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Abstract

Dissecting the pleiotropic roles of tumor micro-environment (TME) on cancer progression has 

been brought to the foreground of research on cancer pathology. Extracellular vesicles such as 

exosomes, transport proteins, lipids, and nucleic acids, to mediate intercellular communication 

between TME components and have emerged as candidates for anti-cancer therapy. We previously 

reported that cancer-associated fibroblast (CAF) derived exosomes (CDEs) contain metabolites in 

their cargo that are utilized by cancer cells for central carbon metabolism and promote cancer 

growth. However, the metabolic fluxes involved in donor cells towards packaging of metabolites in 

extracellular vesicles and exosomes-mediated metabolite flux upregulation in recipient cells are 

still not known. Here, we have developed a novel empirical and computational technique, 

exosome-mediated metabolic flux analysis (Exo-MFA) to quantify flow of cargo from source cells 

to recipient cells via vesicular transport. Our algorithm, which based on 13C metabolic flux 

analysis, successfully predicts packaging fluxes to metabolite cargo in CAFs, dynamic changes in 

rate of exosome internalization by cancer cells and flux of cargo release over time. We find that 

cancer cells internalize exosomes rapidly leading to depletion of extracellular exosomes within 24 

hours. However, metabolite cargo significantly alters intracellular metabolism over the course of 

24 hours by regulating glycolysis pathway fluxes via lactate supply. Furthermore, it can supply up 

to 35% of the TCA cycle fluxes by providing TCA intermediates and glutamine. Our algorithm 

will help gain insight into (i) metabolic interactions in multicellular systems (ii) biogenesis of 

extracellular vesicles and their differential packaging of cargo under changing environments, and 

(iii) regulation of cancer cell metabolism by its microenvironment.
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1. INTRODUCTION

The tumor microenvironment (TME) is a complex milieu of several types of cells, blood 

vessels and extracellular matrix proteins in which cancerous cells thrive. Fibroblasts, 

immune cells, endothelial cells and pericytes and are collectively known as stroma and 

constitute the TME. These cells become reactive and develop characteristics that support and 

even enhance tumor progression and metastasis due to proximity and constant interaction 

with cancer cells (Chu et al., 2007; Valencia et al., 2014). Tumor development is thus being 

looked at in a new light, one in which TME plays a pleiotropic role in tumor progression and 

metastasis. Cancer-associated fibroblasts (CAFs), the most abundant constituent of TME, 

have been implicated in promoting tumor growth, conferring resistance to immune response 

by secreting soluble factors (Feig et al., 2013; Rupp et al., 2015), aiding tumor cells in 

acquiring resistance to therapeutic agents (Chen et al., 2015). Stromal cells also provide 

carbon sources like free fatty acids and amino acids to meet bioenergetic demands of cancer 

cells (Yang et al., 2016; Salimian et al., 2014; Sanità et al., 2014). Given the multiple modes 

of support provided by stromal cells, the TME needs to be investigated with the same vigor 

and focus as afforded to cancer cells. More importantly, knowledge of seemingly 

indispensable intercellular interactions within the TME has presented new avenues for 

therapy in cancers that form solid tumors (Ghesquière et al., 2014; Hansen et al., 2016). 

However, to aid such therapeutic discoveries, we should learn to assess complex 

multicellular systems with a level of granularity that is currently overlooked.

Researchers have revealed that microvesicles secreted by cells are an important apparatus of 

transporting vital biological cargo between stromal and tumor cells that can support tumor 

progression (D’Souza-Schorey and Clancy, 2012; Penfornis et al., 2016). Exosomes are 

microvesicles that are 30-100 nm in diameter and transport proteins, nucleic acids including 

miRNA intercellularly. Exosomes secreted by cancer cells condition the extracellular 

environment and stromal cells in close proximity to aid proliferation and metastasis (Costa-

Silva et al., 2015). Recently, our group showed that CAFs secrete exosomes to regulate the 
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metabolism of recipient cancer cells. This metabolic regulation takes place in two ways; (i) 

miRNA-mediated inhibition of mitochondrial oxidative metabolism and (ii) nutritional 

supplementation via de novo “off-the-shelf” metabolites (Zhao et al., 2016). 13C tracer 

experiments provided compelling evidence that exosomes transport free metabolites that are 

directly incorporated into cancer cells’ central carbon metabolite pools. Quantitatively 

assessing the contribution of metabolite cargo to cancer cell metabolism will be the first step 

for dissecting the pleiotropic effects of CAF-secreted exosomes (CDEs) on tumor growth. 

This will help achieve a mechanistic understanding of exosome-mediated rescue of nutrient-

deprived cancer cells to identify suitable therapeutic targets.

In the current study, we have designed a novel paradigm, exosome-mediated metabolic flux 

analysis (Exo-MFA), to predict fluxes involved in metabolite trafficking from CAFs to 

cancer cells. Exo-MFA integrates a novel experimental protocol using 13C-labeled substrates 

with an enhanced metabolic flux analysis to provide insight into metabolic crosstalk within 

the TME. Stable-isotope tracing techniques have emerged as a powerful empirical tool to 

provide insight into nutrient utilization and metabolic pathway activities by measuring 

isotopic enrichment of intracellular metabolites (Yang et al., 2014; Bennett et al., 2008; 

Hosios et al., 2016; Jiang et al., 2016; Lewis et al., 2014; Zamboni et al., 2009; Caneba et 

al., 2012; Bellance et al., 2012). A range of 13C, 15N and 2H labeled substrates have been 

employed to study altered metabolism affecting cancer pathology. However, due to the 

presence of branches and cycles in metabolic networks, manually analyzing isotope labeling 

data can only provide relative changes in limited number of metabolic pathways. 

Fortunately, computational flux analysis techniques such as 13-C metabolic flux analysis, 

(13C-MFA) have been developed that can estimate intracellular fluxes based on the reaction 

stoichiometry of metabolic networks, carbon atom transitions and extracellular fluxes within 

complex mammalian systems (Bordbar et al., 2014; Huang et al., 2014; Quek et al., 2009; 

Weitzel et al., 2013; Young, 2014). Exo-MFA utilizes the fundamentals of the 13C-MFA 

algorithm and tracer experiments, traditionally used for single cell systems that only 

exchange metabolites with their media, to provide an enhanced platform to analyze 

metabolite fluxes in multicellular systems.

Herein, we study the effects of metabolite cargo of CAF-derived exosomes (CDEs) on 

pancreatic ductal adenocarcinoma (PDAC) cells under nutrient-deprived conditions. We 

successfully employ Exo-MFA to estimate the packaging fluxes in CAFs that constitute the 

metabolite cargo of exosomes. Furthermore, Exo-MFA predicts the rate of exosome 

internalization by PDAC cells within physically reasonable ranges. Finally, Exo-MFA 

estimates contribution of exosomal cargo to intracellular metabolites in PDAC cells, proving 

that metabolite cargo significantly alters their intracellular fluxes and supports TCA cycle 

fluxes. We observe that the effect of metabolite cargo diminishes within 24 hours due to 

depletion of exosomes in the media, but our results strongly indicate that the metabolites 

supplied by CDEs can support PDAC metabolism during the initial stages of nutrient 

deprivation.
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2. METHODS

2.1 Cell culture

MiaPaCa-2 cells were cultured in DMEM (high glucose) medium with 10% FBS, 1% 

penicillin-streptomycin. CAF19 cells were cultured in DMEM (high glucose) medium with 

15% FBS, 1% penicillin-streptomycin. For labeled exosomes collection, CAF19 cells were 

cultured in RPMI medium with uniformly 13C labeled glucose, glutamine, phenylalanine 

(Cambridge isotope laboratories). RPMI deprived media were constructed from medium of 

cat no. R9010 (USBiologicals). For all experiments with nutrient-deprivation condition, 

MiaPaCa-2, were cultured in RPMI reconstructed from R9010 medium. MiaPaCa-2 cells in 

deprivation conditions were cultured in 6-well plates with seeding density of 200,000 cells 

per well.

2.2 Protein assays

Protein amount for CAF19, MiaPaCa-2 and exosomes are measured per the Bicinchoninic 

Acid (BCA) Protein Assay protocol. In brief, protein reagent (200 μl) was added to a 96-

well assay plate and mix with samples or standards (10 μl), and then incubated at 37°C for 

30 min. The absorbance was read on a spectrophotometer at 562 nm.

2.3 Metabolic assays

Glucose assay: Glucose assays were performed according to the instructions of the Wako 

Glucose kit. In brief, a 250 μl of reconstituted Wako glucose reagent was added to a 96-well 

assay plate followed by adding 2 μl sample in each well. The plate was incubated at 37°C for 

5 min with vortex. The change in absorbance, which indicates the amount of glucose 

present, was measured at 505 nm and 600 nm by using a spectrophotometer (SpectraMax 

M5; Molecular Devices).

Lactate assay: Lactate secretion was measured using the Trinity Lactate Kit. Media 

samples were diluted 1:10 in PBS, and lactate reagent was reconstructed and added to the 

diluted samples in a 96-well assay plate. The plate was incubated for 1 h at 37°C, protecting 

from light. Afterwards the change in absorbance was read on a spectrophotometer at 540 

nm.

Amino acid measurements: Ultra-high-performance liquid chromatography was used to 

assess amino acid uptake and secretion using Waters Acquity UPLC device. Briefly, media 

samples were deproteinized, and MassTrak Reagent was added to the samples, along with 

Borate Buffer/NaOH. Samples were then heated and analyzed using the Waters ACQUITY 

UPLC system. Eluents were prepared according to Waters’ protocol. MassTrak AAA eluent 

A concentrate was diluted 1:10 in milliQwater, and MassTrak AAA eluent B was inputted in 

undiluted form. Flow rate of eluents was 0.4 ml/min, and UV detection was at 260 nm.

Viability assay: Cells viability was measured by Cell counting kit-8. Cells were cultured 

on 96-well plate in the indicated conditions. Viability assay solution was added to the plate 

for incubation of 2 h and absorbance was measured at 450 nm.
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2.4 Isotope labeling experiments and GC-MS analysis

Intra-exosomal metabolites extraction: The exosomes pellet was extracted by adding 

75 μl of cold methanol; 150μl of cold water with norvaline was added, which dissolved 

exosomes completely. 20μl of the liquid was reserved for protein assay. Then 150 μl of cold 

chloroform was added into the tubes and vortexed at 4°C for 30 min, centrifuged at 7,300 

rpm for 10 min at 4°C. The aqueous layer was collected for intra-exosomal metabolite 

analysis.

