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Abstract

ecent advances in deep learning for medical image segmentation demonstrate expert-level 

accuracy.ecent advances in deep learning for medical image segmentation demonstrate expert-

level accuracy.R However, application of these models in clinically realistic environments can 

result in poor generalization and decreased accuracy, mainly due to the domain shift across 

different hospitals, scanner vendors, imaging protocols, and patient populations etc. Common 

transfer learning and domain adaptation techniques are proposed to address this bottleneck. 

(zhangling0722@163.com). 
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However, these solutions require data (and annotations) from the target domain to retrain the 

model, and is therefore restrictive in practice for widespread model deployment. Ideally, we wish 

to have a trained (locked) model that can work uniformly well across unseen domains without 

further training. In this paper, we propose a deep stacked transformation approach for domain 

generalization. Specifically, a series of n stacked transformations are applied to each image during 

network training. The underlying assumption is that the “expected” domain shift for a specific 

medical imaging modality could be simulated by applying extensive data augmentation on a single 

source domain, and consequently, a deep model trained on the augmented “big” data (BigAug) 

could generalize well on unseen domains. We exploit four surprisingly effective, but previously 

understudied, image-based characteristics for data augmentation to overcome the domain 

generalization problem. We train and evaluate the BigAug model (with n = 9 transformations) on 

three different 3D segmentation tasks (prostate gland, left atrial, left ventricle) covering two 

medical imaging modalities (MRI and ultrasound) involving eight publicly available challenge 

datasets. The results show that when training on relatively small dataset (n=10~32 volumes, 

depending on the size of the available datasets) from a single source domain: (i) BigAug models 

degrade an average of 11% (Dice score change) from source to unseen domain, substantially better 

than conventional augmentation (degrading 39%) and CycleGAN-based domain adaptation 

method (degrading 25%), (ii) BigAug is better than “shallower” stacked transforms (i.e. those with 

fewer transforms) on unseen domains and demonstrates modest improvement to conventional 

augmentation on the source domain, (iii) after training with BigAug on one source domain, 

performance on an unseen domain is similar to training a model from scratch on that domain when 

using the same number of training samples. When training on large datasets (n=465 volumes) with 

BigAug, (iv) application to unseen domains reaches the performance of state-of-the-art fully 

supervised models that are trained and tested on their source domains. These findings establish a 

strong benchmark for the study of domain generalization in medical imaging, and can be 

generalized to the design of highly robust deep segmentation models for clinical deployment.
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I. Introduction

Successful clinical deployment of deep learning-based artificial intelligence (AI) models for 

medical imaging tasks requires a trained model to maintain a high level of accuracy when 

applied to unseen domains (i.e., different hospitals, scanner vendors, imaging protocols, 

patient populations, etc.) [1], as illustrated in Fig. 1. Ideally, highly generalizable models in 

medical imaging could be achieved when training datasets include a large quantity of high-

quality images from multiple centers with diverse imaging vendors/protocols. Unfortunately, 

in current practice, datasets are often limited by the lack of annotations and difficulty in data 

sharing among centers [2]. These limitations have led to scenarios where small training 

datasets which lack diversity fail to maintain their performance on data from “unseen” 

domains. For example, the error rate of a deep model for retinal image analysis was 5.5% on 

images from the same vendor used in training dataset, but decreased to 46.6% on images 
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from another vendor [3]. This issue of poor generalizability has become one of the major 

roadblocks for deploying deep learning models into clinical practice [4].

Given the limited quantity and quality of medical imaging data, it is infeasible to employ 

naive strategies that aggregate data from multiple source domains and impractical to train 

separate high-quality domain-specific (e.g., vendor specific) models. Two popular solutions 

have been proposed to improve the generalizability of deep learning models using data 

trained from a single source domain. The first, transfer learning, is the process of fine-tuning 

a portion of a pre-trained network (usually the last few layers [5] or shared convolutional 

filters [6]). Transfer learning is able to overcome some of the aforementioned issues by only 

requiring a small amount of annotated data in the unseen domain; however, it is limited in 

use due to the lack of pre-trained models developed on a large amount of medical imaging 

data. A second solution, domain adaptation [7], aims to generalize to a known target domain 

whose annotations are unknown during model training. Generative adversarial network 

(GAN) [8] and its variants (e.g., CycleGAN [9]) are frequently integrated into domain 

adaptation methods, by either learning domain-invariant features (seen in MRI [10], 

ultrasound [11], histopathology [12]), or translating image style between the source and 

target domains (used in X-ray [13], [14] and ultrasound [15]). Additionally, these methods 

have been used to model the imaging physics (e.g., estimating the T1–w pulse sequence) of 

the target MRI imaging domain, and by applying the model to create target data specific 

training features, an augmented deep model can be trained [16].

