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Abstract

Critical or sensitive periods in the life of an organism during which certain experiences or 

conditions may exert disproportionate influence (either for harm or benefit) on long-term 

developmental outcomes have been the subject of investigation for over a century. This chapter 

reviews research in the context of the development of social preferences and sensory systems, with 

a summary of the criteria for defining such a period and the evidence necessary to establish its 

existence. The notion of nutritional programming, central to the Barker/Developmental Origins 

hypotheses of health and disease, represents a variant of the critical/sensitive period concept. It is 

implicit in these hypotheses that the fetal period is a time during which metabolic and 

physiological systems are malleable and thus susceptible to either insult or enhancement by 

nutrient intake. Evidence for critical/sensitive periods or nutritional programming requires a 

systematic manipulation of the age at which nutritional conditions or supplements are 

implemented. While common in research using animal models, the approach is difficult to 

establish in epidemiological studies and virtually nonexistent in human clinical trials. Future work 

seeking to establish definitive evidence for critical/sensitive periods or programming may be 

advanced by harmonized outcome measures in experimental trials across which the timing, 

duration, and dose of nutrients is varied.
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Critical and Sensitive Periods in Development

The idea that early nutritional status is critical to lifelong health is pervasive in the scientific 

literature [1]. Although much of the writing on this topic has been focused on the potential 

early-life determinants of adult obesity [2–5], much has also been written about the 

importance of nutrition in the first 1000 days following conception [6] and the potential 
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impact of nutrition and nutritional status on both biological [7] and behavioral [8] systems 

later in life.

In many of these papers, authors make direct reference to critical periods as a developmental 

basis for these proposals [9, 10]. While the critical period phenomenon has been a topic of 

extensive discussion in the biobehavioral and developmental sciences, there have been few 

detailed expositions of the concept and its implications within the nutrition literature. One 

objective of this chapter is to provide background on the history of and criteria for critical 

periods for nutrition researchers. A second objective is to integrate the notion of fetal/

neonatal programming - a common concept within the nutrition field - within the framework 

of critical periods and developmental science. Finally, the chapter seeks to delineate the 

implications of critical/sensitive periods for the design of future preclinical research and 

clinical trials.

History of the Concept of Critical Periods

As noted above, the concept of critical periods has a long history in the field of 

developmental psychology [11–13]. The basic phenomenon was first identified from 

research in embryology [14], where the effect of exposures to toxic substances on 

developing embryos was observed to vary systematically with the timing of the exposure. 

Toxic exposures occurring in the embryonic period produced pervasive and severe effects 

across multiple biological systems; however, the same exposure or dose later in development 

resulted in somewhat milder effects, which were constrained more narrowly to particular or 

specific systems. Indeed, the same exposure applied even later in development might have 

no demonstrable effects or result in effects evident only upon systemic challenges or 

stressors. This common sequelae led investigators to the logical conclusion that the 

biological systems were broadly malleable very early in life, and that as the organism 

matured and those systems became settled in form and function, they became less vulnerable 

to environmental insult.

Imprinting and Critical Periods.—The extension of this work to the behavioral sciences 

came with Lorenz’ exposition of imprinting in birds [15]. In this phenomenon, precocial bird 

species developed strong social preferences for objects to which they were exposed 

immediately after hatching; young birds would then attach emotionally and maintain 

proximity to such objects until fledging. The evolutionary adaptiveness of this phenomenon 

is obvious, as hatchlings are typically exposed immediately after hatching to their own 

mother (or at least, a conspecific from the same species), and a neural mechanism that 

promoted hatchlings’ emotional and physical affiliation with their mother very likely 

increased the probability of their survival. Indeed, this framework was adapted for use in the 

early evolutionary-based accounts for explaining human infants’ attachment to their own 

mothers [16].

Of critical importance to the current discussion, however, two points shaped future thinking 

about the nature of critical periods in development. First, the nature of the objects to which 

hatchlings could be imprinted was extremely general; during this period young birds could 

be manipulated to form social preferences for nearly any object, whether it was Lorenz 
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himself [17] or a moving tennis ball [18]. The other points were derived from Lorenz’ claim 

that the development of these strong social affiliations could only be formed during a very 

brief period of time during the hatchlings’ development: once imprinting had occurred, it not 

be undone [19], and that non-imprinted organisms were not able to imprint beyond the 

hatchling period [20]. Thus, the effects of exposure during this early period of life were 

claimed to be both irreversible and unrecoverable, thus bringing about the label of the period 

as critical. However, much of the literature that emerged immediately after these initial 

claims demonstrated substantial reversibility and flexibility [21] in imprinting. Thus while 

the early period of life might represent heightened malleability or plasticity, the period might 

not be as rigidly bound or essential as it had been originally designated making the term 

sensitive period might more appropriate. The phenomenon was later generalized to the 

notion of food imprinting [22–25] in several species, where the food preferences typically 

exhibited by certain animals could be substantially altered by early exposure to alternate 

foods.

