide gel 
electrophoresis; TMAO, Trimethylamine 
N-oxide; Trp, Tryptophan; Tyr, Tyrosine.

Introduction

Proteins are comprised of a biopolymer 
of amino acids in which linear arrays of 
their monomers fold up and form a compact 
3D structure (1). As a complicated system, 
proteins are present in various conformations 
in their folded states. The thermodynamically 
stable conformation of a protein is based on 
the hydrophilic and hydrophobic properties 
of amino acid sequences, chains of amino 
acids, and interactions that they create with 
each other and surrounding solution (2–4). 
Hostile environments featured with stresses 
as extreme temperature, desiccation, high 
salt level, severe pH, dehydration, and even 
exposure to denaturing concentrations of 
urea may destabilize a protein (5). When 
destabilized, protein may lose secondary 
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and/or tertiary structures. Moreover, some 
proteins stand unfolded structures in nature 
even under native conditions (6).

To get higher stability of biological 
macromolecules in solid and liquid dosage 
forms, various stabilizing techniques have been 
so far developed. For stabilization, it is important 
to decrease the molecular motions and reduce 
unfavorable conformational transitions in return. 
Suitable stabilization methods such as freezing, 
cooling, freeze-drying, and desiccation alter the 
thermodynamic state of a protein throughout 
affecting its surrounding solution (7–10). There 
are different advantages in each technique 
depending on properties, applications, or shelf 
life of the adopted drugs (10). To improve the 
stability of a protein, stabilizer substances and 
osmolytes such as sugars, polyols, and amino 
acids can be supplemented to the formulation 
(11–14). The key features of such stabilizers 
are their capability to change the protein 
structure and the motions of water molecules, 
which lead to higher stability. Studying and 
comprehending the effect of these compounds 
on structure, folding, and function of a protein 
has taken about half a century. Several articles 
have specifically focused on osmolyte-protein 
interactions (12–15). The present review is 
aimed to give a collective knowledge of some 
aspects of progress made on osmolyte-protein 
interactions. Among the variety of features 
discussed here, the influences of osmolytes 
on protein folding landscape, thermodynamic 
mechanism, and enzymatic kinetic parameters 
are also investigated in brief (15–16).

Protein stability
A protein, to carry out a specific biological 

function, has to adopt a unique native structure 
in aqueous solution under physiological 
conditions (17). The stability of protein samples 
is known as one of the major concerns in many 
applications, e.g. the pharmaceutical industry, 
general biochemical studies, and particularly 
in the field of structural biology. The native 
structure of a protein is usually very sensitive 
to any change in its environmental properties 
such as pressure, temperature, salinity, 
humidity, and so forth (17–19). Unfortunately, 
protein possesses chemical and physical 
properties presenting unique difficulties in 
purification, storage, and delivery.

Protein degradation pathways are usually 
divided into chemical and physical classes. 
Chemical degradation is defined as any process 
involves modification of a protein via formation 
or cleavage of covalent bonds or generating 
new chemical entities (20–21). Conversely, 
physical instabilities refer to any change in 
higher-order (secondary or over) structure of 
a protein, without alteration of its chemical 
composition. Four procedures commonly 
involve in physical instability including 
denaturation, aggregation, precipitation, and 
adsorption (19–23). The more commonly 
observed chemical degradation processes 
are listed in Table 1. As of late, it has been 
demonstrated that physical and chemical 
instabilities of proteins are interrelated in many 
systems (24–25). Similarly, there are examples 
of certain procedures of chemical degradation 
(e.g. deamidation) that make a protein more 
likely to form and aggregate fibrils. This is 
particularly essential for the purposes of debate 
and mechanism elucidation to differentiate 
physical and chemical instabilities. Manning 
et al. proposed some strategies for improving 
the stability of proteins. The most common of 
these strategies and advances are summarized 
in Table 2. (17, 24 –26). Nevertheless, protein 
stability remains one of the most important 
hurdles for the development of new the 
function.