Despite their promising performance, the assumption of a known target domain requires 

specific image samples need to be collected (or even labeled) and a new model needs to be 

retrained before deployment. It is not feasible to obtain a pair of source and target domain 

images to implement the adversarial domain adaptation for every new application. 

Therefore, model deployment using these typs of techniques is impractical in diverse patient 

populations (e.g., multiple clinical centers) or unpredictable scenarios (e.g., emergency care 

or rural area use of ultrasound).

Domain generalization, which indicates settings that one has no access to any data from the 

unseen target domains, has the potential to overcome these issues. Particularly, in the field of 

medical imaging, we are usually faced with the difficult situation that the training dataset is 

derived from a single center and acquired on one vendor system with a specific protocol. 

Some non-deep-learning models have been shown to be robust to center-specific or vendor-

specific variability. For example, by combining mesh-based computational atlas with 

Gaussian appearance model [17] or by Bayesian transfer learning [18], 2D brain MRI 

segmentation can be generalized to unseen domains at certain accuracy. Inclusion of a deep 

learning in the classical probabilistic generative model is also proposed to improve 2D brain 

MRI segmentation on unseen domains [19]. In 2D computer vision applications with deep 

learning, researchers recently made progress in this highly challenge setting [20], [21], [22]. 

Their approaches, essentially, are various complexities of data augmentations to expand the 

data distribution coverage (with higher variations). Specifically, additional training data 

samples are generated in image domain [20], semantic space [22], or by adversarial learning 

[21], respectively.
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Data augmentation has proven to be among the most important regularization techniques 

related to deep learning’s generalization performance [23]. It helps prevent models from 

overfitting to the training data and generalize better on the testing data. However, majority of 

published work has focused on non-medical imaging data and default augmentation settings 

are either derived from the same source in training and validation or do not consider domain 

source at all [24], [23], [25], [26]. In specific applications of medical image segmentation, 

image rotation and GAN-based augmentations have been shown to improve the performance 

in 2D data for both CT and MRI [27], as they can extrapolate and interpolate the manifold of 

data, respectively. Recently, we proposed a reinforcement learning-based searching approach 

for selecting necessary data augmentations in 3D medical image segmentation tasks [28]. 

However, implementing data augmentation methods, even optimal on the source domain, 

does not guarantee the generalizability on data from unseen domains. Furthermore, while a 

large amount of medical imaging data is acquired in 3D, the majority of published work 

considers 2D data augmentation approaches due to augmentation in large 3D volumetric 

data being computationally expensive. The impact of 3D data augmentation on domain 

generalization in medical image segmentation tasks is largely unknown.

Medical images acquired by the same imaging modality, e.g., T2 MRI, across different 

vendors (GE, Philips, Siemens, etc.), scanning protocols (flip angle, repetition time, etc.), 

and patient populations are visually different in three aspects: image quality, image 

appearance, and spatial configuration (Refer to Fig. 1 (a), (b) for such examples). Some 

imaging modalities also have vendor-specific differences such as ultrasound (Fig. 1 (c)) and 

OCT, whereas CT (for the same phase) generally has more consistent image characteristics.

Motivated by the observed heterogeneity in medical imaging data, we propose a deep 

stacked transformation data augmentation approach (called BigAug) for generalizing 3D 

medical image segmentation models to unseen domains. Our main hypothesis is that the 

domain shift properties of medical imaging data can be simulated by applying a wide variety 

of data augmentation techniques on a (single) source domain, and consequently, a deep 

neural networks trained on augmented (or “big”) data that incorporates domain shift 

simulations would result in improved generalization on unseen domains. As far as we know, 

we are the first to investigate data augmentation for unseen domain generalization in medical 

imaging deep learning.

BigAug is designed to have individual images undergo nine stacked image transformations 

within each training iteration, in order to substantially augment the diversity of the data seen 

by the neural network during training. Each technique is controlled by two parameters which 

determine the probability and magnitude of the image transformation. The BigAug 

technique is integrated and demonstrated on a 3D Anisotropic Hybrid Network (AH-Net) 

[29] architecture. In the following experiments, we

• systematically analyze the effect of each augmentation technique on the model’s 

generalization ability, revealing the major differences of medical (MRI and 

ultrasound) images caused by domain shift, and showing that augmentations 

used in BigAug are able to model these changes.
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• demonstrate BigAug to be uniformly effective for both MRI and ultrasound, with 

11.6% average reduction in Dice coefficient on unseen domains, compared with 

39.3% and 25.6% reduction using a standard method (random cropping only) 

and a CycleGAN-based domain adaptation method, respectively.

• demonstrate BigAug to outperform “shallower” stacked transforms (with less 

transforms) on unseen domains, and modest improvement compared to the 

standard augmentation method on the source domain;

• show that when trained with datasets of the same size, the model with BigAug 

can achieve a similar performance on the unseen domain as compared with a 

model trained from scratch on that unseen domain.