Intracellular metabolites extraction: Cancer cells were seeded in 6-well plates 

overnight, and replaced with medium containing 13C labeled CDEs. After 3, 6, 12, 24 hours, 

medium were aspirated, and cells were washed with cold PBS once and quenched with 400 

μl of cold methanol. Same volume of water containing 1 μg of norvaline was added, and 

cells were scraped into Eppendorf tubes. 800 μl of chloroform was added into the tubes, and 

vortexed at 4°C for 30 min, centrifuged at 7,300 rpm for 10 min at 4°C. The aqueous layer 

was collected for metabolite analysis. Parallel wells were used for normalization.

Derivatization: Aqueous samples were dried and dissolved in 30 μl of 2% methoxyamine 

hydrochloride in pyridine (Pierce), and sonicated for 10 mins. Afterwards, samples were 

kept in 37°C for 2 hours. Samples were kept for another 1 hour at 55°C after addition of 45 

μl of MBTSTFA+1% TBDMCS (Pierce). Chloroform samples were dried and dissolved in 

75 μl Methyl-8 Reagent (Pierce), and incubate at 60 °C for 1 hour. Samples were transferred 

into vials containing 150 μl of insert (Thermo Fish Scientific).

GC-MS measurements: GC-MS analysis was performed using an Agilent 6890 GC 

equipped with a 30-m Rtx-5 capillary column for metabolites samples or 30 m DB-35 MS 

capillary column for fatty acids samples, connected to an Agilent 5975B MS. For 

metabolites samples, the following heating cycle was used for the GC oven: 100°C for three 

minutes, followed by a temperature increase of 5°C/min to 300°C for a total run time of 48 

min. For fatty acids samples, the following heating cycle was used for the GC oven: 100°C 

for 5 minutes increased to 200 °C at 15° min−1, then to 250 °C at 5° min−1 and finally to 

300 °C at 15° min−1. Data was acquired in scan mode. The abundance of relative 

metabolites was calculated from the integrated signal of all potentially labeled ions for each 

metabolite fragment.

2.5 Exosome isolation and exosome-supplemented media construction

Exosomes were isolated as per the protocol described in our previous study (Zhao et al., 

2016). Briefly, 25ml of spent medium from parallel flasks of CAF cultures were collected in 

50ml centrifuge tubes. The collected medium was centrifuged in 2000 × g for 30 min to 

remove debris. The supernatant containing the cell-free culture media was transferred to a 

new tube without disturbing the pellet. Required volume of cell-free culture media was then 

transferred to a new tube and 0.5 volumes of the Total Exosomes Isolation (for cell culture 

media) reagent was added. The culture media/reagent mixture was homogenized well by 

vortexing. Incubate samples at 2°C to 8°C overnight. These samples were centrifuged at 

10,000 × g for 1 hr at 2°C to 8°C. following which the supernatant was aspirated and 

discarded. Exosomes were contained in the pellet at the bottom of the tube. To estimate the 
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exosomal protein content of exosomal yield from CAF19 cells, at least four tubes containing 

exosome pellets were prepared and analyzed for exosomes protein measurement using the 

BCA kit. The averaged exosome protein amount extracted per mL of spent medium was 

calculated from the data of the four tubes. The dried exosome pellets were suspended in 

appropriate volume of medium without glutamine and phenylalanine along with exosome-

depleted FBS to construct medium with exosome concentration of 200 μg/ml.

2.6 Exosome-mediated metabolic flux analysis (Exo-MFA)

Exo-MFA is designed for quantifying intracellular fluxes and transport of metabolites via 

exosomes from ‘source cells’ (herein, CAFs from PDAC patients) to ‘recipient cells’ 

(pancreatic cancer cell-lines). The paradigm described herein focuses and integrates the two 

important processes that occur in the system; (i) packaging of metabolite cargo into 

exosomes and secretion of exosomes within source cells and (ii) internalization of exosomes 

and release of cargo within recipient cells. To the best of our knowledge, Exo-MFA is the 

only algorithm that quantifies ‘cargo packaging fluxes’ in source cells along with ‘cargo 

release fluxes’ in the recipient cells that describe metabolite trafficking between two types of 

cells. Source CAFs are cultured in media containing stable 13C isotope-labeled tracer 

substrates in order to obtain exosomes with 13C-labeled cargo. The 13C-labeled exosomes 

are then introduced into nutrient-deprived cancer cell media which release their labeled 

cargo into cancer cells. Exo-MFA describes a 13C-MFA problem that includes packaging 

fluxes describing the generation of exosomes and utilizes data from (i) tracer experiments 

within CAFs and exosomes, (ii) extracellular fluxes of CAFs and (iii) growth rate 

measurements. Solving the 13C-MFA problem provides us with both intracellular fluxes of 

CAFs and packaging fluxes of CAF metabolites into exosomes.

In the case of cancer cells, we focus on the initial stages of exosome internalization under 

nutrient deprivation in cancer cells where the assumption of metabolic or isotopic steady-

state does not hold. Exo-MFA considers the transient nature and utilizes data from time-

series isotope-labeled exosome experiments, measurements of extracellular fluxes and 

composition of exosome metabolite cargo to estimate intracellular fluxes in cancer cells that 

internalize exosomes from the media. Exo-MFA for recipient cancer cells is set up as a time-

series 13C-MFA problem and solved for measurements sampled at 3, 6, 12 and 24 hours.

2.6.1 Modeling packaging fluxes in source cells—In order to obtain sufficient 

information for estimating metabolite packaging fluxes into exosome cargo, the rate of 

exosome secretion along with extracellular fluxes are empirically determined. If each CAF is 

assumed to produce exosomes at a constant rate of r (mg exosome/mg protein/h), the total 

exosomes secreted at the end of a tracer experiment is described by the ODE in Equation 

(2), with the knowledge that exponential growth rate of CAFs is μ (hr−1) and seeding density 

of CAFs is X0 (cells):

d Exo
dt = rX = rX0eμt (2)
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Integrating Equation (2) will give the expression for total number of exosomes produced as 

given by Equation (3)

Total exosomes [mg exosome] = ∫ d(Exo) = ∫ rX0eμtdt = rX0eμt

μ + C (3)

Assuming that there are no exosomes in fresh media at the beginning of the experiment, the 

constant of integration can be evaluated at t=0 and therefore, r can be estimated from 

Equation (4) once total amount of exosomes produced at the end of the experiment is 

measured.

Total exosomes[mg exosome] = rX0(eμt − 1)
μ (3b)

Furthermore, composition for ith metabolite, Pi (μmol/mg exosome), within the exosome 

cargo can be determined by measuring abundance of metabolites in isolated exosomes:

Total itℎ exosomal metabolite[μmol] = (Pi
μmol

mg exosome )
. (Total exosome[mg exosome])

(4)

However, measurements for all metabolites that are packaged in cargo are not practical to 

obtain empirically. For this purpose, Exo-MFA has the ability to predict the packaging fluxes 

for set of metabolites not measured via targeted GC-MS analysis. This is achieved by 

introducing Pi as unknown parameter for metabolites that are postulated to contribute to the 

cargo but not measured a priori. Furthermore, even for metabolites that are measured, 

contribution of the same metabolite from cytosolic and mitochondrial compartments to 

exosome cargo cannot be inferred from Equation (4). Exo-MFA also includes isotopomer 

balances in exosomes in addition to intracellular isotopomer balances described in the 13C-

MFA formulation in Appendix A.

Mass balance for intracellular metabolites that are packaged into exosomes within CAFs is 

described under the steady state assumption by Equations (5–6), where Ci is the intracellular 

concentration of metabolite i; Si is the stoichiometric vector corresponding to metabolite i 

and the parameter introduced to represent exosome packaging flux is viexo. For metabolites 

that exist in multiple compartments, mass balances in Equations (6a–b) are defined for each 

subcompartment the same way as they are for metabolites in single compartments 

(Equations (5a)), however the balance for exosome packaging flux is modified as in 

Equation (6c) to include contribution from both compartments.

dCi
dt = Si v − viexo = 0, i ∈ M1C (5a)

viexo − rPi = 0, i ∈ M1C (5b)
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dCi, cyt
dt = Si, cyt v − vi, cytexo , i ∈ M2C (6a)

dCi, mit
dt = Si, mit v − vi, mitexo , i ∈ M2C (6b)

vi, cytexo + vi, mitexo − rPi = 0, i ∈ M2C (6c)

Further, the isotopomer balance for metabolites which are measured in CAFs and exosomes 

via GC-MS is described in a generalized form in Equation (7). The isotopomer distribution 

of metabolite i in the exosome is a combination of isotopomer distributions derived from 

multiple compartments that is proportional to the packaging fluxes originating from each 

compartment.

vi, cytexo .
y0
⋮

y2n − 1 i, cyt

+ vi, mitexo .
y0
⋮

y2n − 1 i, mit

− rPi .
y0
⋮

y2n − 1 i, exo

= 0 (7)

Here, M1C and M2C are set of metabolites that exist in single compartment or two 

compartments, respectively; vi, cytexo , vi, mitexo  refer to packaging fluxes of ith metabolite from the 

single compartment, cytosolic compartment or mitochondrial compartment, respectively; 

y i, cyt, y i, mit, y i, exo are isotopomer distribution vectors (IDVs) of ith metabolite existing in 

the cytosol, mitochondria or exosome. Equations (5–7) are included in the Exo-MFA 

algorithm along with Equations (A3, A6–8) to describe the 13C-MFA mass balance and 

isotopomer balance constraints. The objective function for Exo-MFA in Equation (8) is 

modified from the 13C-MFA objective function (Equation A8a) to consider the residuals of 

additional measurements in source cells and exosomes, i.e., exosome secretion rate, 

metabolite levels in exosomes and mass isotopologue distributions (MID) in exosomes.

φsource = ( y meas, source − M . y source)
Tℰsource

−1 ( y meas, CAF − M . y source)

+ ( y meas, exo − M . y exo)Tℰexo
−1 ( y meas, exo − M . y exo) + (rmeas − r)2

σr
+ (Pmeas − P )TℰP

−1(Pmeas − P )

(8)

Here, ℰ’s are the covariance matrices of MID measurements in source cells and exosomes, 

measured metabolite compositions from Equation (4); rmeas, σr are exosome production rate 

estimated from Equation (3) and its standard deviation, respectively; M is the transformation 

matrix to convert isotopomer distribution vectors (IDV) to MID; y meas, source and y source
are intracellular MIDs that are measured and estimated by the model, respectively; 

y meas, exo and y exo are intra-exosomal MIDs that are measured and estimated by the model, 
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respectively; Pmeas and P are intra-exosomal metabolite levels that are meas measured and 

estimated by the model, respectively.