 
Osmolytes
In view of the large variability of 

environmental conditions, cells, or whole 
organisms are exposed to potentially harmful 
fluctuations in pressure, pH, ion concentrations, 
temperature, etc. but it is amazing how 
their sensitive macromolecules react to 
environmental changes (27–28). All organisms 
are virtually equipped with small organic 
compounds termed osmolytes to protect their 
protein and enzymes (27). The root words of 
osmolyte are ancient Greek, including osm- 
meaning “push” or “thrust” and -lytós meaning 
“soluble” or “dissolve”. Osmolyte commonly 
referred to the compound affecting on 
spontaneous movement of solvent molecules 
into a region of higher solute concentration. 
An osmolyte is soluble in solution within a 
cell, or in the surrounding fluid. It plays a role 
in maintaining cell volume and fluid balance. 
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Osmolyte as a low-molecular weight solute 
accumulates in-vivo under stress conditions 
and influences on the stability of proteins 
in living cells (28). The effect of naturally 
occurring osmolytes on protein conformational 
stability has been studied for a long time. 
Protein stability and associations depend on 
the steric, van der Waals, hydrophobic, and 
electrostatic interactions of the protein with 
itself and all solution components. Therefore, 

modification of the surrounding solution is 
one of the best approaches to increase the 
stability and activity of proteins (27, 29–31). 
The most usual classification of osmolytes is 
based on their chemical structure such as free 
amino acids (e.g., proline and glycine) and 
their derivatives, methylamines (e.g., sarcosine, 
trimethylamine N-oxide, and betaine), sugars 
(e.g. sucrose, and trehalose), polyols (e.g. 
glycerol, glucosylglycerol mannosylglycerol, 

Chemical instability Mechanism Proteins Reference 

Deamidation 

 

The hydrolysis of Asparagine (Asn) and Glutamine 

(Gln) 

Human growth hormone 

(hGH), Insulin, γ-

Globulin, Hemoglobin 

17 

Isomerization of Asp 
The option cyclic imide intermediates to form either 

Aspartate (Asp) or iso-Asp products 

Monoclonal Antibodies 

(MAbs) 
17–18 

Hydrolysis of Asp Asp-associated hydrolysis of the peptide backbone 
Nerve growth factor 

(NGF) 
17, 23 

Hinge region hydrolysis 
Hydrolysis of the peptide backbone within the hinge 

region of antibody 
MAbs 17–19 

Hydrolysis of Trp 
Hydrolysis of Tryptophan (Trp) to kynurenine and 

related substances 
Myofibrillar proteins 17, 21 

Racemization and β-elimination Deprotonation of the hydrogen on the α-carbon 
Murine lysozyme, IL-

1ra, Myelin in muscle 
 

Diketopiperazine (DKP) formation 
Amine attack the second carbonyl group in the peptide 

backbone and formation of DKP ring 

Human growth hormone 

(hGH) 
17, 23 

Glycation of Proteins 
The reaction with a base, typically the side chain of 

lysine and a carbonyl group of a reducing sugar 

Hemoglobin, 

Immunoglobulin G2 

(IgG2s) 

17 

Formation of pGlu 

Nucleophilic attack of the N-terminal amine on the 

side chain of a Glutamic acid (Glu) residue (and 

occasionally a Gln residue) to form a five membered 

ring structure 

Bone morphogenetic 

protein 15 (BMP15) 
17–21 

Disulfide scrambling 

Removal of free Cystine (Cys) residues (the reduced 

form), which can act as the starting point for disulfide 

scrambling or exchange 

IgG2s 17–18 

Oxidations: 

Oxidation of Met 
Oxidation of Met accomplished with a wide range of 

ROS and pH 
MAbs 17, 25 

Metal-catalyzed oxidation (MCO) 
Binding of redox active metal to a protein amino acids 

(often Gly, Asp, His, and Cys) 

Human relaxin, 

Prolastin, Human 

growth hormone 

17–23 

Oxidation of Trp Oxidation of Trp residue MAbs 17–21 

Photooxidation 
Chemical oxidation of light sensitive amino acids e.g. 

Trp, tyrosine (Tyr), and Phenylalanine (Phe) 
MAbs, Milk proteins 17–26 

Cysteine Oxidation Oxidative process involving Cys residues Alcohol dehydrogenase 17, 26 

Table 1. Chemical instability in proteins. 

  

Table 1. Chemical instability in proteins.
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and arabitol), and ectoines (ectoine and 
β-hydroxyectoine) (Figures 1−3). 

However, osmolytes belong to a single 
chemical class may have not similar effects 
on protein stability and functional activities 
vice versa; osmolytes of different classes 
may have similar effects on proteins (32–33). 
Other categories have been proposed, in 
which osmolytes are classified according to 
their activities. In a well-known classification, 
osmolytes are categorized according to 
their denaturing attributes (e.g., urea, 
guanidinium chloride, lysine), or osmo-
protective properties (the majority of the other 
osmolytes). Protecting osmolytes, known 
as compatible osmolytes, bias the protein’s 
structure toward the folded state without 
unfavorable interactions with proteins or 
perturbing their structure and function (Figure 
4). Table 3 illustrates the stabilization effects 
of various classes of compatible osmolytes on 
proteins. Compatible osmolytes can induce 