• show that BigAug is a key component for achieving good generalization and 

state-of-the-art segmentation accuracy on several unseen (public) datasets when 

the model is trained with a larger training dataset.

II. Methods

We consider the problem of unseen domain generalization, where we are provided with data 

XS and annotations YS from a single source domain without any data and annotations from 

unseen domains. The goal is to train a model fS from the source domain and make it perform 

uniformly well across unseen domains. In our setting, both XS and YS are 3D volumes, and 

fS is a 3D segmentation network.

A. Deep Stacked Transformations

Our BigAug is a sequence of n stacked transformations τ(.), as formulated in Eq. 1, where 

each transformation is an image processing function, and each function is associated with 

two parameters: 1) the probability p to apply the function and 2) the magnitude m of the 

function. Given training data xs and associated annotation ys, augmented data xs and 

corresponding annotation ys could be generated after n transformations through Eq. 1.

(xs, ys) = τpn, mn
n (τpn − 1, mn − 1

n − 1 (…τp1, m1
1 (xs, ys))) (1)

Image processing functions are mainly used to alter the three aspects (image quality, 

appearance, and spatial configuration) of medical images. Here, transformations are applied 

in each mini-batch during training to account for the contribution of domain-specific shifts 

in medical images. Our basic hypothesis is that augmenting image sets during the training 

can result in models that are robust over potential variations in unseen domains. Potentially 

it could be more effective and efficient than performing data processing/synthesis at 

inference stage (e.g., using CycleGAN to translate target image to source-like appearance). 

Fig. 2 shows some examples of BigAug results in different tasks in both MRI and 

ultrasound. It can be observed that the domain shift is composed of the combination of 

multiple factors, which can be simulated by BigAug. Note that the transformations in 

BigAug (Eq. 1) are without mandatory order. In our work, they are in the order as described 

below.
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Image Quality—sharpness, blurriness, and noise level are often associated with different 

image qualities in medical imaging. Blurriness caused by MR/ultrasound motion artifacts 

can affect the interpretability of images and the performance of segmentation algorithms. In 

our work, Gaussian filtering is used to blur the image as to simulate unseen more blurry 

images, with a magnitude (defined by the standard deviation of a Gaussian kernel) ranging 

between [0.25, 1.5]. On the other hand, to compensate blurriness as to simulate unseen 

sharper images, the image sharpening technique known as unsharp masking is utilized. 

Unsharp masking is done by applying the filter inverse to the blur,

Isℎarpened = Iblurred + (Iblurred − Ifilteredblurred) × α (2)

where Iblurred and Ifilteredblurred are blurred images by applying Gaussian filtering on image I 
and image Iblurred, respectively, and α is the magnitude (strength of sharpening effect) 

ranging between [10, 30]. Noises are commonly observed in medical images, e.g., in Fig. 2 

(b), the first unseen image has more noises than source images. To make our model robust to 

the noise, Gaussian noises were added with magnitude (std. of the Gaussian distribution) 

ranging between [0.1, 1.0] to the image. The three image quality transformations are mainly 

based on Gaussian function/filter, as a Gaussian distribution is commonly used to represent 

real-valued variables with unknown distributions. There exist many other specific functions/

filters, such as speckle and Poisson noise, median and median filter, etc., which may 

improve the performance for special imaging modalities. The image quality-based 

transforms do not apply to annotations YS.

Image Appearance—The appearance difference of medical imaging is related to the 

statistical characteristics of image intensities, such as variations of brightness and contrast, 
and intensity perturbation, which result from different scanners and scanning protocols. 

Refer to the 1st and 3rd rows in Fig. 2 for the image appearance differences in MRI and 

ultrasound. To adjust the brightness of the image, we randomly shift the intensity level with 

magnitude ranging between [−0.1, 0.1] for the image. To control the contrast of the image, 

we apply gamma correction with magnitude (gamma value) ranging between [0.5, 1.0] or 

[1.0, 4.5], where magnitude = 1 gives the original image and smaller/larger value makes 

image lighter/darker, respectively. Gamma correction is used in a highly competitive brain 

MRI segmentation algorithm [30], and contributes to the robust segmentation performance 

across multiple hospitals [31]. To perturbing image intensities, we multiply a scale factor 

and add a shift factor for the image, both with magnitude ranging between [−0.1, 0.1]. Such 

a method is a component in the state-of-the-art brain MRI segmentation algorithm [32]. The 

image appearance transforms are not applied to annotations YS.