Critical Periods in the Development of the Visual System.—The 1960s and 1970s 

produced the most comprehensive descriptions of critical periods in mammalian biology and 

behavior in Hubel and Wiesel’s program of research on the development of the visual 

system in the cat [26–28]. Briefly, these investigators used techniques for measuring the 

activity of single neurons in the cat visual cortex, mapped the responsiveness of these 

neurons to different visual stimuli, and then sought to map the maturation of this neuronal 

activity from birth to adulthood. While some neurons in the visual cortex were dedicated 

from birth to processing specific types of input (e.g., accepting from one or both eyes, or 

responding to horizontal vs. vertical bars), they also determined through careful 

experimentation that the fate of many cells in the cortex was determined by both the quantity 

and quality of postnatal input [29, 30], and that the period during which that input was 

received was limited to the first 4–7 weeks of life. Similar to imprinting, recovery of normal 

vision after deprivation of input during that period of life was initially reported to be limited 

[31], suggesting that this was another clear manifestation of a true “critical” period. These 

findings from the cat were largely confirmed in primates [32, 33], and observational studies 

of humans deprived of various visual input were found to be generally consistent with the 

principles outlined in this work [34–36].

Since the emergence of this seminal line of research in biobehavioral development, 

numerous refinements have been explored in isolating the specific mechanisms underlying 

the early plasticity of the system and the processes which bring that plasticity to an end [37]. 

For example, it is clear that this is a sensitive period, rather than a critical period, as some 

level of recovery of visual function can be attained after the end of the period [38, 39]. In 

addition, eye movements play a major role in the neural processing that contributes to the 

dedication of neurons to visual inputs [30], and t both the onset and the eventual end of the 

sensitive period is triggered by the initiation of visual input [40]. In keeping with the general 

principles of early plasticity, early disruptions in the normal course of sensory exposure have 

been found to alter the order in which sensory systems develop and in which sensory 

preferences or priorities are expressed in postnatal life [41, 42].
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Summary.—The phenomenon of critical/sensitive periods in biobehavioral development 

has been explored in domains beyond that of imprinting and sensory systems; for example, 

there is also a substantial literature on a critical/sensitive period for language development 

[43–45]. Several generalities can be drawn from this brief and admittedly perfunctory 

review, however. First, the principles regarding early vulnerabilities of organisms to frank 

environmental insult or compromise appear to be reliable and robust; early damage will 

yield severe and widespread effects while later damage will tend to be less severe and more 

specifically localized. Second, in the behavioral realm, wherever a “critical” period has 

initially been described, including claims of absolute irreversibility or inability to recover 

from deprivation, subsequent work has generally shown that some degree of recovery is 

possible under special conditions or with targeted remedial actions. Organisms may be both 

relatively more vulnerable to environmental deprivation and relatively better able to benefit 
from environmental enhancement early in life, but it is likely better to characterize these 

early periods of malleability as sensitive periods rather than truly critical periods [13]. 

Figure 1 schematically represents the difference between “critical” and “sensitive” periods 

and their interaction with both positive (beneficial) and negative (harmful) events. That said, 

given that evidence suggests that early interventions will be relatively (rather than 

absolutely) more effective than later interventions, there is clear economic value in 

understanding these developmental principles.

Scott and colleagues [46] have offered one characterization of these phenomena in 

development, noting that critical/sensitive periods merely represent periods of rapid 

development within systems, such that enhancement or deprivation during these periods of 

emergent and rapid maturation can respectively bring either substantial benefit or wreak 

substantial havoc on the systems involved. As has been summarized previously [11], if there 

are qualitatively distinct stages of malleability in development, then one must define them in 

terms of the specific system involved, as well as by the onset and terminus of the period and 

the specific inputs that are presumed to enhance or disrupt normal development.

At this point, we turn to discuss programming, a phenomenon similar to the critical/sensitive 

period as referenced in the nutrition literature.