2.6.2 Modeling cargo release in recipient cells—Exo-MFA modifies the metabolic 

model for cancer cells to include exosome internalization and release of metabolite cargo 

that contributes to the endogenous metabolite pools. The rate of internalization is considered 

to be u(t) (mg exosome/mg protein/h). Internalization is assumed to be a time-dependent due 

to dependence on extracellular concentration of exosomes and the transient nature of the 

nutrient-deprived cancer cells. The content of exosomes, however, is assumed to be 

consistent throughout the process of packaging, transport and internalization. Release of 

cargo into cancer cells is slightly more complex than packaging, since (i) not all metabolites 

are utilized in the same way, and (ii) intracellular metabolic fluxes are not at steady-state. 

For this purpose, the cargo is categorized according to their utilization, (i) central carbon 

metabolites that are incorporated directly into central carbon metabolism (CCM), (ii) 

essential amino acids that are incorporated only into biomass. The mass balance for these 

metabolites are formulated in Equations (9–12). Cargo release fluxes are proportional to rate 

of internalization u(t) and the intra-exosomal composition Pi, therefore the flux term 

becomes u(t)Pi (μmol/mg protein/h). Equations (9,11) describe the mass balance of 

metabolite i derived from exosome cargo and Si is the stoichiometric vector corresponding 

to that metabolite describing the inracellular reactions it is involved in. Equations (10,12) 

represent the isotopomer balance equations as described by the Isotopomer Mapping Matrix 

algorithm (Schmidt et al., 1997), but with a small modification that includes the term 

u(t)Piyi,exo that represents the influx of isotopomers of metabolites derived from exosome 

cargo.

dCi
dt = u(t)Pi + Si v = 0, i ∈ MCCM (9)

d
dt Ci

y0
⋮

y2n − 1 i, cell

= u(t)Pi

y0
⋮

y2n − 1 i, exo

+ Σj = 1
N

Sij . vj ΠSij > 0
k, Skj < 0

IMMk i .
y0
⋮

y2n − 1 k, cell

+ Σj = 1, Sij < 0

N
Sij .

y0
⋮

y2n − 1 i, cell

= 0,

i ∈ MCCM

(10)

dCi
dt = u(t)Pi − Si

bioρ = 0, i ∈ MEAA (11)
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d
dt Ci

y0
⋮

y2n − 1 i, cell

= u(t)Pi

y0
⋮

y2n − 1 i, exo

− Si
bioρ

y0
⋮

y2n − 1 i, cell

= 0, i ∈ MEAA (12)

Where MCCM, MEAA are sets representing central carbon metabolites and essential amino 

acids, respectively within exosome cargo. Ci is the total intracellular concentration of 

metabolite i. Biomass production flux is represented by ρ (1/h) and stoichiometric 

contribution to biomass is given by Sbio (nmol/cell). ρ is estimated from growth rate 

measurement on cancer cells treated with exosomes. Furthermore, Equations (9–12) describe 

rate of change in intracellular pool sizes which are assumed to be rapid, this allows us to 

make a pseudo-steady state assumption for every time point at which recipient cells are 

sampled for analysis. Therefore, Equations (9–12) are equated to zero, following which they 

are included in the Exo-MFA algorithm along with the 13C-MFA intracellular model 

described in Appendix A. The objective function of Exo-MFA in recipient cells represented 

by Equation (13), is modified to include residuals of metabolite levels in exosomes and MID 

in exosomes.

φrecip = ( y meas, CAF − M . y CAF)TℰCAF
−1 ( y meas, recip − M . y recip)

+ ( y meas, exo − M . y exo)Tℰexo
−1 ( y meas, exo − M . y exo)

+ (Pmeas − P )TℰP
−1(Pmeas − P )

(13)

y meas, recip and y recip are intracellular MIDs of recipient cells that are measured and 

estimated by the model, respectively; y meas, exo, y exo, Pmeas and P are the same as described 

in Section 2.6.1.

2.7 Estimating extracellular fluxes

Extracellular fluxes for CAFs are estimated assuming exponential growth and a constant 

uptake rate over the course of the experiment. Equations (14) are integrated and fit to 

measurements of concentration of respective metabolites in fresh and spent media to 

estimate the flux vi.

V well
dCi

ext

dt = − viXV well (14a)

X = X0eμt (14b)

Estimating extracellular fluxes for cancer cells cultured that have not reached metabolic 

steady-state is performed by fitting concentration curves of extracellular metabolites to 

measurements. The uptake and secretion rate changes were assumed to be either constant 

over time or linear with respect to time for model simplicity. Mass balance equations for 
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extracellular metabolites were derived analytically and integrated for a set of unknown 

parameters as in Equations (14–16)

vi(t) = a + bt (15)

∫ dCi
ext

dt dt = − ∫ vi(t)X0eμtdt (16)

Here, X0 is the cell seeding density in each well. For each extracellular metabolite vi(t) was 

assumed to be either constant on linear function of time, and the parameters were estimated 

by fitting Equation (16) to extracellular concentrations measured at 0, 3, 6, 12 and 24 hours 

of culture. The vi(t) function that provided the best fit was chosen. The parameter estimates 

and confidence intervals were achieved using the Microsoft Excel® Solver.

2.8 Statistical tests for fluxes estimated by Exo-MFA

Globally optimal solutions from the Exo-MFA algorithm were obtained by solving the 

problem using at least 100 randomly generated initial guesses. Converged solutions were 

selected based on their performance of the χ2 goodness-of-fit test. The degree of freedom 

was estimated as the difference between number of redundant measurements (extracellular 

fluxes, intracellular MIDs, exosome MIDs, intra-exosomal metabolite levels and growth 

rate) and free parameters in the flux model. To estimate 95% confidence intervals, the 

Monte-Carlo simulation approach was utilized; measurements were perturbed by normally 

distributed errors to generate at least 100 samples and the Exo-MFA optimization problem 

for each condition was solved for the newly sampled measurements. For each estimated flux, 

the distribution obtained was used to estimate mean, standard deviation and subsequently the 

bounds for 95% confidence interval.

3. RESULTS AND DISCUSSION

3.1 CDEs rescue proliferation of nutrient-deprived PDAC cells and enhance tumor 
progression by providing free metabolites as cargo

PDAC cells have high energetic demands for proliferation and metastasis and they are 

dependent on amino acids, especially glutamine for survival and growth. However, within 

the microenvironment, vasculature is deformed, leaky and unstructured. It cannot reach 

every part of a rapidly proliferating solid tumor, thereby creating nutrient-deficient pockets 

within the tumor. Despite facing such antagonistic environments cancer cells can grow, 

largely due to the support received from surrounding stromal cells in the TME (Figure 1A). 

Recently, our group discovered that the TME that supplies fuel to meet the high metabolic 

demands of cancer cells under nutrient-stressed conditions via exosomes. We showed that 

that exosomes secreted by CAFs, are internalized by cancer cells, significantly inhibiting 

mitochondrial oxidative phosphorylation in cancer cells, leading to increased glycolysis and 

glutamine-dependent reductive carboxylation. More importantly, CDEs could rescue the 

viability of prostate and pancreatic cancer cells that were cultured in media deprived of 

glutamine, lysine, leucine, phenylalanine and pyruvate (Zhao et al., 2016). To demonstrate 
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the metabolic effect of CDEs in pancreatic cancer, we cultured PDAC cell line, MiaPaCa-2, 

in media that is deprived of glutamine and phenylalanine to compare their proliferation in 

the presence or absence of CDEs. Notably, CDEs can completely rescue viability when 

cancer cells are deprived of glutamine and phenylalanine within 24 hours (Figure 1B). As 

we had hypothesized earlier, the rescue by CDEs is, in part, due to free metabolites in the 

exosome cargo that are instantaneously available for replenishing intracellular pools in 

tumor cells. Although, the transport of metabolite cargo had been shown conclusively by us, 

the results were only indicative of the phenomenon. To provide a quantified insight on 

metabolite flow via exosome cargo that originates in CAFs and ends in cancer cell 

metabolism, we have designed an experimental and computational workflow known as 

Exosome-mediated metabolic flux analysis (Exo-MFA) (Figure 1C). This approach is based 

on 13-carbon stable-isotope tracing experiments and metabolic flux analysis (13C-MFA) 

fundamentals that have been enhanced to include all three elements of CDE-induced 

metabolic rescue: (i) intracellular CAF metabolism and metabolite packaging, (ii) intra-

exosomal content and (ii) intracellular PDAC metabolism and cargo release.

CAFs are cultured with 13-carbon tracers to enrich metabolic intermediates with 13C 

isotopomers within both CAFs and exosome cargo. Exosomes that are secreted into the 

media are isolated and collected for analysis or introduced to nutrient-deprived cancer cells. 

Cancer cells are cultured in nutrient-deprived media in the presence of “labeled” exosomes 

to observe labeling of cancer metabolites from the cargo released by CDEs. Measurement of 
13C isotopologue distribution within intracellular metabolites in CAF and PDAC cells, and 

intra-exosomal cargo is performed using a GC-MS (Methods, Section 2.4). Metabolite 

concentrations in spent media of CAF and PDAC cells are measured using UPLC to estimate 

extracellular fluxes (Methods, Sections 2.3, 2.7). The Exo-MFA algorithm utilizes these 

experimentally obtained measurements in a novel way to perform flux analysis across source 
cells (CAFs), packaging and release of exosomal cargo, and the recipient cells (cancer cells) 

to provide a seamless picture of metabolite flow between different types of cells via 

extracellular vesicles, i.e. exosomes (Figure 1C). The model for source cells includes 

packaging fluxes that constitute exosomal cargo, wherein mass balance and isotopomer 

balance are defined for intracellular compartments of CAFs and exosomes simultaneously. 