Spatial Configuration—Spatial variations may include rotation (e.g., caused by different 

patient orientations during scanning), scaling (e.g., variation of organ/lesion size), and 

deformation (e.g., caused by organ motion or abnormality). Refer to the 1st and 3rd rows in 

Fig. 2 (a–c) for the spatial variations in MRI and ultrasound. These operations are 

computational expensive for large 3D volumetric data 1. A GPU-based acceleration 

1For example, a typical MR scan consisting of hundreds of 512×512 slices requires about 1 minute to perform all three spatial 
transform operations, then training 100 scans to converge (usually requiring 300 epochs in our work) needs about 500 hours.
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approach [33] could be developed, but allocating the maximal capacity of GPU memory for 

model training only along with data augmentation on the fly are more desirable. In addition, 

since the whole 3D volume does not fit into the limited memory of the GPU, sub-volumes 

cropping are usually needed to fed into the model during the training. In this work, we 

develop an extremely efficient CPU-based spatial transform technique based on an open-

source implementation2, which first calculates the 3D coordinate grid of sub-volume (with 

size of w×h×d voxels) to which the transformations (combining random 3D rotation, scaling, 

deformation, and cropping) are applied and then image interpolation is performed. We make 

further accelerations by only performing the interpolation within the minimal cuboid 

containing the 3D coordinate grid so that the computational time is independent from the 

input volume size (i.e., only depending on the cropping sub-volume size), and the spatial 

transform augmentation can be performed on the fly during training. The rotation and 

scaling are both performed along all three axes, and the magnitudes are controlled by 

rotation degree ranging between [−20°, 20°] and by scaling factor ranging between [0.4, 

1.6], respectively. The deformation is achieved by sampling a grid of random offset vectors, 

which is smoothed by Gaussian smoothing filter (standard deviation ranging between [10, 

13]) and rescaled by a random factor (ranging between [0, 1000]). The spatial transforms are 

applied to both data XS and annotations YS.

Note that instead of augmenting training images in such an explicit way, transformations 

(e.g., spatial) could be incorporated into the network learning process, through approaches 

like Spatial Transformer Networks [24]. However, the learned invariants are from the source 

domain, which may not generalize well on different unseen domains. The key idea of our 

BigAug is to use data augmentation to extrapolate the manifold of the source data, with the 

regularization of prior knowledge to handle the domain shift in medical imaging.

B. 3D Deep Segmentation

We use AH-Net [29] as the backbone of our 3D segmentation network. The AH-Net takes 

the advantage of both 2D and 3D deep segmentation networks by transferring deep features 

learned from large-scale 2D images to 3D encoder-decoder network. For the training, the 

inputs are sub-volumes cropped from the whole volume and outputs are the corresponding 

sub-volumes of segmentation masks with 1-channel annotations. To increase the variation of 

training data, sub-volumes are randomly cropped and equally distributed between the 

foreground and background. We use Dice loss [34] as the loss function which naturally 

balances the positive and negative voxel distribution. In testing, sliding window with 

overlapping is applied to the whole 3D volume to generate the final 3D segmentation.

III. Experiments

A. Experimental Design

3D medical imaging mainly includes CT, MRI, PET, ultrasound, and OCT. Therefore, we 

would like to evaluate the proposed method with various data from public resources, 

2https://github.com/MIC-DKFZ/batchgenerators
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including Medical Segmentation Decathlon (MSD)1, Grand Challenges in Biomedical 

Image Analysis2, and recent MICCAI challenges.

Due to data availability and restrictions (only one public PET segmentation challenge is 

available from a single center3; an ideal public OCT dataset (containing three vendors)4 is 

available but can only be used for the challenge), and also to include sufficient image 

variabilities (CT imaging is fairly standardized to Hounsfield scale so the domain shift is 

usually less of a concern), we decided to use MRI and ultrasound to illustrate the capabilities 

of the proposed method. Prostate MRI and Heart MRI datasets from the MSD challenge are 

selected as the source domain data of our Task 1 and Task 2, respectively, because: 1) MSD 

[35] is a recent large scale annotated medical image dataset which represents the state-of-

the-art dataset with high quality; 2) moreover, more than two other Prostate MRI and Heart 

MRI public datasets with annotations can be found, serving as multiple unseen domains. In 

addition, the CETUS Heart ultrasound dataset1 is selected as our Task 3, since it contains 

image data from the three major ultrasound vendors (i.e., GE, Philips, Siemens).

We first validate our method on three tasks as follows: Task 1: whole prostate segmentation 

in MRI volumes, Task 2: left atrial segmentation in MRI volumes, and Task 3: left ventricle 

segmentation in ultrasound volumes. Each model is trained and validated on a single source 

domain dataset with the same BigAug configuration, and applied/tested to 2–3 unseen 

domain sets. Second, we investigate the variation in model performances when the models 

are trained with a single augmentation transformation or a combination of several best-

performing transformations. Third, we train deep models from scratch for whole prostate 

(WP), peripheral zone (PZ), and transition zone (TZ) segmentation in prostate MRI with 

different numbers of training data from a target domain, and compare their performances 

with the BigAug augmented model. Finally, models for whole prostate segmentation in MRI 

are trained on a self-collected big data with and without BigAug, and applied to four unseen 

domains.