intrinsically disordered proteins to fold into 
the native and functional forms. It has been 
shown that incubation with the osmolytes 
causes the intrinsically disordered activation 
domain of a protein to fold into a form that 
could bind strongly to a specific receptor (12). 
Urea and guanidine hydrochloride (GuHCl) 
belong to the class of denaturing organic or 
non-protecting osmolytes tending the folding 
transition toward the unfolded state. It seems 
that the stabilizing or destabilizing property 
of osmolytes is universal and independent of 
the chemical characteristics of a protein (29). 
Despite the denaturing effects of GuHCl and 
urea, they are interestingly accumulated in 
high concentrations in several species (e.g. 
marine elasmobranchs, mammalian kidneys, 
and amphibians) (32, 34).

The influence of osmolytes on molecular 
interactions

Understanding the mechanism of action of 

Methods 

Use of aptamers 

Stabilization by ligand binding to the native state 

Buffers 

Surfactant 

Cyclodextrins 

Anion binding 

Polymers 

Metal Ions 

Self-assembling 

Stabilization by drying 

Freeze drying (lyophilization) 

Air drying 

Vacuum drying 

Spray drying 

Artificially modified protein 

Protein chemical modification 

Site-directed mutagenesis 

Immobilization of protein 

Glycosylation 

Pegylation 

Conformational stabilization in aqueous solution by excluded solutes (osmolytes) 

 

Table 2. Methods for improving of protein stability (24–26). 

  

Table 2. Methods for improving of protein stability (24–26).
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Classification Chemical Name Proteins Reference 

Methylamines 

Trimethylamine N-oxide 
(TMAO) 

α-Synuclein, Stem bromelain, Escherichia coli adenylate kinase, 
ATPase, Acetylcholinesterase, RNase T1, Lactate dehydrogenase, 

Protein L, Myoglobin 
35–38 

Betaine 
Ribonuclease A, Lactate dehydrogenase, Bovine glutamate 

dehydrogenase, Fatty acid synthase, Phosphorylase b, Myoglobin, 
Trypsinogen, Lysozyme 

38–41 

Choline Trastuzumab 42 

Polyols 

Sucrose Pea seedling copper amine oxidase, Trypsin, Yeast iso-1-
ferricytochrome c, Protein L 43–44 

Trehalose Prion protein, Yeast inorganic pyrophosphatase, β-Lactoglobulin, 
ATPas, Yeast iso-1-ferricytochrome c, Mushroom tyrosinase 45–47 

Glycerol Human cardiac titin, Yeast inorganic pyrophosphatase, Yeast 
hexokinase, Rabbit muscle creatine kinase, Insulin 48–49 

2-O-α-Mannosyl glycerate 
(Firoin) Lysozyme, Prion peptide, β-Amyloid peptide 35, 40 

2-O-α-Manno-
sylglyceramide (Firoin-A) Lysozyme, Prion peptide 35, 40 

Mannitol MAbs, Plasma proteins, Vaccine stabilizer, Factor VIII 35, 50–52 

Sorbitol MAbs, Plasma proteins, Gonadotropin, Gamma-globulin 53–54 

myo-Inositol Human thyrocytes 55 

Diglycerol phosphate (DGP) Alcohol dehydrogenase 56 

Cyclic-2,3-
diphosphoglycerate (cDPG)   

L,L-Di-myo-1,1´(3,3´)-
inositolphosphate (DIP)   

Amino acids and 
derivatives 

Proline Ribonuclease A, Fatty acid synthase, Protein L, Phosphorylase b, 
Myoglobin, Creatine kinase 35, 57–58 

Glycine Ribonuclease A, Creatine kinase 59–60 

Ectoine Trypsinogen, Lysozyme, Prion peptide, Interferon Alfa2b 40, 59, 
61–62 

Hydroxyectoine Trypsinogen, Lysozyme, Prion peptide, Interferon Alfa2b 40, 59, 
61–62 

Taurine Ribonuclease A, Lactate dehydrogenase, Bovine glutamate 
dehydrogenase, 34, 62 

Serine   
Gamma-amino-n-butyric 

acid (GABA)   

Alanine   

Sarcosine Ribonuclease A, Stem bromelain, Pea seedling copper amine oxidase, 
Barstar, α-Chymotrypsin, Ribonuclease A, anti-Interleukin-6 35, 64 

Citrulline Urokinase, Peroxidase, anti-Interleukin-6 65 
Poly-γ- glutamic acid (L-

PGA)   

Miscellaneous 

Kahalalide F   

Mycosporine   

Melanine   

Bacteriorubin   

Pannarin   

Scytonemin   

Curacin A  
 

Dimethylsulfoniopropionate 
(DMSP)  

 

 

Table 3. Classification of naturally occurring osmolytes and examples of proteins that stabilized in the presence of osmolytes.
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Figure 1. Chemical structures of the most common osmolytes belonging to (a) methylamine and (b) 

amino acid classes. 