Extracellular measurements from spent CAF media, intracellular measurements of 

isotopologue distributions in CAFs and intra-exosomal measurements of metabolite 

concentration and isotopologue distributions are used to fit the parameters in the source cell 
model. Exo-MFA can also predict intra-exosomal abundances of metabolites for which 

measurements have not been made, but are introduced to the model as free parameters. For 

the recipient cells, Exo-MFA utilizes information from the best solution for source cells to 

define the labeled tracer input to recipient cells. This input is combined with extracellular 

measurements of spent media and intracellular isotopologue distributions made at multiple 

time points is used to estimate intracellular fluxes and cargo release fluxes within recipient 
cells. Therefore, Exo-MFA provides an end-to-end quantification of flow of metabolites 

from CAFs to cancer cells via exosomes.
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3.2 Stable-isotope labeling experiments reveals packaging of intracellular CAF 
metabolites into exosome cargo

In order to dissect the role of metabolite trafficking via exosomes from the other TME 

interactions, we devised a novel in vitro experimental procedure that was described in (Zhao 

et al., 2016). Our objective in this study was to trace the flow of extracellular nutrients in the 

form of stable-isotope labeled tracers, [U-13C6]-Glucose and [U-13C5]-Glutamine within 

central carbon intermediates of CAFs and their subsequent incorporation into CDEs (Figures 

1C, 2A). CAFs were cultured in medium with the labeled tracers for 72 hours to allow for 

sufficient production of exosomes and enrichment of glycolytic and TCA cycle 

intermediates along with de novo synthesized amino acids. CDEs enriched with labeled 

metabolites were isolated from the spent media of CAFs and their cargo was analyzed using 

GC-MS and UPLC systems (Figure 2A). On comparing the mass isotopologue distributions 

(MIDs) of CAFs and CDEs, we observed that several metabolites such as serine, glycine, 

lactate, and α-ketoglutarate have similar MIDs, strongly corroborating our hypothesis that 

cargo in exosomes is derived from intracellular CAFs metabolites. Most MIDs in CAFs and 

exosomes are comparable, however some show noticeable differences, especially in their 

unlabeled (M0) isotopologue mass fractions (Figure 2B). TCA intermediates and amino 

acids like citrate, α-ketoglutarate, succinate, malate, serine and glycine have higher mass 

fractions of M0 isotopologues in CDEs as compared to CAFs. This may be due to the 

dilution from unlabeled exosomes secreted by CAFs before intracellular isotopic enrichment 

reached saturated levels at steady-state. Glutamine is an exception to these observations, as 

exosomes are more enriched in M5 glutamine than CAFs. This could be due to completely 

labeled glutamine in the media and a high turnover of glutamine. Exosomes secreted before 

isotopic steady-state contained more labeled glutamine which was later diluted slightly by 

unlabeled glutamine synthesized from glutamate. Furthermore, several of these metabolites 

exist in multiple compartments in CAFs, which are homogenized during extraction and 

hence we measure a “weighted-average” of their isotopologue distributions proportional to 

their respective compartmental pool sizes. However, their incorporation into exosomes may 

not necessarily follow the same weighted-average further contributing to the difference 

between CAFs and CDEs. Exo-MFA can take both these assumptions into consideration to 

allow for fitting intracellular and intraexosomal MIDs. Thus, it provides the selective 

contribution of separate metabolite compartments to exosomal cargo. These results 

collectively show that exosome cargo is not limited to a subset of metabolites, but consists of 

metabolites from major metabolic pathways existing in separated intracellular 

compartments.

3.3 Intracellular and exosome packaging fluxes can be predicted using Exo-MFA

CAFs were cultured in complete media with [U-13C6]-glucose and [U-13C5]-glutamine for 

72 hours before isolating the secreted exosomes. The tracers used were selected to enrich a 

broad spectrum of metabolites within the central carbon metabolic network considered to be 

the focal point in this study for understanding packaging of exosome cargo. The metabolic 

model consisted of the major reactions from glycolysis, TCA cycle, anaplerosis, amino acid 

synthesis and biomass synthesis pathways (Appendix B). The Exo-MFA model was 

designed to include packaging fluxes which describe the flux of metabolites into exosome 

cargo, as previously discussed in Section 3.2. Metabolites in the model exist in two 

Achreja et al. Page 13

Metab Eng. Author manuscript; available in PMC 2020 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intracellular compartments i.e. the cytosol and mitochondria, and a third compartment for 

exosomes. Metabolite shuttles between cytosol and mitochondria were considered reversible 

but packaging fluxes were irreversible. Since the relative contribution of metabolites from 

either of the intracellular compartments to exosomes was not known a priori, independent 

packaging fluxes for cargo metabolites originating from each compartment are included in 

the model. The reason for including cytosolic and mitochondrial contribution to exosome 

packaging is due to the presence of mitochondrial metabolites discovered in the exosomes. 

Although, intact mitochondria are in the micrometer size range and would be too large for 

packaging into exosomes, our investigation showed mitochondrial fragments could be 

absorbed by exosomes. We found via quantitative PCR that mitochondrial DNA exists 

within isolated exosomes suggesting that mitochondrial fragments could be present in them 

(data not shown). Furthermore, as seen in Figure 2B, there is a noticeable dilution of 

metabolites found in CDEs due to the initial period of culturing where CAFs do not reach 

isotopic steady-state. Since the exosomes are collected at the end of the experiment, i.e. an 

aggregate of exosomes secreted over the course of the experiment, they show lower 

enrichments as compared to CAFs sampled at 72 hours. Exo-MFA takes into consideration 

the dilution effects and assumes an additional dilution flux. The caveat here is that dilution 

of labeled TCA metabolites occurs gradually as the metabolite pools reach isotopic steady 

state, but for simplicity of the model and lack of intermediate sampling, we assume that 

majority of the dilution is by unlabeled isotopomers. In the case of glutamine, “dilution” of 

exosomal glutamine is by uniformly labeled glutamine since that is present in the media 

which is then slowly diluted by unlabeled glutamine produced endogenously (Figure 2B). 

Furthermore, the metabolism of CAFs was expected to fulfill its biosynthetic demands along 

with exosome cargo for which the biomass flux was fit to the measured growth rate of 

CAFs. The model for the source cells, CAFs, presented herein contains 41 reactions (17 

reversible) and a biosynthetic flux along with packaging fluxes for 8 cargo metabolites.

The optimization problem for Exo-MFA satisfies mass balance and isotopomer balances 

across all compartments while minimizing deviation between measurements and estimates 

of 9 intracellular and 7 intraexosomal mass isotopologue distributions, the biomass flux, 7 

intra-exosomal metabolite abundances and exosome secretion rate, with a degree of freedom 

of 21. Intra-exosomal level for lactate was kept as an unknown parameter to be predicted. 

The intracellular fluxes were obtained by minimizing variance-weighted sum of square of 

residuals (SSR) converged to a feasible solution (Table 1, Figure 3A) with SSR = 30.2, 

which was within the acceptable range of SSR for χ2(23) = [10.3 35.5], at 95% confidence 

level. Packaging fluxes for amino acids glutamine, glycine, alanine, glutamate and TCA 

intermediates citrate, α-ketoglutarate and malate were fit according to the measured 

exosome secretion rate and their intraexosomal levels (Figure 3B). The model could predict 

the intraexosomal level of lactate within the same order of magnitude but it was 

overestimated (Figure 3C). The packaging flux for citrate was assumed to be derived from 

both the cytosolic and mitochondrial compartments and Exo-MFA estimated that cytosolic 

pool contributed to 32% and the mitochondrial pool contributed 68%.

The Exo-MFA algorithm is flexible in terms of measurements provided for intra-exosomal 

levels, i.e., not all metabolites need to be measured to be able to successfully predict 

packaging fluxes. However, to minimize the number of free parameters in the model and 
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maintain narrow confidence intervals, it is necessary for sufficient measurements to be 

provided. Ideally, measurement for all the intra-exosomal metabolites considered in the 

model will provide the best solution. Our results demonstrate the potential of the Exo-MFA 

algorithm as an analytical tool with predictive potential. Successful implementation of the 

algorithm on the source cells then provides the necessary information such as isotopomer 

distribution and concentration of metabolites in exosome cargo, which is required to 

estimate intracellular and cargo release fluxes in the recipient cancer cells.

3.4 Stable-isotope labeling experiments prove that exosomes release cargo metabolites 
to replenish and rescue nutrient-deprived cancer cells

Metabolites present in exosome cargo are in their active form, therefore, the impact of 

exosome uptake on metabolism should be instantaneous and only be limited by the rate of 

incorporation of exosomes into the cells and release of cargo. Mechanisms of exosome 

internalization have not been extensively studied, thus, there is no consensus on a singular 

mechanism that governs the process of internalization. Potentially, multiple mechanisms of 

exosome internalization are active and dependent upon environmental and inherent factors of 

the recipient cells (Feng et al., 2010; Zhang et al., 2015). The factor relevant to the scope of 

this study is that exosome internalization rate has been shown to be proportional to their 

extracellular concentration but they reach an asymptotic value at a high concentration 

(Christianson et al., 2013). To trace the path of cargo released by CDEs into intracellular 

pools, we transferred cancer cells into media deprived of glutamine and phenylalanine and 

introduced labeled CDEs at a concentration of 200 μg/mL. This deprivation condition was 

chosen because it had the most detrimental effect on cancer cells’ proliferation that could be 

completely rescued by the addition of exosomes as compared to other deprivation conditions 

(data not shown). The rescue of cancer cell proliferation is potentially mediated via two 

separate mechanisms, (i) instantaneous replenishment of central carbon intermediates and 

amino acid precursors for proliferation and (ii) upregulation of reductive carboxylation via 

miRNA mediated inhibition of OXPHOS. Both these processes occur at different timescales 

since metabolic adaptations are within the order of minutes and much faster than miRNA 

inhibition which are in the order of hours as discussed in (Zhao et al., 2016). To focus on the 

rapid rescue of nutrient-deprived cancer cell proliferation via exosome cargo we sampled 

cancer cells at 3, 6, 12 and 24 hours (Figure 4A). Since the effect of CDEs on cancer cells is 

fast and cells may not reach metabolic steady-state within the timeframe of our experiments, 

we decided that sampling at multiple time points would allow us to capture the dynamic 

behavior of nutrient-deprivation and rescue by CDEs.

After supplementing cancer cell media with labeled CDEs, the incorporation of 13C 

metabolite cargo into the cells occurred as soon as 3 hours as observed in Figure 4B. 

However, the fractions of heavy isotopologues of amino acids alanine and glutamine, and 

glycolytic product lactate declined rapidly and almost depleted by 24 hours. This strongly 

indicates, that either the nutrient-deprived cancer cells internalize CDEs rapidly until they 

are depleted in the media or rates of internalization reach very low steady-state values 

compared to the turnover of these metabolites. TCA cycle intermediates also show 

diminishing enrichments, but at a lower rate compared to amino acids due to the recycling of 

13-C by multiple turns of the TCA cycle. Interestingly, comparing the total 13C-enrichment 
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of glutamate in exosome-treated cancer cells, which is approximately 20% (Figure 4B) with 

enrichment of glutamate in CDEs (Figure 2B), which is 68% we can estimate that the direct 

contribution of glutamate from exosomes can be up to 30%. This indicates a significant 

contribution of exosome-derived metabolites to intracellular PDAC pools. However, 

estimating exosomal contribution using ratio of enrichment is inaccurate due to the multiple 

sources of 13C-metabolites in CDEs and recycling of 13C within the TCA cycle. Therefore, 

quantification of exosomal metabolite contribution is performed with the help of Exo-MFA 

detailed in the following sections. Nonetheless, the empirical data provide compelling 

evidence that metabolites from CDEs are incorporated into central carbon metabolism of 

cancer cells but are utilized rapidly. Furthermore, differences in intracellular levels amino 

acids and central carbon metabolites between control and CDE-treated cancer cells shows 

that metabolite cargo also has a strong effect on the metabolic fluxes (Figure 4C). Amino 

acids associated with the glycolysis pathway along with lactate showed a steady increase 

between 6 and 24 hours in cancer cells treated with exosomes as opposed to control 

conditions where concentrations stagnate by 24 hours. However, amino acids associated with 

TCA cycle (glutamate, glutamine) and TCA cycle metabolites (citrate, fumarate, malate) are 

cyclic, where initially they decrease between 3 and 6 hours, increase between 6 and 12 hours 

and fall again after 12 hours in cancer cells with CDEs but monotonically decrease in cells 

without CDEs. The reason for this non-monotonic trend may be due to a combination of 

factors affecting the cancer cell metabolism. Initially, cancer cells are adapting to their 

nutrient-stressed environment as indicated by the decrease between 3 and 6 hours, followed 

by a slight increase due to rescue via incorporation of metabolite cargo, and finally a 

decrease that could be attributed to either depletion of exosomes in the media or the 

initiation of exosome mediated inhibition of the mitochondrial oxidative metabolism 

described in (Zhao et al., 2016). Collectively, these data support our hypothesis that 

metabolite cargo has impactful albeit short-lived effect on cancer cell metabolism. 