B. Datasets: Source vs. Unseen Domain

Task 1—Four publicly available 3D prostate MRI datasets are used: MSD-Prostate (MSD-

P)2, PROMISE123 [36], NCI-ISBI134, and ProstateX5 [37]. MSD-P serves as the single 

source domain, and others are different unseen domains.

Task 2—Three publicly available 3D heart MRI datasets are used: MSD-Heart (MSD-H)2, 

2018 ASC6, and MM-WHS7 [38]. MSD-H serves as the single source domain, and others 

are different unseen domains.

1http://medicaldecathlon.com/index.html
2https://grand-challenge.org/challenges
3https://portal.fli-iam.irisa.fr/petseg-challenge/overview
4https://retouch.grand-challenge.org
1https://www.creatis.insa-lyon.fr/Challenge/CETUS/
2http://medicaldecathlon.com/index.html
3https://promise12.grand-challenge.org/
4http://doi.org/10.7937/K9/TCIA.2015.zF0vlOPv
5https://prostatex.grand-challenge.org/
6http://atriaseg2018.cardiacatlas.org/
7http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/
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Task 3—One publicly available 3D ultrasound dataset, CETUS1 is used, where data is 

equally acquired from three different ultrasound vendors (i.e., GE, Philips, Siemens, 10 

volumes each). We used heuristics to identify vendor association, but we acknowledge that 

our split strategy may include wrong associations8. Vendor A is used as the single source 

domain, and Vendor B and C serve as unseen domains.

All datasets have annotations provided by the data source, except for the ProstateX where no 

prostate segmentation is available and the annotations of both peripheral zone (PZ) and 

transition zone (TZ) are provided by our radiologist collaborators. One patient’s study in 

ProstateX was excluded due to prior surgical procedure to resect a large portion of the TZ 

(transurethral resection of the prostate), which deformed the appearance of the prostate. 

Table I briefly summarizes the used datasets.

In addition to the benchmark datasets, a large MRI dataset including 465 patients is used in 

the final experiment. Our collaborated radiologists collected 465 MRI data (denoted as 

MultiCenter) from multiple medical centers worldwide, representing multiple MRI vendors 

(i.e. GE, Philips, Siemens), and various center-specific MRI protocols. The whole prostate 

boundaries were manually traced in three planes on T2-weighted MRI by a radiologist with 

over 10 years of experience in interpretation of prostate MRIs. A second radiologist with < 1 

year experience in reading prostate MRI was trained under supervision of the expert and 

performed segmentation in the same fashion using the same segmentation software. The 

segmentations from the expert radiologist were considered ground truth. This ‘MultiCenter’ 

dataset serves as a large source of training data, and MSD-P, PROMISE12, NCI-ISBI13, and 

ProstateX are four unseen domains.

C. Implementation

This work is implemented using NVIDIA Transfer Learning Toolkit for Medical Imaging1. 

We first resample all the data in source domain into a fixed resolution of 1.0mm ×1.0mm × 

1.0mm. Then, image intensities I are normalized to [0, 1] by (I − min)/(max − min), where 

min=0, max=2048 for all MRIs2 except for ASC dataset, and min=0, max=255 for 

ultrasound and ASC which range from [0, 255]. In BigAug, the probability to apply each 

transformation is set to 0.5; transformations are in the order as described in Section II-A. 

Performances of models are not sensitive to different orders based on our preliminary 

experiments (prostate MRI segmentation) – the generated images might have slight 

differences if changing the order of transformations; however, considering the 

comprehensive changes after BigAug and the overall large amount of generated training 

samples for training, these differences tend to result in minor differences on the network 

performance. Image intensities are not renormalized after BigAug, as renormalization results 

in lower performance in empirical experiments. The cropped sub-volumes are of the 

following sizes: 96×96×32 (w × h × d ) for Task 1, and 96 × 96 × 96 for Task 2 and Task 3. 

ResNet50’s weights pretrained on ImageNet are used to initialize the encoder part of AH-

8We recognize different vendors by visually observing the CETUS image appearance, as the vendor information is not provided. 
Patients 1,2,8,9,13 are from vendor A, 3,4,12,14,15 vendor B, and 5,6,7,10,11 vendor C.
1https://developer.nvidia.com/transfer-learning-toolkit
2This normalization works better than normalizing to zero mean and unit std. in this experiment in a preliminary comparison.
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Net. We use ADAM to optimize the network with the initial learning rate of 0.0001. Task 1 

and Task 2 are trained on 4 GPUs on the NVIDIA DGX cluster, and Task 3 is trained in 1 

NVIDIA Titan XP GPU, all using SGD and with a mini-batch size of 4 ROIs per GPU. 