  

Figure 1. Chemical structures of the most common osmolytes belonging to (a) methylamine and (b) amino acid classes.

Figure 2. Chemical structures of osmolytes classified in polyols. 

  
Figure 2. Chemical structures of osmolytes classified in polyols.
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an osmolyte is crucial to maintain the stability 
and functionality of proteins in-vivo. Despite 
extensive research, there is no single view on 
the exact mechanism of action of an osmolyte. 
Some believe that osmolytes interact directly 

with protein backbone peptides or amino acid 
side chains; however, it should be noted that 
osmolytes do not significantly change the 
structures of native proteins (17, 29). To date, 
most published researches have attempted to 

Figure 3. Chemical structures of the miscellaneous group of osmolytes. 

 

Figure 3. Chemical structures of the miscellaneous group of osmolytes.
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describe the influence of compatible osmolytes 
on protein tertiary structure and stability. 
These osmolytes affect protein folds through 
a mechanism that targets the amide backbone 
of the protein, although the exact mechanism 
remains controversial (38–41). Stabilizing 
osmolytes are preferentially excluded from 
protein surfaces, driven by a thermodynamic 
distaste for the protein backbone. Urea 
and GuHCl, as the denaturing osmolytes, 
destabilizes the structure of proteins via 
favorable interactions with the backbone (66–
67).

The hydration structure of osmolytes 
is affected by high pressure, high/low 
temperatures, and additions of salts to 
osmolyte-water systems. It means that the 
hydration shells are stable in solutions under 
harsh environmental conditions. Stable 
hydration shell may act as a defensive barrier 
to keep proteins from subsequent unfolding, 
denaturation, aggregation, and retention 
of functional activity of proteins. For 
example, the osmolyte hydration shell plays 
a prevention role against inorganic ions to 
penetrate to the protein surface, destroy the 
hydration shell, and denature the protein (28, 
68). Inorganic ions may bind to osmolytes 

in a cooperative manner. As a result, this 
cooperative binding protects the protein from 
salting-out that helps in turn the structure 
stabilization. Therefore, the formation of 
the stable hydration shell prevents direct 
interactions of cations and anions to the 
protein (28, 68).

Osmolyte-protein interaction
It is assumed that the solubility and stability 

of a protein in osmolyte-containing solutions 
are functions of protein solubility in water and 
osmolytes (65). Recently, Kirkwood-Buff”s 
theory was considered for the determination 
of hydration and osmolation (osmolytes 
solvation) of proteins for all the classes of 
osmolytes. It is believed that the hydration of 
a protein side-chains caused by the presence 
of osmolytes is much more variable in the 
different osmolytes solutions. Therefore, 
osmolytes can be classified according to their 
solvation behavior on peptide units (65–67). 
Methylamines (e.g. TMAO, sarcosine, and 
betaine) are strongly excluded from the 
protein surface showing few changes in the 
hydration of the molecule (37–39). In the 
presence of amino acids such as proline 
and polyols, as osmolytes, the amount of 

Figure 4. Schematic representation of the preferential exclusion of a compatible osmolyte on protein 

under stress conditions. 

  

Figure 4. Schematic representation of the preferential exclusion of a compatible osmolyte on protein under stress conditions.
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water is also excluded from the protein 
surface and exerts their effects differently 
rather than methylamines. These osmolytes 
unfavorably interact with the protein and 
excessively hydrate around it (52–54). Urea, 
as a denaturing osmolyte, obeys the classical 
solvent exchange mechanism in which the 
preferential interaction with the peptide unit 
excludes water (65–67).