Early Programming and Critical Periods

The notion of nutritional programming [47] is a popular one among the nutrition science 

community; a search on the phrase in Google Scholar™ in late 2019 generated over 190,000 

entries. This notion emerged from a comprehensive epidemiological study of the Dutch 

hunger winter [48] in which food shortages precipitated by weather, bad crops, war and a 

Nazi embargo of food transport to parts of The Netherlands limited pregnant women’s 

nutritional intake to only 400–800 calories per day. This restricted intake resulted in a 

remarkable increase in the incidence of coronary heart disease in the offspring whose 

mothers’ were exposed to restricted food intake early in gestation, markers of reduced renal 

function among those exposed in mid-gestation, and lifetime growth restriction among those 

exposed late in gestation (Schutz LC, the Dutch Hunger Winter and the developmental 

origins of health and disease. PNAS 2010; 107:16757–16758). The Barker hypothesis was 

derived from observations in the UK that disproportionate fetal growth in middle to late 
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gestation programmed later coronary heart disease in the offspring. The hypothesis 

regarding the fetal origins of adult disease expanded to the Developmental Origins 
hypothesis [49–52], the notion that, by influencing epigenetic processes, metabolic set-

points, or early inflammatory status, prenatal nutrition in some way “programs” the fetus or 

maladaptively prepares the fetus for an environment that will induce adiposity/obesity [53, 

54] or other metabolic-based diseases [55]. It is a clear implication of the Barker/

Developmental Origins hypothesis that the early part of life is in some way special in its 

malleability or capacity for enacting long-term changes in the organism. Such studies would 

presume to reveal a critical-period phenomenon in that it is the early stages of the 

organism’s development that serves as a causal vehicle for the efficacy of the exposure. 

Furthermore, the notion that the organism is “programmed” comes from the fact that the 

outcomes associated with fetal conditions reach far into the future and represent health and 

neurodevelopmental status in adulthood.

A key point about the original Barker study was that, for an observational study, it controlled 

fairly well for the timing of the deprivation. For example, subsequent secondary analyses 

noted that the effects varied as a function of the gestational state of the fetus [56]; 

malnutrition in early pregnancy was associated with a higher risk of coronary heart disease 

and accelerated cognitive aging [57], mid-gestation exposure had an increased prevalence of 

bronchial disease, and late/mid-gestation exposure was related to poorer glucose 

metabolism. It is not a far reach to extrapolate this to the idea that early nutrition extending 

into the postnatal period may also bring about programming effects; indeed, this case has 

been made for a number of different functions [58–60], and this argument takes on 

immediate weight given what is known about the postnatal development of the central 

nervous system and the potential effects of certain nutrients on brain and behavioral function 

[61–63].

Age and Timing in Nutritional Studies

Like much of the critical/sensitive-period research, studies lending support to early 

nutritional programming have largely been conducted with animal models [64]. While it has 

been argued that the animal data coupled with human clinical trials showing the effects of 

early nutritional manipulations are compelling [65], in the absence of systematic 

experimental data in which the age of exposure is manipulated, claims about early 

nutritional programming remain largely speculative.

In order to definitively establish a true critical/sensitive period or programming effects, one 

must manipulate the timing of the early intervention [11]. That is, it must be shown that 

vulnerability to risk or ability to benefit from enhanced conditions at a particular time during 

development is either absolutely or relatively higher at one time during development over 

others. Of course, human studies to experimentally vary the timing of adverse interventions 

to demonstrate the critical/sensitive period-programming effects are unethical, but it is 

possible and ethical to focus on timing in clinical trials that purport to provide interventions 

that benefit to their participants; indeed, from an economic point of view, one could argue 

that such a focus is necessary. Furthermore, going back to the original point in the critical 
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period phenomenon about the dose of exposure interacting with timing [11], one might 

further argue that designs featuring dose × timing interactions would be ideal.

Even a quick perusal of the literature, however, shows that the extant nutrition clinical trials 

almost entirely exclude the timing or age at which manipulations are implemented. For the 

most part, nutritional interventions are implemented as early as possible in infancy and if 

they show efficacy that persists, as has been established in some cases [66], it is tempting to 

propose that an early programming effect has taken hold. However, in the absence of 

exposure to a nutrient for an equivalent duration at a later age, it is by no means clear that 

this programming effect is endemic to early prenatal or postnatal life. Those who design 

such trials likely understand the potential importance of timing well, but the conduct of such 

trials obviously requires tremendous resources to simply establish efficacy; establishing that 

a nutrient’s efficacy is greater at one age than at another may seem like a luxury. However, 

until there is evidence that benefit varies with the age at which a nutrient is provided, one 

can not have evidence for a critical/sensitive period, or for an age-specific programming 

effect.