Since randomness exists in the whole training process, each model is trained for 300 epochs 

on the source domain for three times, and the model with the best performance on the 

validation set of the source domain is selected to be applied to unseen domains.

In model inference, the testing data is resampled into 1.0mm×1.0mm×1.0mm and 

normalized to [0, 1], and the stride of sliding window is (w−16)×(h−16)×(d−16). For Task 1, 

since MSD-P has 2-class annotations for PZ and TZ, we first train a 2-class model and then 

combine the output into 1-class as the whole prostate after inference; and only T2-weighted 

image is used, as most unseen data only has T2.

D. Experimental Results and Analysis

1) BigAug vs. Standard Model vs. Domain Adaptation (CycleGAN)—For each 

segmentation task, we trained models on the source data, including a baseline model with 

random cropping only, nine models each with a single augmentation/transformation, and a 

BigAug model. The train/validation splits in the source data are shown in Table I. 

Additionally, we implemented a popular domain adaptation method – CycleGAN [9], [13], 

[14], which first transfers the unseen testing image to the appearance similar to the source 

domain, and then applies the baseline model on the transferred image. Such a method has 

been shown to be no worse than traditional inference-time image transformation approach, 

such as histogram matching [14]. More specifically, we split each dataset with a ratio of 4:1 

for the training and validation of CycleGAN. 2D image slices are extracted at certain 

amount of interval from 3D volumes, in order to balance the slice numbers in source and 

target sets. All the image slices are resized to 256×256, and rescaled to [0, 255]. We train the 

CycleGAN model for 200 epochs.

We report the Dice coefficient for the segmentation on the validation sets in the source 

domains and on the testing sets in unseen domains in Table II. The Dice coefficient is a 

standard metric to report the segmentation performance. All of the public challenge datasets 

utilized in this study use Dice as one of or even the single evaluation metric (i.e., ASC, MM-

WHS). While distance-based metrics, such as Hausdorff distance, are also important, we 

only use Dice to keep simplicity for interpreting results and facilitate comparison with 

supervised methods on all public datasets. The numbers of testing images for each unseen 

dataset are listed in Table I. The baseline model degrades dramatically on unseen domains, 

from 89.1% to 49.8% on average. The major findings are:

i. On average, across all tasks on unseen domains, BigAug (Dice=80.0%) performs 

substantially better than any one of the tested augmentations, and significantly 

better than the baseline model (49.8%) and CycleGAN (63.5%). Using only 

simple random crop (baseline) does not generalize well on unseen datasets with 

Dice dropping as much as 40%, which supports the importance of data 

augmentation in general. It is surprising that the BigAug based domain 

generalization is even better than CycelGAN based domain adaptation which has 

seen the target domain.
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ii. The major imaging differences caused by domain shift of MRI are image quality 

and appearance, in which sharpening is the most important one, followed by 

contrast, brightness, and intensity perturbation. Refer to Fig. 1 for some 

examples. Fig. 1(a) demonstrate that contrast and sharpening are the major 

differences with unseen A (PROMISE12) and unseen B (NCI-ISBI13), 

respectively, compared to the source image (MSD-P). Note that the spatial 

transforms seem to be less important for prostate MRI, but they contribute to 

transform heart MRIs where the shape, size, and orientation of heart can be very 

different (refer to Fig. 1 (b) and Fig. 2 (b)). This is likely due to the prostate is 

relatively static while the heart is a moving/beating object.

iii. The imaging differences caused by domain shift of different Ultrasound vendors 

are more comprehensive, which could be related to the spatial transform, image 

appearance and quality, in which 3D scaling is the most important one, followed 

by brightness, blurring, and contrast. Refer to Fig. 1(c) for some examples: 

compared to the source image (CETUS-A), scaling and contrast are the major 

differences with unseen A (CETUS-B) and unseen B (CETUS-C), respectively. 

Spatial transformations substantially contribute to heart ultrasound segmentation 

task, partially because the heart is a deformable object and different angles 

between the ultrasound probe and heart can result in images with different 

rotation degrees. In addition, the size of training dataset CETUS-A is small, not 

covering enough geometric variations.

iv. For a specific unseen domain (e.g., ASC in Task 2), all settings with a single 

augmentation perform poorly (Dice lower than 12.7%) including CycleGAN 

(18.0%) which cannot synthesize spatial difference, but BigAug could 

significantly boost the segmentation performance (Dice = 65.5%). This is due to 

the very different characteristics in the objects in the unseen domain with a mix 

of changes in the morphology and image quality & appearance. Thus, 

comprehensive transforms are required to represent such large changes.

v. Overall, for both MRI and ultrasound, the top 4 augmentations are contrast (Dice 

= 63.6%), brightness (63.6%), sharpening (62.9%), and 3D scaling (61.3%), each 

of which is comparable with CycleGAN (63.5%).

vi. BigAug performance is ~10% worse compared to those with fully supervised 

methods, as they have advantages of training and testing on the same domain and 

more training data. This gap can be reduced by using a larger source dataset (as 

shown in later Section III-D4), in which case the BigAug performance is 

comparable to the supervised methods.