Furthermore, the disparity in effect of CDEs on glycolytic pathways and TCA cycle is seen 

in the early stages of CDE internalization, and this disparity is perpetuated when regulatory 

effects of exosome cargo reach steady-state.

3.5 Exo-MFA predicts exosome uptake and cargo release fluxes in nutrient-deprived 
cancer cells that internalize CDEs

Cancer cells adapt to nutrient-deprived conditions by altering their metabolism to adapt to 

available carbon sources to maintain proliferation and other essential cellular functions. In 

this scenario, PDAC cell line MiaPaCa-2, previously in complete media are cultured in 

media deprived of glutamine and phenylalanine (control condition) and supplemented with 

CDEs (exosome-treated condition). PDAC cells adapt to nutrient-deprivation but their 

viability is decreased by 30% within the first 24 hours (Figure 1B), however the viability can 

be completely rescued by adding CDEs to the media. Our tracer experiments showed that 

free metabolites were incorporated into intracellular metabolite pools of PDAC cells, 

however the isotopic enrichment decreased over the course of the experiment. The Exo-MFA 

algorithm was employed to prove our hypothesis that exosome cargo can alter intracellular 

fluxes and the isotopic enrichment is not just the result of a short-lived tracer injection. 

Predictions of intracellular and cargo release fluxes were made at all the sampled time points 

to quantify cargo contribution and record dynamic changes in the metabolism (Figure 5A, 
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Table 2). Exo-MFA predicted that the total flux from release of exosome cargo decreases 

almost linearly from 2.94 μmol/mg protein/h at 3 hours to 2.59 μmol/mg protein/h and 1.92 

μmol/mg protein/h at 6 and 12 hours, respectively (Table 2). This was expected, since the 

availability of exosomes in the media is limited and internalization rates of exosomes have 

been shown to depend on exosome concentrations as discussed in Section 3.4. The most 

striking result from the Exo-MFA flux predictions was that TCA cycle fluxes changed 

significantly over the course of 12 hours; average TCA flux at 3 hours is 3.03 μmol/mg 

protein/h, which initially increases to 3.59 μmol/mg protein/h at 6 hours and finally 

decreases to 1.97 μmol/mg protein/h at 12 hours. Furthermore, to better understand the 

contribution of exosome derived exosomes to intracellular metabolism, we define the 

Exosomal Influx Contribution (EIC) and Metabolite Influx Contribution. The EIC can be 

defined as the fraction of exosomal cargo-derived flux entering a closed loop pathway (such 

as the TCA cycle) within the total flux entering that pathway. Conversely, MIC is defined for 

fluxes not derived from exosomes.

EIC (to TCA) = vEXO
vTCA(in) (17)

MIC (to TCA) = vPDH
vTCA(in) (18)

Where, vEXO is the sum of fluxes from exosomal cargo of TCA metabolites, and vPDH is the 

net flux of pyruvate flux into TCA cycle. vTCA(in) represents the net total influx of all 

metabolites into the TCA cycle. We see that the exosomal contribution, i.e. EIC to TCA is 

30% while the MIC of pyruvate to TCA is 70%. At 6 hours, this balance shifts towards 

pyruvate when MIC increases to 28%. There is also an increase in absolute TCA fluxes at 12 

hours is due to a temporary increase in glucose contribution to the TCA represented by the 

pyruvate dehydrogenase flux that changes from 2.56 μmol/mg protein/h to 3.17 μmol/mg 

protein/h between the 3 and 6-hour time-points (Figure 5A, Table 2). However, both the 

pyruvate flux to TCA and the cargo release fluxes decreased significantly by 12 hours, 

cumulatively leading to reduced TCA cycle fluxes but interestingly the EIC increases to 

30% signaling the reliance of TCA cycle on exosomal cargo. Presumably, the changes in 

TCA cycle fluxes are linked with high lactate levels and lactate efflux in PDAC cells. As 

seen in Figure 4C, intracellular lactate concentrations increased significantly in presence of 

CDEs, however the lactate secretion rate did not change commensurately. This would 

suggest that there is a gain in lactate production rates, which can either come from 

intracellular pyruvate via lactate dehydrogenase (LDH) or from the metabolite cargo of 

CDEs. Initially, when the cargo release fluxes are high, pyruvate is diverted to the TCA 

cycle (Figure 5A, 6 hours). However, when exosomes become limited and cargo fluxes drop, 

pyruvate is redirected to produce lactate. There are several reasons for cancer cells 

maintaining high lactate concentrations, lactate levels have been shown to be correlated with 

resistance to radiotherapy, metastasis and poor patient prognosis (Doherty and Cleveland, 

2013; Hirschhaeuser et al., 2011). However, diagnosing the cause for high lactate levels in 

this scenario are beyond the scope of this study. Interestingly, the non-monotonic trend of 
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TCA fluxes mimics the trend observed in intracellular concentrations of TCA intermediates 

(Figure 4C). Although, the EIC estimated by Exo-MFA is a novel quantification that reflects 

the rate of exosomal concentration, the significance of exosomal contribution can also be 

explained through a simple volumetric comparison. Exosome volume is estimated based on 

density reported in studies characterizing exosomes (Graner et al., 2009; Street et al., 2012) 

and total amount of exosomes added to a well of cancer cells in a 6-well plate. We find that 

400 μg of exosomes could volumetrically contribute up to 330 nL compared to 720 nL of 

cytosolic volume of an average of 300,000 cancer cells in a well. This indicates that 

exosomes and its cargo can contribute significantly to cancer cells.

Exo-MFA was also able to predict the rates of exosome internalization, which can be 

challenging to determine empirically (Figure 5B). It is important to note that rate of 

internalization is not the same as exosome uptake, because the process of releasing 

metabolite cargo goes through several steps. Hence, the rate of internalization is a 

representative rate for that is determined by a rate-limiting step in the process. Like the 

cargo release fluxes, exosome internalization expectedly decreased over the course of the 

experiment almost linearly. It is interesting to note that upon extrapolating and integrating 

the curve describing the internalization rate, we can calculate the total amount of exosomes 

internalized by PDAC cells till the rate drops to zero. This value is estimated is 

approximately 464 μg exosomes per well of PDAC cells, which is slightly higher than the 

amount of exosomes used in the experiment, i.e. 400 μg. Collectively, predictions from the 

Exo-MFA on recipient PDAC cells suggest that metabolite cargo from CDEs contribute to 

approximately one-third of the TCA cycle fluxes and can also markedly influence fluxes in 

both the glycolysis and TCA cycle pathways. Therefore, metabolite cargo of CDEs is 

responsible, at least in part, for the rescue of cancer cell proliferation and maintenance of 

their metabolic fluxes by providing intracellular lactate and TCA cycle intermediates.

4. CONCLUSION

The field of cancer metabolism has progressed significantly over the past decade with 

respect to technological advancements and the scale of systems being studied (DeBerardinis 

and Chandel, 2016). Stable-labeled isotope tracer techniques have improved and become 

more accessible, while computational tools for analyzing empirical data have progressed 

commensurately. The role of TME has been deemed to be of utmost importance in tumor 

survival, growth and metastasis. Only recently, our group revealed that CAF-secreted 

extracellular vesicles were mediators of metabolic regulation by carrying free metabolites 

(Zhao et al., 2016), thus discovering new cargo carried by secreted vesicles. To address the 

gap in techniques that provide analytical insight into multicellular metabolic interactions we 

have introduced the Exo-MFA algorithm, a platform that integrates experimental and 

computational stable-isotope tracer techniques as an improvement over the current 13C-

MFA. We successfully demonstrate the potential of the Exo-MFA algorithm by predicting (i) 

intracellular fluxes and packaging of metabolite cargo in CAFs, (ii) exosome internalization 

rates in PDAC cells and (iii) cargo release fluxes and their contribution to intracellular 

PDAC metabolites. Cargo in extracellular vesicles have emerged as indicators of cellular 

environments and biomarkers for disease pathology (Nawaz et al., 2014; Verma et al., 2015; 

Zöller, 2013). Therefore, knowledge about the biogenesis of vesicles and packaging of cargo 
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has been sought after to help uncover mechanisms of cellular communication. Currently, 

most of the attention in the field of secretory vesicles has been devoted to characterizing 

cargo that confers intercellular communication via signaling pathways, i.e. proteins, miRNA, 

RNA and DNA (Abels and Breakefield, 2016; Colombo et al., 2014). Exo-MFA sets a stage 

for investigating exosomes with differential metabolite cargo under various conditions, 

thereby setting a new precedent in our understanding of biogenesis of extracellular vesicles.

The experimental protocols described herein use tracers that are already widely used and the 

Exo-MFA algorithm is flexible to accommodate system-specific inputs and assumptions. 

Exo-MFA is applicable to systems where microvesicle transport is involved, but is also a 

step forward in developing 13C-MFA techniques for in vitro co-culture systems. It could 

potentially be applied to studying multicellular systems where metabolic cross-talk between 

cell populations occurs via conditioned media.

It is to be noted that in study presented here we cultured CAFs under labeled tracer 

conditions for one passage. However, complete labeling may require cultures with labeled 

tracer for multiple passages. Thus, generating and isolating enough labeled CDEs for 

performing experiments require large number of patient-derived CAFs that are cultured in 
13C-labeled media for long durations. Furthermore, the design of our in vitro study may not 

reflect the long-term effects of CDEs on PDAC metabolism expected in vivo. We would 

require several-fold more CDEs than what we used in the current study. PDAC cells 

internalize exosomes rapidly, leading to low isotopic enrichments within 24 hours. To test 

whether replenishing exosomes in the extracellular media could affect isotopic enrichments, 

we cultured two batches of PDAC cells under nutrient-deprivation with 13C-labeled CDEs. 

