Skip to main content
. Author manuscript; available in PMC: 2020 Jul 31.
Published in final edited form as: Crit Rev Toxicol. 2018 Feb 23;48(5):359–374. doi: 10.1080/10408444.2018.1429386

Table 4.

Defined Approach (DA) performance in predicting LLNA hazard (sensitizer/non-sensitizer).

Predicting LLNA Hazard
Defined Approach: BASF 2/3
(DKH)
Kao STS Kao ITS ICCVAM SVM
(LLNA)
Shiseido ANN
(D_hC)
Shiseido ANN
(D_hC_KS)
P&G BN ITS-3
N 127 126 120 120 126 126 119
Accuracy (%)* 70.1 77.8 79.2 88.3 76.2 81.0 83.2
Sensitivity (%) 72.3 92.6 85.6 93.3 90.4 97.9 83.2
Specificity (%) 63.6 34.4 60.0 73.3 34.4 31.3 83.3
BA (%) 68.0 63.5 72.8 83.3 62.4 64.6 83.3
*

Performance is shown against the maximum subset (N) out of 128 substances with all necessary DA features. Abbreviations: LLNA: local lymph node assay, BA: Balanced Accuracy, STS: sequential testing strategy, ITS: integrated testing strategy, SVM: support vector machine, ANN: artificial neural network, BN: Bayesian network, DKH and D_hC_KS: DPRA/hCLAT/KeratinoSens™, D_hC: DPRA/hCLAT