In the absence of clinical trials that comprehensively address the issue of age and timing in 

their designs, one way to examine the relative efficacy across ages is to compare completed 

trials that have varied the age of their interventions, but where outcome measures were more 

or less harmonized. This has been done to some degree for examination of differences in 

outcome as a function of dose [67], although dose still remains an understudied factor in 

much of the literature on early nutrition. One potential example approximating this approach 

is represented by two trials conducted in our laboratory over the last two decades. The 

DIAMOND trial [66, 68] involved postnatal supplementation with four doses of 

docosahexaenoic acid (DHA) but with a constant level of arachidonic acid (ARA) compared 

to a placebo. The KUDOS trial [69–71] involved prenatal supplementation with one dose of 

DHA, again compared to a placebo. While the trials are too different in their manipulation 

and in their fundamental sample demographics to compare directly here, they do share a fair 

number of harmonized outcome variables in the domain of postnatal cognitive development 

to invite a putative inference that postnatal supplementation might produce more pervasive 

long-term positive effects on infant child neurocognition [72] than prenatal supplementation. 

On the other hand, the prenatal supplementation produced clear metabolic effects [73] that 

were not evident from the postnatal trial. While these outcomes and comparisons cannot be 

considered definitive, they do invite a vision of what might be possible with broadly 

harmonized outcomes for clinical trials in the future in the field of nutrition.

Summary and Conclusions

Critical and sensitive developmental periods have been key concepts in developmental 

science for over a century; they have a long history for biobehavioral development and have 

particularly special importance with respect to the plasticity of the brain. In such 

developmental periods certain experiences, exposures, or conditions are thought to exert 

disproportionate influence over the long-term development of the organism due to the fact 

that the organism is in a particularly malleable state. Examples of putative critical/sensitive 

periods in biobehavioral development include the establishment of social and food 
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preferences (imprinting), shaping the structure and function of sensory systems, and possibly 

in the area of language and language acquisition. There is still considerable debate over the 

nature of critical/sensitive periods, but one hypothesis is that such phases are simply the 

epiphenomenon of systems that are undergoing rapid maturation or change.

While critical and sensitive period concepts have been used often with respect to studies of 

early nutrition, they also underlie the concept of nutritional programming, as the implication 

of programming (particularly within the context of the Fetal/Developmental Origins 

hypothesis) is that the prenatal period is presumably a time when various metabolic systems 

are malleable and can be influenced by conditions of maternal physiology and 

environmental exposures, including nutrient intake.

Critical to the establishment of any critical/sensitive period (and by extension, to any claim 

for prenatal programming) is the demonstration that an intervention shows improved 

efficacy when implemented at one age, relative to other ages. For example, in order to 

establish the existence of a critical period for omega-3 effects on neurodevelopment, one 

would have to show that supplementation at, say birth to 6 months of age, would have far 

more influence on outcome measures than supplementation from 6 to 12 months; obviously, 

from a design standpoint, this would necessitate feeding two age groups for an equivalent 

duration. While parametric manipulation of the age of nutritional interventions is relatively 

commonplace in animal models, the results of preclinical studies do not necessarily translate 

to human trials [74] and so any conclusion about the critical/sensitive periods in nutrition or 

nutrition programming must be viewed as speculative. It may be that if enough trials have 

harmonized outcomes, meta-analyses that include age of feeding, duration of feeding, and 

dose would advance the field as close as possible to answering this question.
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Key Messages

• The concept of critical period is often invoked with reference to phenomena 

in the field of nutrition. The history and evolution of the critical period 

concept in development is briefly reviewed.

• A critical period (or its less restrictive form, a sensitive period) carries with it 

a number of methodological criteria that are typically not met in the 

literatures on early nutrition

• The phenomenon of programming is placed within this developmental 

concept.

• Implications of these developmental phenomena for the design of preclinical 

research and clinical trials that seek to demonstrate true programming or 

critical/sensitive period effects are described
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Figure 1. 
Schematic representation of the difference between a critical period (panels a, b) and a 

sensitive period (panels c, d). Time/age moves from left to right. Note that, in a critical 

period, the period of malleability or plasticity is sharply defined as a box, with a clear 
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beginning and end, and no gradient over time. In a sensitive period, the degree of plasticity is 

relatively higher but plasticity never ends. As a result, the end states from a critical period 

are irreversible or irretrievable, while in a sensitive period some degree of future 

enhancement or future recovery from harm is possible in the future.
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