Osmolyte-induced changes in protein 
conformational equilibrium

The effect of osmolytes on the equilibrium 
protein-folding reaction (Native state 
(N)↔Unfolded state (U)) has been used for 
understanding their mechanism of action. 
This may also show the stabilizing effects on 
proteins within the range of the least and most 
effective osmolytes (69–70). Through the non-
perturbing effects on the interactions between 
charged protein subunits, osmolytes (such as 
glycine, alanine, and betaine) are compatible 
with protein surface interactions. These 
molecules are mostly zwitterions or uncharged 
so that adding a methyl side chain to osmolytes 
decreases the stabilization of a protein (35–38). 
Also, the trimethylation of some osmolytes 
(e.g. betaine) drops down stabilization even 
more. As understood by molecular dynamics, 
the dipole of zwitterionic osmolytes (e.g. 
betaine, proline, sarcosine, and TMAO) is 
restricted from electrostatic interaction with 
dipoles by hydrophobic substituents (35, 70). 
This behavior can be explained by the benign 
effect of these osmolytes on protein-protein 
interactions. Generally, to improve stability, 
specificity, orientation, and the rate of protein-
partner recognition, the interfaces of proteins 
are charge optimized (65–66). Thus, it is 
clear that nature selects those osmolytes in 
the pool of available organic molecules that 
are preferentially excluded from protein 
surfaces and at the same time cannot interact 
with surface charge. This means that they are 
non-perturbing to protein-protein interactions 
(68, 70). Electrostatic interactions between 
biomolecular surfaces are a fundamental 
component of cellular structure-function, and 
integrity. Osmolytes are expected to affect 
binding reactions as well as the conformational 
equilibria (71, 72). Osmotic stress endangers 
cells that lose cytoplasmic water and experience 

an increase in macromolecular crowding, 
which in turn decreases protein stability 
and can lead to deleterious aggregation of 
biopolymers. Therefore, molecules that screen 
repulsive electrostatic interactions or promote 
protein association, such as the non-osmolytes 
evaluated (e.g. citrate, acetate, and spearmint) 
accumulate in cell (68, 70).

Osmolytes do not delay the step that 
leads to aggregation but rather decrease the 
accumulation of aggregation competent 
partially unfolded states. However, at high 
osmolyte concentrations, compact and off-
pathway intermediates might accumulate 
causing the drawback of delaying protein 
folding. Conformational compaction induced 
by which increases the folding rate, might 
also lead to non-native interactions that have 
to be disrupted before reaching the native 
state (29, 72). Some studies discussed the 
effect of an osmolyte on its own binding 
to a protein. Aggregation could be also 
considered a solvation phenomenon that 
involves two protein states that merely differ 
in their solvation characteristics (29, 73, 74). 
In contrast, Fedotova (68) believed that an 
increase of osmolyte concentration up to the 
concentration close to saturation significantly 
leads to dehydration and H-bonding weakening 
of osmolytes but without important changes in 
the size of their hydration shells. Therefore, 
at a high concentration of osmolytes, water 
molecules are replaced by osmolyte molecules 
and hydration shell is retained sizeable. 
However, even in these crowded conditions 
the osmolytes have rather large hydration 
numbers. It is suggested that even at a large 
osmolyte concentration in the cell, osmolytes 
and proteins and are distinct by a water layer, 
and do not have direct interactions (28, 68, 
70).

Osmolytes and water interaction
There is no doubt that the addition of 

osmolytes somehow alters water structure. 
Many methods were used to define water 
structure, for example, in terms of numbers 
of hydrogen bonds and their length, or the 
average density of water molecules at various 
distances from other water molecules. Each of 
these different definitions has its own purpose 
and is valuable in various contexts (29, 70–72). 
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In the context of the thermodynamics, there 
is a direct relationship between preferential 
interaction of an osmolyte and a protein for 
its stabilization. Comparing with the native 
state, exclusion of stabilizing osmolytes from 
the protein-unfolded state is stronger. Thus, 
the extent to which bulk water functions as a 
better solvent of osmolytes comparing with 
water in the vicinity of a protein determines 
this type of influence of osmolytes (72–74). 
Molecular Dynamic Simulation (MDS) studies 
on osmolytes indicate that trimethylamine 
N-oxide (TMAO), which is methylamine, 
trivially increases the number of water-water 
hydrogen bonds. Therefore, TMAO eliminates 
the ability of water molecules to compete 
for intramolecular hydrogen bonds through 
its structure-making action. In contrast to 
TMAO, polyols (such as glycerol, xylitol, 
mannitol, and sorbitol) can intervene in water 
structure and decrease water ordering (34, 
72). Notably, there is a correlation between 
the extent of hydrogen bond loss and water 
disordering and proportion to the number of 
polyol hydroxyl groups, osmolyte internal 
hydrogen bonds count, and specific property 
of an isomer (52–54). Therefore, the results 
of different osmolytes exhibit that their effect 
on water structure is completely different. 
So, the formation of more distorted hydrogen 
bonds between water and an osmolyte 
cannot be considered as the main reason for 
the native protein structural stabilization 
and exclusiveness from the surface of a 
protein (75). It has been demonstrated that 
some osmolytes (such as trehalose) without 
excluding from the protein’s surface, binds 
to the native state of a protein and make it 
stabilized (76). Studies convincingly show that 
there is a little correlation between osmolytes’ 
stabilizing effect and their impact on water 
structuring in aqueous solutions (34, 74–76).