Examples of unseen domain segmentation produced by baseline model, CycleGAN-based 

domain adaptation, and our BigAug domain generalization are shown in Fig. 3. The baseline 

and BigAug models are trained only on individual source domains, while CycleGAN 

requires images from target/unseen domain to train an additional generative model.

To further demonstrate the general effectiveness of BigAug, a paired cross-domain 

evaluation is performed among vendors, i.e., picking one for training and one for testing 
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from CETUS-A, -B, and -C at each time. Results in Table III show that BigAug can 

generalize substantially better than baseline model regardless of training on which 

ultrasound vendors. However, the absolute accuracies on unseen vendors can be different 

depending on different source-unseen pairs.

2) BigAug vs. Shallower Stacked Transformations—Individual augmentation 

transforms may perform slightly better on some isolated cases (e.g., brightness augmentation 

for MM-WHS in Task 2 in Table II), but on average only BigAug consistently shows good 

generalization.

To investigate the optimal augmentation configuration for domain generalization, i.e., how 

many and which transformations should be used, we combine the four best performing 

transformations as “Top4” (i.e., sharpness, brightness, contrast, and scaling). “Top4” are 

competitive but “shallower” stacked transformations, which cover at least one aspect across 

image quality, appearance and spatial transform. The results are shown in Table II. Overall, 

the shallower competitor (top4) achieves a Dice of 74.9%, which is substantially higher than 

the baseline model (49.8%), but lower than BigAug (80.0%) which uses all transformations. 

This also applies to each individual task – except for one case, i.e., brightness augmentation 

for MM-WHS in Task 2. This could be explained by a more diverse data distribution, which 

helps better prevent overfitting while improving generalization. For Task 1 and Task 3, 

BigAug is better than the baseline and top4 for both source and unseen testing sets, which 

indicates the effect of BigAug on small sized data (e.g., 10 training data for CETUS).

Besides the significant improvement (30.2%) on unseen domains, BigAug could also 

slightly improve (2.5%) the performance on source domains, from 89.1% to 91.6% on 

average (note sometimes can be slightly worse, e.g., Task 2). This is an important benefit of 

BigAug, i.e., it retains performance on the source domain. Therefore, using all the presented 

transformations is recommended in general.

3) BigAug vs. Training From Scratch on Target Domain—Another important 

finding is that models trained with BigAug on the source domain have comparable, or 

slightly lower performance than a model that is trained from scratch on target domain using 

the same amount of data.

In this section, we trained models to segment WP, TZ, and PZ in prostate MRI images. A 

BigAug model is trained on all 32 (train/validation: 25/7) volumes in MSD-P dataset and 

then applied to 66 volumes in ProstateX dataset. On the other hand, another set of BigAug 

models are trained from scratch on different training set sizes of 4, 8, 12, 16, 20, 24, 28, and 

32 (train:validation: 3:1) volumes in ProstateX dataset and tested on the same 66 volumes in 

ProstateX dataset as well. Results are shown in Fig. 4. When trained on 32 volumes on 

source domain (MSD-P), BigAug achieves a Dice of 87.4%, 83.3%, and 67.9% on unseen 

domain (ProstateX). Such a performance is close to the model that is trained from scratch on 

32 volumes (88.3%, 83.8%, and 70.0%) from the target domain (ProstateX).

4) BigAug with Larger Data—Thus far, we have demonstrated that BigAug is able to 

significantly improve the 3D medical image segmentation performance on unseen domains 
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when the training data size is relatively small, i.e., < 32 volumes. In this section, we 

experimentally demonstrate that BigAug is still able to boost the performances on the 

unseen domain when a larger dataset could be used for model training, and it helps achieve 

equivalent performances of state-of-the-art fully supervised methods.

We train models with and without BigAug on the ‘MultiCenter’ dataset (randomly split into 

4:1 for training and validation) and apply the trained models to all other four prostate MRI 

datasets, which serve as four different unseen domains. During the training, there were a few 

differences compared to the implementation described in section III-C. Instead of 

normalizing intensities to [0, 1], we used zero mean and unit std. for the normalization due 

to wide variation in intensities of data from different vendors; we crop larger ROIs (128 × 

128 × 32) for both training and inference; we train the model to segment the whole prostate 

directly – the average performance on unseen domains is actually the same as training a PZ 

& TZ segmentation model.