Both batches of PDAC cells were supplied CDEs at the beginning of deprivation condition, 

but only one out of the two batches were replenished with CDEs 12 hours after deprivation. 

The cells were sampled at 6, 12 and 24 hours and their isotopic enrichments were measured 

(Figure 6). Expectedly, we observed that isotopic enrichments of most metabolites increased 

at the 24-hour time-point in PDAC cells that were supplemented with CDEs at 12 hours. 

These results strongly suggest that effect of metabolite cargo on PDAC metabolism can be 

sustained over longer period by maintaining a steady supply of exosomes. This experimental 

design could then mimic the in vivo interactions more closely.

With advances in technological and scientific aspects in the field of secretory vesicles and 

tumor microenvironment, we envision that Exo-MFA can be improved to become a powerful 

tool for investigating role of metabolic interactions between TME components. In the future, 

measuring the uptake kinetics of exosomes by analyzing spent media of cancer cells and 

predicting internalization rates with Exo-MFA may help reveal the true mechanism of 

exosome uptake by cells. Furthermore, if multiple mechanisms of uptake exist then we may 

be able to identify extracellular conditions that regulate them with the Exo-MFA platform. In 

addition to free metabolite cargo, there is a significant amount of protein and lipids present 

in exosomes which could also contribute to cancer cell metabolism to a large extent. Such 

metabolic contributions should be considered in the future, for improving the experimental 

and modeling paradigm of Exo-MFA. Additionally, algorithmic improvements like 

implementing the EMU technique (Antoniewicz et al., 2007) may further improve 

computational efficiency and enable development of dynamic Exo-MFA that can be applied 
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to more complex metabolic models that consider multifold cell-specific functions and 

thermodynamic constraints (Avila-Elchiver et al., 2012; Nagrath et al., 2010, 2007; Wang et 

al., 2012). Despite the caveats, Exo-MFA has the potential to improve our understanding of 

tumor development in the context of the TME and advance the field of cancer metabolism.

APPENDIX A.: Formulation of 13C-MFA used in Exo-MFA

Flux analysis was performed using a MATLAB-based software developed within our lab 

using the KNITRO® (Artelys, Paris, France) optimization toolbox. 13-carbon atom 

transitions were modeled according to the Atom Mapping Matrix (AMM) and Isotopomer 

Mapping Matrix (IMM) method (Schmidt et al., 1997; Wiechert et al., 1997; Wiechert and 

de Graaf, 1997; Zupke and Stephanopoulos, 1994). Reversible reactions were modeled as 

two irreversible forward and reverse fluxes (vfwd,vrev) and transformed into net and 

exchange fluxes (vnet,vxch).

vnet = vfwd − vrev (A1)

vxcℎ = min(vfwd, vrev) (A2)

Mass balance of intracellular metabolites is applied assuming pseudo steady-state because 

most intracellular metabolites have a high turnover rate of intracellular pools. The 

stoichiometric matrix S, is created according to metabolic reactions considered and the 

equation for mass balance for metabolites can be represented as Equation (A3).

S . vnet = 0 (A3)

Intracellular fluxes are replaced by free flux parameters, u, by choosing a suitable null basis 

for the stoichiometric matrix (Equations A4–A5). This takes advantage of the linear 

dependence between fluxes to reduce the number of unknown parameters.

K = null(S) (A4)

vnet = K . unet (A5)

Since exchange fluxes are unbounded, they are transformed to normalized exchange fluxes 

according to Equation (A6) so that they can be bound between [0,1].

uxcℎ = vxcℎ
vxcℎ + β (A6)

β is a constant chosen within the order of magnitude of glucose uptake flux. Since we 

normalize all net fluxes with respect to glucose uptake we choose a value of β = 2. AMMs 

and IMMs are used to generate carbon atom balances for each reactant-product in every 
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reaction in the metabolic network. In addition to the flux variables v, isotopomer distribution 

vectors (IDVs, represented by vector y) are used to describe mass isotopomer fractions of 

intracellular metabolites.

x = [u, y] (A7)

The isotopomer mass balances derived using IMMs are non-linear since the rate of 

production of isotopomers is proportional to the flux and mass isotopomers of precursor 

metabolites. The mass balance of a metabolite B will therefore being produced in a reaction 

A → B + C is give by Equation (A8).

CB
dyB

dt = 0 = vA B . (IMMA B × yA) − vB . yB (A8)

Assuming measurements are made after isotopic steady-state is reached, the general form of 

the isotopomer mass balance equations for metabolite i, over all N reactions can be 

represented as

fi(x) = ∑
j = 1

N
Sij . vj ∏

Sij > 0
k, Skj < 0

IMMk i . yk + ∑
j = 1, Sij < 0

N
Sij . yi = 0 (A9)

To solve the flux distribution in metabolic network, an optimization problem can be defined 

to minimize deviation between measured MIDs and simulated IDVs that satisfies all 

constraints described by Equations (A3,A4,A5,A8,A9). Deviation is defined as the variance-

weighted sum of square of residual errors and the optimization problem is defined as 

following.

Minimize φ=(ymeas − My)Tℰ−1(ymeas − My)
Subject to (A10a)

fi(x) = 0 (A10b)

ulb < unet < uub (A10c)

umeas − 2σ < u < umeas + 2σ (A10d)

Here ℰ is the covariance matrix of MID measurements, σ is standard deviation of measured 

extracellular fluxes and M is the transformation matrix to convert IDVs to MIDs. We convert 

the IDV to respective mass isotopologue distributions (MIDs) to compute error between 

model and measurements from GC-MS. Solving the optimization problem described by 
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Equations (A10) to satisfactory convergence will result in a solution with intracellular fluxes 

that satisfy all the physical constraints and empirical measurements.

APPENDIX B.: Metabolic reaction model for CAF19 (source cells) and PDAC 

(recipient cells) with the respective carbon atom transitions

Metabolic reactions that are included in the model for CAFs are described in Table B1. In 

addition to these reactions, the model contains exosome cargo packaging fluxes for lactate, 

glutamine, glutamate, glycine, alanine, α-ketoglutarate, citrate and malate. The model for 

PDAC cells is modified to exclude pyruvate carboxylase (PC), aspartate transaminase (AST) 

and aspartate transporter (ASPT) reactions. Further, instead of packaging fluxes, the PDAC 

model contains cargo release fluxes for the same metabolite cargo described for CAFs. 

Biomass equation was derived from cellular compositions provided in (Sheikh et al., 2005) 

and the biomass flux was fit to the respective growth rates.

Metabolites:

3-PG, 3-phosphoglycerate; AcCoA_c, cytosolic Acetyl-Coenzyme A; AcCoA_m, 

mitochondrial Acetyl-Coenzyme A; aKG_m, mitochondrial α-ketoglutarate; Ala_c, 

alanine; Ala_x, extracellular alanine; Asp_c, aspartate; Asp_x, extracellular aspartate; 

Cit_c, cytosolic citratre; Cit_m, mitochondrial citratre; CO2, carbon dioxide; Fum_c, 

cytosolic fumarate; Fum_m, mitochondrial fumarate; Glc_c, glucose; Glc_x, extracellular 

glucose; Gln_c, glutamine; Gln_x, extracellular glutamine; GLS, glutaminase; Glu_m, 

glutamate; Glu_x, extracellular glutamate; Gly_c, glycine; Gly_x, extracellular glycine; 

Lac_c, lactate; Lac_x, extracellular lactate; Mal_c, cytosolic malate; Mal_m, mitochondrial 

malate; MEETHF, methylene tetrahydrofuran; OAC_c, cytosolic oxaloacetate; OAC_m, 

mitochondrial oxaloacetate; Pyr_c, cytosolic pyruvate; Pyr_m, mitochondrial pyruvate; 

Ser_c, serine; Ser_x, extracellular serine; Suc_m, succinate.

Enzymes:

ACLY, ATP-citrate lyase; AST, aspartate transaminase; CS, citrate synthase; IDH (c), 
cytosolic isocitrate dehydrogenase; IDH (m), mitochondrial isocitrate dehydrogenase; LDH, 

lactate dehydrogenase; MDH, malate dehydrogenase; ME, malic enzyme; PDH, pyruvate 

dehydrogenase; PST, serine transaminase; PC, pyruvate carboxylase; SHMT, serine 

hydroxymethyl transferase; SDH, succinate dehydrogenase.

Transporters:

GLUT, glucose transport; SERT, serine transport; GLYT, glycine transport; ALATR, 

alanine transport; MCT, lactate transport; PYRT, pyruvate transport; GLUTR, glutamate 

transport; aKGT, alpha-KG transport; MALT, malate transport; LACE, lactate exosome 

flux; GLNE, glutamine exosome flux; GLYE, glycine exosome fluxe; CITE, citrate 

exosome flux; ALAE, alanine exosome flux; GLUE, glutamate exosome flux; aKGE, 

alpha-KG exosome flux; MALE, malate exosome flux.
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Table B1:

Reactions in metabolic network for CAFs.