Effects of osmolytes on internal dynamics/ 
native state flexibility

Several studies have explained the 
compatibility paradigm of osmolytes in the 
face of protein stability, the midpoint of 
denaturation (melting temperature (Tm) or heat 
capacity (Cm)), enzyme kinetic parameters 
(the turnover number (kcat) and Michaelis–
Menten constant (Km)), the free energy (ΔG), 

and relation thereof (77). Thermodynamically, 
ΔG between the native and denatured states 
can use to determine osmolyte-induced 
protein folding. It is recently reported that 
free-energies of side chain transfer from water 
to osmolytes can be predicted by achieving 
solvent dependent cooperative protein native/
unfolding free-energy (in terms of m values) 
(78). Based on many pieces of research, 
polyols and amino acids, or their derivatives 
show no considerable impact on kcat and the 
free energy of the unfolding state of proteins. 
Methylamines amplify both kcat and ∆G0

u and 
decrease the Michaelis–Menten constant (Km). 
Other groups of osmolytes, including sugars, 
decrease both Km and k cat but increase ∆G0

u 
(77–80). However, it is important to note that 
compatibility also depends on the nature of 
the applied protein. Indeed, these results are 
in contrast to the stabilization afforded by 
excluded solutes. Osmolytes are excluded 
from the vicinity of the protein surface; 
therefore, no direct interaction is found 
between the protein and osmolytes. Based on 
this theory, osmolytes are expected to have 
no effect on Km and kcat. Despite differences 
in the interpretation of the results obtained 
from various techniques, there is no direct 
relationship between thermodynamic stability 
and activity of enzymes and proteins in the 
presence of osmolytes (78, 81). Nevertheless, 
the effect of osmolytes on protein dynamics 
cannot be discounted. It is suggested that 
various classes of osmolytes have different 
consequences on the native structure 
ensemble. Although compatible osmolytes 
are well-known to stabilize proteins, it has 
not ignored the use of protein destabilizing or 
non-compatible osmolytes to act as efficient 
osmo-protectant. Chaotropic substances such 
as urea disrupt non-covalently responsible for 
the structure of proteins and influence enzyme 
kinetic parameters such as Vmax (maximal 
velocity), Km and alter the Cm. Arginine, lysine, 
and histidine are also known as common non-
compatible osmolytes, decrease both Tm and 
the Gibbs free energy change on denaturation 
of proteins at physiological conditions (78–
81). Arginine is found to destabilize protein 
due to preferential binding to proteins. It is 
speculated that non-compatible osmolytes act 
as ligands to many intracellular proteins and 
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directly modulated the functional activity of 
proteins (35, 79–82).

Structural thermodynamics of protein 
preferential solvation

Proteins are naturally dynamic molecules 
with marginal stability and a free energy 
difference, in the folded and denatured state. 
Undoubtedly, N↔U is important from a 
biochemical studies point of view; however, 
usually the denaturation process is not a 
chemical reaction since no covalent bonds 
are made or broken (83). Thermodynamic 
pull drives a protein to its 3D folded structure 
depending on the amino acid sequence and 
the surrounding environment. Enthalpy 
and entropy as key factors contribute to 
thermodynamic pull between the folded and 
unfolded states (∆G) (83–86). Enthalpy change 
(ΔH) between the native and unfolded state 
is generally contributed by the non-covalent 

interactions in the polypeptide chain, such 
as van der Waals, electrostatic, hydrophobic 
interactions, hydrogen bonding, and also 
form covalent disulfide bonds (73). These 
interactions are found to a greater extent in 
the native state than the unfolded states. The 
disorder in the unfolded state of a protein is 
very high in comparison to the native form. 
However, conformational entropy difference 
contributes to the total energy between folded 
and unfolded states in the opposite direction 
to the enthalpy influence. Interactions of the 
polypeptide chains with each other and the 
surrounding solvent contribute the protein 
stabilization energy for the folded state (83–86). 
The force generated from hydrogen bonding 
between water molecules buries hydrophobic 
parts of a protein. The hydrophobic effect 
reduces conformational freedom of water 
around the protein hydrophobic side chains that 
cause a decrease in entropy of the system (83, 
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85). Therefore, the protein backbone collapses 
into a dense globule and results in the stability 
of a compact and low entropic form, which is 
the native state (83–86). In the unfolded state, 
the hydrophobic effect is more dominant with 
more exposed hydrophobic groups. Taken 
together, the native state of a protein has greater 
entropy due to the hydrophobic effect than the 
denatured form, while conformational entropy 
is opposite. Ultimately, the energy difference 
between folded and unfolded structures (∆G) 
is very small, indicating the borderline stability 
of the protein (Figure 5) (81–82).