Results are shown in Table IV. The major findings are:

i. BigAug is still able to promote the segmentation accuracy (preventing overfitting 

the source domain) when a larger training dataset (covering large variations) is 

available. It achieves 91.8% and 89.6% Dice scores on source and unseen 

domains, respectively, which are 1.9% and 2.1% higher than the baseline model, 

respectively. It is particularly helpful on challenging cases, e.g., PROMISE12 

dataset, where some MRI images are with very low image quality, brightness, 

and contrast.

ii. A larger sized dataset is a key to the success of deep segmentation models. 

Compared to training on 32 volumes, training on 465 volumes increases 5.6% 

Dice score, from 84.0% to 89.6% on unseen domains on average.

iii. BigAug trained with larger MultiCenter dataset produces competitive 

performance on unseen domains, only 1.3% lower than state-of-the-art methods 

on average. But this does not mean that our BigAug model is slightly inferior to 

state-of-the-art methods. On the contrary, note that the Dice scores of state-of-

the-art methods are actually evaluated on their “source” domains or obtained by 

human experts, while these domains are unseen to our model trained using 

BigAug. Also note that since the ground truth of these public data have different 

annotation style (i.e., definition of boundary location between zones) compared 

with our training data, it is not surprising to observe a modest decrease in 

performance. Among the four different unseen domains, BigAug obtains a Dice 

score that is no worse than the two of the compared state-of-the-art methods.

iv. Last, and perhaps most importantly, our BigAug model achieves a similar 

performance compared with intra-reader variability between two licensed 

radiologists (relative novice versus expert) on the unseen domain. Specifically, it 

achieves a Dice score of 91.9% on the unseen ProstateX dataset. In contrast, the 

Dice score between a novice versus expert radiologist annotations on ProstateX 

is also 91.9%.
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IV. Conclusion

In this paper, we propose a deep stacked data augmentation (BigAug) training approach for 

generalizing deep-learning based medical image segmentation models to unseen domains. 

We exploit and extensively evaluate four important characteristics of BigAug on three 

different 3D segmentation tasks (prostate, left atrial, left ventricle) involving two medical 

imaging modalities (MRI and ultrasound). The experiments utilize eight public challenge 

datasets and establish a strong benchmark for the study of domain generalization in medical 

imaging. The empirical evaluation, performance analysis, and conclusive insights can be 

generalized to the design of really practical, highly robust, and competitive deep 

segmentation models for other medical imaging tasks.
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Fig. 1. 
Medical image segmentation in the source and unseen domains (i.e., a specific medical 

imaging modality across different vendors, imaging protocols, and patient populations, etc.) 

for (a) whole prostate MRI, (b) left atrial MRI, and (c) left ventricle ultrasound. The 

illustrated images are processed with intensity normalization.
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Fig. 2. 
Examples of deep stacked transformations (BigAug) results on (a) whole prostate MRI, (b) 

left atrial MRI, and (c) left ventricle ultrasound. 1st row: ROIs randomly cropped in volumes 

from source domains; 2nd row: corresponding cropped ROIs after BigAug; 3rd row: ROIs 

randomly cropped in volumes from unseen domains. The image pairs of 2nd–3rd rows have 

better visual similarity than 1st–3rd rows.
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Fig. 3. 
Generalization to unseen domains for three different 3D medical image segmentation tasks. 

Baseline standard deep models have the low performances on unseen MRI and ultrasound 

images from different clinical centers, scanner vendors, etc. CycleGAN based domain 

adaptation method help improve the segmentation performances. BigAug training generates 

robust models which significantly improve the segmentation performances on unseen 

domains. Segmentation masks (red) overlayed on unseen or CycleGAN synthesized images 

are illustrated.
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Fig. 4. 
Comparison between BigAug model trained on source domain and training from scratch on 

target domain for segmentation of whole prostate (WP), transition zone (TZ), and peripheral 

zone (PZ) in prostate MRI. Source domain: MSD-P; Target domain: ProstateX.
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TABLE III

RESULTS OF PAIRED CROSS-DOMAIN EVALUATION AMONG VENDORS ON THE CETUS HEART ULTRASOUND DATASET. RESULTS 

ARE PRESENTED AS DICE SCORES OF BASELINE / BIGAUG.

Test╲Train CETUS-A CETUS-B CETUS-C

CETUS-A 85.8 / 92.1 51.7 / 84.9 39.2 / 81.3

CETUS-B 70.5 / 79.4 92.0/ 91.5 39.2 / 82.0

CETUS-C 55.8 / 73.6 54.8 / 74.7 92.8 / 93.2
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