Name Reaction Atom transition

GLUT Glc_x ⇒ Glc_c abcdef>abcdef

GLYC Glc_c ⇒ 3-PG + Pyr_c abcdef>abc+fed

GLYC 3-PG ⇒ Pyr_c abc>abc

PST 3-PG ⇔ Ser_c abc>abc

SERT Ser_c ⇔ Ser_x abc>abc

SHMT Ser_c ⇔ Gly_c + MEETHF abc>ab+c

GLYS MEETHF + CO2 ⇒ Gly_c a+b>ab

LDH Pyr_c ⇔ Lac_c abc>abc

MCT Lac_c ⇔ Lac_x abc>abc

ALAT Pyr_m ⇒ Ala_c abc>abc

ALATR Ala_c ⇒ Ala_x abc>abc

PYRT Pyr_c ⇒ Pyr_m abc>abc

PDH Pyr_m ⇒ AcCoA_m + CO2 abc>bc+a

CS AcCoA_m + OAC_m ⇒ Cit_m ab+cdef>fedbac

IDH (m) Cit_m ⇒ aKG_m + CO2 abcdef>abcde+f

OGDH aKG_m ⇒ 0.5*Suc_m + 0.5*Suc_m + CO2 abcde>bcde+edcb+a

SDH 0.5*Suc_m + 0.5*Suc_m ⇔ 0.5*Fum_m + 0.5*Fum_m abcd+dcba>abcd+dcba

FH 0.5*Fum_m + 0.5*Fum_m ⇔ Mal_m abcd+dcba>abcd

MDH Mal_m ⇔ OAC_m abcd>abcd

GLNT Gln_x ⇒ Gln_c abcde>abcde

GLS Gln_c ⇔ Glu_m abcde>abcde

GLUTR Glu_m ⇔ Glu_x abcde>abcde

GDH Glu_m ⇔ aKG_m abcde>abcde

aKGT aKG_m ⇔ aKG_c abcde>abcde

IDH (c) aKG_c + CO2 ⇒ Cit_c abcde+f>abcdef

ACLY Cit_c ⇒ OAC_c + AcCoA_c abcdef>fcba+ed

ASPT Asp_x ⇔ Asp_c abcd>abcd

AST Asp_c ⇔ OAC_m abcd>abcd

MDH (c) OAC_c ⇔ Mal_c abcd>abcd

ME Mal_c ⇒ Pyr_m + CO2 abcd>abc,d

PC Pyr_m + CO2 ⇒ OAC_m abc+d>abcd

MALT Mal_c ⇔ Mal_m abcd>abcd

FH (c) 0.5*Fum_c + 0.5*Fum_c ⇔ Mal_c abcd+dcba>abcd

BIOM 0.6*Ala_c + 0.37*Asp_c + 0.322*Gln_c + 0.386*Glu_m + 0.55*Gly_c + 
0.43*Ser_c + 0.0265*MEETHF + 0.28*AcCoA_c + 0.0097*Glc_c ⇒ bio
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Figure 1: Exosomes derived from tumor microenvironment rescue growth in nutrient-deprived 
PDAC cells.
(A) Simplified graphic of the tumor microenvironment that shows, where exosomes act as 

one of the channels of communication between cancer-associated fibroblasts and tumor 

cells.

(B) Relative viability of PDAC cells (MiaPaCa-2) cultured in complete media or media 

deprived of glutamine and phenylalanine in the presence or absence of CAF-derived 

exosomes. Data are reported as mean ± SEM, (n≥3) from a batch representative of repeated 

experiments.
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(C) Schematic for the workflow of Exo-MFA describing the in vitro 13C tracer experiments 

from which CAFs, exosomes and PDAC cells are analyzed using GC-MS and UPLC 

systems to obtain measurements for in silico simulations of transport of metabolite cargo 

between cells via exosomes. Exo-MFA simulations provide estimates of intracellular fluxes, 

packaging fluxes in source cells, rate of uptake of exosomes and cargo release fluxes.
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Figure 2: 13C-labeled tracer experiments in CAFs to produce 13C-labeled cargo in exosomes.
(A) Schematic of stable-isotope labeling experiments on CAFs. CAFs are cultured in 

[U-13C6]-glucose and [U-13C5]-glutamine to obtain exosomes with labeled metabolites. 

Labeled exosomes secreted by the CAFs (CDEs) are isolated from the media and and 

analyzed to measure mass isotopologue distributions and intra-exosomal metabolite levels. 

Spent media is used to measure extracellular metabolite concentrations using UPLC.

(B) Mass isotopologue distributions of major central carbon metabolites in CAFs and CDEs. 

Data are reported as mean ± SEM, (n≥4 for exosomes, n≥6 for CAFs) from a batch 

representative of repeated experiments.

Achreja et al. Page 29

Metab Eng. Author manuscript; available in PMC 2020 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Exo-MFA predicts intracellular and exosomal packaging fluxes in CAFs.
(A) Intracellular fluxes (solid black lines) and exosome packaging fluxes (dashed blue lines) 

in source cells (cancer-associated fibroblasts). Exosome packaging fluxes are reported as 

mean ± standard deviation (from Monte-Carlo simulations), and have the units [nmol/mg 

protein/h]. Thickness of lines are proportional to fluxes normalized to the glucose uptake 

rate. Metabolites with subscripts indicate which compartment they belong to (c: cytosol, m: 

mitochondria).
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(B) Comparison of measured and estimated intraexosomal levels for metabolites whose 

measurements are used for fitting model estimates in the Exo-MFA algorithm.

(C) Comparison of measured and estimated intraexosomal level of lactate that is an unkown 

parameter predicted by Exo-MFA algorithm.

Measured data are presented as mean ± SEM (n≥3) from a representative batch of repeated 

experiments. Model estimates are obtained from best fit solutions. Error bars represent the 

upper and lower bounds of 95% confidence intervals.
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Figure 4: 13C-labeled tracer experiments in PDAC to detect cargo-derived metabolites in the 
tumor cells.
(A) Schematic of 13C-tracer labeling experiments using labeled CDEs. PDAC cells are 

cultured in glutamine and phenylalanine deprived media along with CDEs. Cells are 

sampled at 3, 6, 12 and 24 hours to analyzed using GC-MS to measure intracellular mass 

isotologue distributions and metabolite concentrations. Spent media is sampled at 3, 6, 12 

and 24 hours to measure extracellular metabolite concentrations using UPLC.

(B) Dynamic measurements of mass isotopologue distribution (MID, %) of amino acids and 

TCA intermediates in nutrient-deprived PDAC cells treated with exosomes containing 
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labeled metabolites. Data are reported as mean ± SEM, (n≥3) from a batch representative of 

repeated experiments.

(C) Dynamic intracellular levels of central carbon metabolites of nutrient-deprived PDAC 

cells cultured with or without exosomes. Data are reported as mean ± SEM, (n≥3) from a 

batch representative of repeated experiments.
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Figure 5: Exo-MFA predicts intracellular and cargo release flux in PDAC cells internalizing 
labeled CDEs
(A) Intracellular (solid black lines) and cargo release fluxes (dashed blue lines) in 

MiaPaCa-2 cells cultured in media deprived of glutamine and phenylalanine, but 

supplemented with 13C-labeled CDEs. Thickness of lines for each time point are 

proportional to their respective intracellular fluxes normalized to glucose uptake rate. 

Colored arrows indicate change in a flux with respect to the previous time-point.

(B) Rate of exosome internalization predicted by Exo-MFA. Data reported are obtained from 

best fit solutions. Error bars represent the upper and lower bounds of 95% confidence 

intervals.
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Figure 6. 
Fractional enrichment of 13C-labeled metabolites in PDAC cells treated with CDEs under 

nutrient deprivation. Two timelines were established to ascertain utilization of exosomes; 

both batches of cells were given CDEs at the beginning of the experiment, but one batch was 

supplemented with additional CDEs at 12h (Exo+supp).
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Table 1:

Intracellular and cargo packaging fluxes in CAF cells cultured with [U-13C6]-glucose and [U-13C5]-glutamine 

for 72 hours. Values reported are absolute intracellular fluxes with the units μmol/mg protein/h. Negative 

fluxes represent net flux in the reverse direction of the corresponding reaction described under the Reaction 

column. SSR values are reported in the table and all fall within the range of acceptable values satisfying 

χ2(23) = [11.7, 38.1] at 95% confidence level. Abbreviations for reaction names and metabolites are given in 

Appendix B.

Name Reaction Flux SSR = 30.2 [11.7 38.1]

GLUT Glc_x => Glc_c 1.3357 [1.3357, 1.3357]

GLYC Glc_c => PG3 + Pyr_c 1.3355 [1.3355, 1.3355]

GLYC PG3 => Pyr_c 1.3529 [1.3506, 1.3567]

PST PG3 => Ser_c (net) −0.0174 [−0.0212, −0.0150]

Ser_c => PG3 (exch) 0.0235 [0.0191, 0.0311]

SERT Ser_c => Ser_x (net) −0.0266 [−0.0304, −0.0242]

Ser_x => Ser_c (exch) 0.0268 [0.0153, 0.0465]

SHMT Ser_c => Gly_c + MEETHF (net) 0.0038 [0.0037, 0.0039]

Gly_c + MEETHF => Ser_c (exch) 0.4333 [0.4226, 0.4510]

GLYS CO2 + MEETHF => Gly_c 0.0035 [0.0034, 0.0036]

ALAT Pyr_m => Ala_c (net) 0.2451 [0.2417, 0.2493]

ALATR Ala_c => Ala_x (exch) 0.2364 [0.2330, 0.2407]

LDH Pyr_c => Lac_c (net) 2.3643 [2.3477, 2.3750]

Lac_c => Pyr_c (exch) 33815.53 [0, 3139706.3112]

LACT Lac_c => Lac_x (net) 2.293 [2.2860, 2.3026]

Lac_x => Lac_c (exch) 0.6809 [0.6640, 0.6999]

PYRT Pyr_c => Pyr_m 0.3242 [0.3122, 0.3434]

PDH Pyr_m => AcCoA_m + CO2 0.3722 [0.3587, 0.3936]

CS AcCoA_m + OAC_m => Cit_m 0.3722 [0.3587, 0.3936]

IDH (m) Cit_m => CO2 + aKG_m 0.3722 [0.3586, 0.3935]

OGDH aKG_m => CO2 + Suc_m 0.6097 [0.5952, 0.6339]

SDH Suc_m => Fum_m (net) 0.6097 [0.5952, 0.6339]

Fum_m => Suc_m (exch) 0.0012 [0, 0.0045]

FH Fum_m => Mal_m (net) 0.6097 [0.5952, 0.6339]

Mal_m => Fum_m (exch) 0.0011 [0, 0.0102]

MDH Mal_m => OAC_m (net) 0.2237 [0.2107, 0.2439]

OAC_m => Mal_m (exch) 3.3857 [3.3315, 3.4612]

GLNT Gln_x => Gln_c 0.4168 [0.4167, 0.4168]

GLS Gln_c => Glu_m (net) 0.405 [0.4032, 0.4067]

Glu_m => Gln_c (exch) 0.7442 [0.7295, 0.7531]

GLUTR Glu_m => Glu_x (net) 0.1565 [0.1520, 0.1595]

Glu_x => Glu_m (exch) 0.1361 [0.1307, 0.1411]

GDH Glu_m => aKG_m (net) 0.2411 [0.2380, 0.2461]

aKG_m => Glu_m (exch) 1.6663 [1.5237, 1.9138]
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Name Reaction Flux SSR = 30.2 [11.7 38.1]

aKGT aKG_m => aKG_c (net) 0.0035 [0.0035, 0.0036]

aKG_c => aKG_m (exch) 8.294 [8.2782, 8.3076]

IDH (c) CO2 + aKG_c => Cit_c 0.0035 [0.0035, 0.0036]

ACLY Cit_c => AcCoA_c + OAC_c 0.0035 [0.0034, 0.0035]

MDH (c) OAC_c => Mal_c (net) 0.0035 [0.0034, 0.0035]

Mal_c => OAC_c (exch) 94.1199 [91.7648, 96.0681]

MALT Mal_c => Mal_m (net) −0.386 [−0.3959, −0.3786]