Structural characteristics of the folding 
state of a protein Circular Dichroism (CD)

About five decades ago, machines first 
became available that were capable of 
measuring below 250 nm, where the protein 
backbone amides absorb light. Since then, 
CD been become more valuable as a rapid 
technique to study interactions and the 
folding of proteins. Amide polypeptide bonds 
aligned in regular arrays such as β-sheets or 
α-helices show characteristic spectra. Usually, 
proteins with high contents of α-helices and 
β-sheets have respectively characteristic 
bands at 222 or 208 nm and 210 or 220 nm 
(86–89). The addition of denaturants or 
stabilizing agents, such as osmolytes often 
changes protein’s CD spectra. Therefore, 
today CD is used to investigate the effects of 
osmolytes and denaturants on protein folding, 
or to determine ligand-binding constants. 
In general, compatible osmolytes in-vitro 
enhance the stability of many proteins without 
substantial changes in their functions. It 
has been suggested that osmo-protectants 
have a property forcing proteins to fold, and 
this general solvophobic property has been 
termed the osmophobic effect. Bolen et al. 
(85) proposed that osmolytes unfavorably 
interact with the peptide backbone and exert 
mainly their stabilizing effects on proteins. A 
hypothesis that emerges from this idea is that 
osmolytes act as structure-inducing agents to 
induce helical structure in otherwise unfolded 
polypeptides. As predicted by the osmophobic 
effect hypothesis, many osmolytes such as 
sucrose and TMAO induce helix formation 
(84, 87). Nevertheless, urea is known to 
induce helix unfolding in a peptide backbone. 

Therefore, nonprotecting and protecting 
osmolytes are identical in their ability to 
unfold or refold proteins’ α-helix, respectively 
(88–90). Many studies have summarized the 
use of CD spectroscopy to find the free energy 
of folding proteins as a function of osmolytes 
or denaturants and to study interactions of 
proteins with polynucleotides, ligands, and 
other proteins. It is possible to measure the free 
energy of folding using CD measurements, 
which is a function of osmolytes or denaturants 
when the change in CD is caused by the 
two-state transition of folded and unfolded 
states. Overall, urea and GuHCl cause a loss 
of ellipticity ([θ]) but protecting osmolytes 
(e.g. TMAO, sucrose) shows an increase in 
ellipticity (88–90).

Fluorescence spectroscopy
Fluorescence emission spectroscopy is a 

biophysical technique widely used in research 
for analyzing structural conformations and the 
aggregation characteristics of macromolecules 
such as proteins. This information is led by 
studies of a phenomenon affecting the excited 
state such as the local environment, quenching 
process and energy transfer. The fluorescence 
intensity of a molecule is believed to be 
dependent on its quantum yield obtained by 
the ratio of emitted photons to that of exciting 
ones (91). Tyrosine (Tyr) and tryptophan 
(Trp) known as intrinsic fluorophores get 
excited at wavelengths around 280 nm, 
while Trp displays a peak at 295 nm. Their 
fluorescence properties are sensitive to the 
environment which changes when a protein 
folds or unfolds. In native or folded states, 
Tyr and Trp reside inside the protein core 
where hydrophobic effect becomes prevalent, 
giving high quantum yield. While unfolded 
proteins are exposed to solvents and give rise 
to the hydrophilic environment (89). There are 
several on osmolytes (e.g. TMAO, proline, 
betaine, sarcosine, and sucrose) causing a 
quantum yield and blue shift in wavelength 
maxima, suggesting a stable state of proteins 
in their presence. Studies on mushroom 
tyrosinase from Agaricus bisporus indicated 
that trehalose as a compatible osmolyte 
pronounced reduction in maximum emission 
of intrinsic fluorescence leading to higher 
stability of the enzyme (93).
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Differential scanning calorimetry (DSC) 
and isothermal titration calorimetry (ITC)