Mal_m => Mal_c (exch) 0.449 [0.4340, 0.4637]

FH (c) Fum_c => Mal_c (net) 0 [0.0000, 0.0000]

Mal_c => Fum_c (exch) 1.4231 [1.4153, 1.4290]

ME Mal_c => CO2 + Pyr_m 0.3895 [0.3821, 0.3994]

ASPT Asp_x => Asp_c (net) 0.0569 [0.0525, 0.0606]

Asp_c => Asp_x (exch) 0.0013 [0, 0.0067]

AST Asp_c => OAC_m (net) 0.0522 [0.0479, 0.0560]

OAC_m => Asp_c (exch) 0.3136 [0.2734, 0.3536]

PC CO2 + Pyr_m => OAC_m 0.0963 [0.0909, 0.1029]

BIOM > bio 0.0125 [0.0123, 0.0126]

EXO Gly => exo 0.0018 [0.0012, 0.0021]

EXO Cit => exo 0.0001 [0.0001, 0.0001]

EXO Ala => exo 0.0013 [0.0010, 0.0014]

EXO Glu => exo 0.0027 [0.0020, 0.0030]

EXO aKG => exo 0.0001 [0.0000, 0.0001]

EXO Mal => exo 0 [0.0000, 0.0000]

EXO Gln => exo 0.0295 [0.0210, 0.0345]

EXO Lac => exo 0.0713 [0.0547, 0.0795]
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Table 2:

Intracellular and cargo release fluxes in PDAC cells treated with 13C-labeled CDEs, sampled at 3,6 and 12 

hours. Values reported are absolute intracellular fluxes at each time-point with the units μmol/mg protein/h. 

Negative fluxes represent net flux in the reverse direction of the corresponding reaction described under the 

Reaction column. SSR values are reported in the table and all fall within the range of acceptable values 

satisfying χ2(41) = [25.2, 60.6] at 95% confidence level.

Reaction T = 3h SSR = 45.6 T = 6h SSR = 45.6 T = 12h SSR = 45.6

Glc_x => Glc_c 2.086 [1.9611, 2.2812] 2.3734 [2.2514, 2.6397] 2.086 [1.9439, 2.7693]

Glc_c => PG3 + Pyr_c 2.086 [1.9611, 2.2809] 2.3734 [2.2514, 2.6394] 2.0859 [1.9436, 2.7693]

PG3 => Pyr_c 1.42 [1.3386, 1.5526] 2.4659 [2.2010, 2.6734] 1.6909 [1.4629, 2.1164]

PG3 => Ser_c (net) 0.666 [0.5790, 0.7715] −0.0925 [−0.2876, 0.3040] 0.395 [0.1377, 0.9959]

Ser_c => PG3 (exch) 16.8468 [16.7658, 16.9851] 0.1565 [0.0343, 0.2032] 2.5477 [2.4874, 2.5932]

Ser_c => Ser_x (net) 1.0716 [0.9837, 1.1741] 0.305 [0.1135, 0.7027] 0.7784 [0.5218, 1.3762]

Ser_x => Ser_c (exch) 0.0057 [0.0021, 0.0083] 0.0181 [0.0119, 0.0226] 1.5056 [1.4420, 1.5451]

Gly_x => Gly_c (net) 0.3552 [0.3516, 0.3552] 0.3525 [0.3507, 0.3558] 0.3526 [0.3493, 0.3573]

Gly_c => Gly_x (exch) 0 [0.0000, 14.9000] 0.0225 [0.0000, 0.0000] 0 [0.0000, 8.9400]

Ser_c => Gly_c + MEETHF 0.0003 [−0.0030, 0.0042] 0.0003 [−0.0146, 0.0191] 0.0003 [−0.0083, 0.0116]

CO2 + MEETHF => Gly_c 0 [−0.0030, 0.0039] 0 [−0.0149, 0.0191] 0 [−0.0086, 0.0116]

CO2 + Gly_c => Ser_c 0.41 [0.4014, 0.4151] 0.4019 [0.3737, 0.4384] 0.3877 [0.3680, 0.4077]

Pyr_m => Ala_c 0.1734 [0.1335, 0.1964] 0.4296 [0.1603, 0.6335] 0.3056 [−0.0182, 0.6055]

Ala_c => Ala_x 0.2149 [0.1702, 0.2381] 0.4643 [0.1943, 0.6681] 0.3286 [0.0018, 0.6276]

Pyr_c => Lac_c (net) 1.8577 [1.7963, 1.9605] 2.2242 [2.1346, 2.3202] 2.5316 [2.4522, 2.8325]

Lac_c => Pyr_c (exch) 1.6518 [1.1658, 2.2579] 25.9784 [10.8526, 18.7776] 254.1638 [0.0000, 11.9200]

Lac_c => Lac_x (net) 3.5885 [3.5739, 3.6192] 3.7204 [3.6514, 3.7715] 3.6444 [3.5709, 3.7751]

Lac_x => Lac_c (exch) 15.5648 [13.1057, 17.6678] 28.1592 [10.9315, 12.5699] 23.3133 [5.0779, 7.7057]

Pyr_c => Pyr_m 1.6482 [1.5118, 1.8649] 2.615 [2.3715, 2.9389] 1.2451 [1.0290, 1.9787]

Pyr_m => AcCoA_m + CO2 2.5691 [2.4543, 2.7604] 3.1751 [3.0268, 3.4499] 1.666 [1.4674, 2.2857]

AcCoA_m + OAC_m => Cit_m 2.5691 [2.4543, 2.7604] 3.1751 [3.0268, 3.4499] 1.666 [1.4674, 2.2857]

Cit_m => CO2 + aKG_m 2.5729 [2.4585, 2.7642] 3.1789 [3.0310, 3.4532] 1.6687 [1.4703, 2.2874]

aKG_m => CO2 + Suc_m 3.6591 [3.5802, 3.7950] 4.1611 [4.0668, 4.3630] 2.3889 [2.2290, 2.8495]

Suc_m => Fum_m (net) 3.6591 [3.5802, 3.7950] 4.1611 [4.0668, 4.3630] 2.3889 [2.2290, 2.8495]

Fum_m => Suc_m (exch) 0.939 [0.9313, 0.9450] 7.5454 [7.5311, 7.5531] 1.9576 [1.9474, 1.9620]

Fum_m => Mal_m (net) 3.6591 [3.5802, 3.7950] 4.1611 [4.0668, 4.3630] 2.3889 [2.2290, 2.8495]

Mal_m => Fum_m (exch) 0.9363 [0.9271, 0.9423] 23.9471 [23.8635, 24.0191] 5.277 [5.2505, 5.2934]

Mal_m => OAC_m (net) 2.5691 [2.4543, 2.7604] 3.1751 [3.0268, 3.4499] 1.666 [1.4674, 2.2857]

OAC_m => Mal_m (exch) 0.8183 [0.8123, 0.8270] 8.739 [8.7296, 8.7487] 0 [0.0000, 8.9400]

Gln_c => Glu_m (net) 1.0066 [0.9542, 1.0430] 0.9135 [0.8261, 0.9822] 0.673 [0.5126, 0.7238]

Glu_m => Gln_c (exch) 7.1893 [6.2377, 7.9319] 12.0978 [7.6830, 16.0053] 3.266 [1.4250, 4.3577]

Glu_m => Glu_x (net) 0.0098 [0.0095, 0.0098] 0.0097 [0.0095, 0.0098] 0.0097 [0.0092, 0.0098]

Glu_x => Glu_m (exch) 4.7653 [4.3952, 4.9689] 5.1728 [4.1854, 5.8485] 5.3709 [3.6490, 5.9013]

Glu_m => aKG_m (net) 1.0871 [1.0284, 1.1258] 0.9832 [0.8886, 1.0591] 0.7217 [0.5465, 0.7775]

aKG_m => Glu_m (exch) 2619 [0.0000, 2.9800] 44.0377 [0.0000, 0.0000] 21.4624 [0.0000, 14.9000]
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Reaction T = 3h SSR = 45.6 T = 6h SSR = 45.6 T = 12h SSR = 45.6

aKG_m => aKG_c (net) 0.0027 [0.0027, 0.0027] 0.0027 [0.0027, 0.0027] 0.0027 [0.0027, 0.0027]

aKG_c => aKG_m (exch) 12.3423 [12.2654, 12.3953] 1.5888 [1.5857, 1.5928] 178.5361 [176.0787, 180.5242]

CO2 + aKG_c => Cit_c 0.0027 [0.0027, 0.0027] 0.0027 [0.0027, 0.0027] 0.0027 [0.0027, 0.0027]

Cit_c => AcCoA_c + Mal_c 0.0027 [0.0027, 0.0027] 0.0027 [0.0027, 0.0027] 0.0027 [0.0027, 0.0027]

Mal_c => CO2 + Pyr_m 1.0943 [1.0350, 1.1330] 0.9897 [0.8943, 1.0662] 0.7264 [0.5501, 0.7825]

Mal_c => Mal_m (net) −1.0916 [−1.1303, −1.0323] −0.987 [−1.0636, −0.8916] −0.7237 [−0.7799, −0.5474]

Mal_m => Mal_c (exch) 7.0304 [6.9535, 7.0775] 17.7872 [17.7003, 17.8720] 2.7855 [2.6212, 2.8444]

bio 0.0095 [0.0092, 0.0095] 0.0095 [0.0092, 0.0098] 0.0095 [0.0092, 0.0098]

Lac_exo => Lac_c 1.7308 [1.6470, 1.7892] 1.4961 [1.3809, 1.5871] 1.1127 [0.8684, 1.1929]

Gln_exo => Gln_c 1.0096 [0.9572, 1.0460] 0.9165 [0.8290, 0.9855] 0.676 [0.5158, 0.7268]

Gly_exo => Gly_c 0.0599 [0.0566, 0.0620] 0.0544 [0.0492, 0.0584] 0.04 [0.0307, 0.0432]

Cit_exo => Cit_m 0.0039 [0.0036, 0.0042] 0.0038 [0.0033, 0.0042] 0.0027 [0.0021, 0.0030]

Ala_exo => Ala_c 0.0471 [0.0405, 0.0492] 0.0404 [0.0352, 0.0447] 0.0287 [0.0218, 0.0316]

Glu_exo => Glu_m 0.0939 [0.0873, 0.0963] 0.0832 [0.0757, 0.0903] 0.0621 [0.0471, 0.0668]

aKG_exo => aKG_m 0.0018 [0.0018, 0.0018] 0.0016 [0.0015, 0.0018] 0.0012 [0.0009, 0.0012]

Mal_exo => Mal_m 0.0012 [0.0012, 0.0012] 0.0011 [0.0009, 0.0012] 0.0008 [0.0006, 0.0009]
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