Experiments conducted six decades ago 
indicated that the primary structure of a 
protein (sequence of amino acids) controls the 
interactions among component amino acids 
and as well as between protein and solvent. 
The results also showed that the interactions 
were governed by thermodynamics (65–67). 
There is a delicate thermodynamic balance 
in proteins; many of them are thermally 
unfolded at 70 °C and many are denatured 
by a relatively trivial increase in temperature. 
While thermophilic proteins stabilized allow 
organisms to thrive at elevated temperatures 
and pressures (94). A basic understanding of 
thermodynamic parameters that leads to the 
formation of macromolecular noncovalent 
bonds is achievable using DSC (34). Another 
calorimetric solution is isothermal titration 
calorimetry (ITC), which is mostly applied 
in biophysical studies to measure dynamic 
events such as kinetic and binding (93). 
Much effort has been devoted in recent years 
to understanding the factors responsible for 
osmolytes stabilizing effect (94). One of the 
potentially interesting aspects of osmolytes 
action is their possible effect on the heat 
capacity change (ΔC) and thermodynamic 
parameters. This aspect is directly interpreted 
in molecular terms as it mainly reflects the 
interactions with the solvent of the polar or 
apolar groups exposed upon denaturation (34, 
96). Physical chemists and biologists have no 
collaboration in the study of osmolytes. That 
is, why there is not a connection between the 
molecular mechanisms, thermodynamics, and 
biological applications of osmolytes. In the 
past decades, molecular crowding’ hypothesis 
has been developed to predict the action of 
osmolytes on protein stability as an excluded 
volume effect (94–96). This means protein in 
the native state is smaller than the unfolded 
state, so a reduction in the space around the 
protein favors stability and enhances the folding 
of the structure (95). Studies of protein folding 
confirm that excluded volume alone does not 
describe protein folding and a ‘non-specific’ 
effect was also at play (95). Additionally, it was 
proposed that protein stabilization was driven 
by enthalpy not entropy and a mechanism like 

preferential exclusion (preferential hydration) 
could be used to describe the experimental 
observations (97). Thus, hydration of a protein 
during unfolding experimentally rises its ΔC. 
This is observed when a protein, before being 
subjected to thermal unfolding in a DSC, is 
added to compatible osmolyte (e.g. TMAO, 
betaine, glycine), both the ∆Cp and Tm show 
that ∆H of the interior of a protein plays an 
important role in proteins stabilization (34, 
95–97).

7.4. Sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis (SDS-PAGE)

In 1975, O’Farrell introduced two-
dimensional PAGE for separating proteins 
under denaturing conditions that enabled the 
resolution of hundreds of proteins. In this 
method, proteins are resolved on a gel using 
isoelectric focusing (IEF) separating proteins 
in the first dimension according to their 
isoelectric point, followed by electrophoresis 
in a second dimension in the presence of 
SDS, which separates proteins according 
to their molecular mass. SDS cleaves non-
covalent linked aggregates into monomers, 
while covalent disulfide bridges remain intact 
(93). The smallest molecular weight fraction 
can be attributed to native, intramolecularly 
cross-linked proteins. Thermal treatment 
and irradiation lead to cross-linking via the 
formation of new interactions and an increase 
of the molecular weight. The behavior of 
osmolytes against aggregation varies from 
protein to protein (94). Some osmolytes are 
found to induce protein aggregation, and others 
inhibit aggregation of the same protein. For 
example, glycine and betaine aggregate RNase 
A while arginine suppresses aggregation. Also, 
same osmolytes may have distinctive effects 
on the aggregation of proteins depending upon 
the structural specificities of proteins, e.g. 
trehalose, urea, betaine, taurine, and proline. 
This conflicting role of osmolytes makes it 
essential to study the effect of each osmolyte 
on various proteins separately (97–98).

Other analytical techniques such as UV-
visible and IR attenuation are not often used 
for a complete understanding of proteins’ 
folding/unfolding and investigating protein’s 
structures and functions (97).
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Conclusion and outlook

Based on the years of studies in biochemical 
and biophysical fields, there has been a great 
development in the area of experimental and 
theoretical methodologies to the complex 
system of proteins, osmolytes, and the 
surrounding water. Using these findings, 
researchers of protein science now achieve a 
deep knowledge in molecular level of these 
systems. Besides, an attempt has been done 
to clarify how osmolytes affected on proteins. 
This fact can be resulted in designing solution 
media that are more identical to in-vivo 
conditions and make it possible to solve many 
unknowns related to proteins. Therefore, it 
is imperative to uncover the behavior of 
osmolytes towards protein stability. This 
perspective gives us several osmolytes 
concerning the stability of diverse proteins. 
Not all osmolytes’ effects could improve 
protein stability. Their effect is a function of 
concentration, presence of other osmolytes, 
surrounding solvent, condition of solution 
media (pH, temperature, and pressure), and 
the nature of a protein among many. Studies 
on the influence of different concentrations 
of osmolytes on proteins have led to the 
introduction of new mechanisms. Doubtlessly, 
the present perspective is highly important 
and fruitful to uncover different interactions 
that support the stability of proteins and the 
unexpected results with specific osmolytes 
and proteins. Notably, the stability of a specific 
protein may not be determined by studies on 
other proteins. Therefore, this perspective may 
fuel more studies on proteins that may result 
in proposing dissimilar strategies for protein 
stabilization.
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