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Small cell lung cancer (SCLC) is a neuroendocrine tumor treated clinically as a single disease with 

poor outcomes. Distinct SCLC molecular subtypes have been defined based on expression of 

ASCL1, NEUROD1, POU2F3 or YAP1. Here, we use mouse and human models with a time-

series single-cell transcriptome analysis to reveal that MYC drives dynamic evolution of SCLC 

subtypes. In neuroendocrine cells, MYC activates Notch to dedifferentiate tumor cells, promoting 

a temporal shift in SCLC from ASCL1+ to NEUROD1+ to YAP1+ states. MYC alternatively 

promotes POU2F3+ tumors from a distinct cell type. Human SCLC exhibits intratumoral subtype 

heterogeneity, suggesting this dynamic evolution occurs in patient tumors. These findings suggest 

that genetics, cell of origin, and tumor cell plasticity determine SCLC subtype.

Graphical Abstract

eTOC blurb

Ireland et al. show that MYC activates Notch signaling to dedifferentiate neuroendocrine small 

cell lung cancer (SCLC) in a conserved trajectory from ASCL1+ to NEUROD1+ to YAP1+ non-

neuroendocrine subtypes, suggesting these are not distinct subtypes but different stages of 

progressive evolution of SCLC.

INTRODUCTION

Understanding molecular heterogeneity in cancer is critical for precision medicine to tailor 

cancer treatments to the specific features of a patient’s disease. For example, lung 

adenocarcinoma comprises genetic subtypes with distinct, mutually-exclusive alterations in 

genes such as EGFR, KRAS or ALK, and targeting EGFR- or ALK-mutant tumors with 

targeted inhibitors prolongs survival and improves patient outcome (Collisson et al., 2014; 
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Lin et al., 2016; Remon et al., 2019). In mouse models of other tumor types such as prostate 

cancer, the same oncogenes can promote different tumor subtypes (i.e. luminal, basal) based 

on the initiating cell of origin (Park et al., 2016; Wang et al., 2013). The childhood 

cerebellar tumor medulloblastoma comprises genetic subtypes (i.e. WNT, SHH) and 

subtypes that appear to proceed along a developmental trajectory or continuum (i.e. Group C 

and D) (Hovestadt et al., 2019). For most cancers, the relative contribution of oncogenic 

pathway alterations, cell of origin, and biological plasticity to the overall tumor phenotype 

(i.e. subtype) is unknown.

Small cell lung cancer (SCLC) has historically been treated as a single disease without 

patient stratification. SCLC exhibits genetic loss of both tumor suppressors RB1 and TP53, 

along with mutually exclusive expression of MYCL, MYC or MYCN (Bragelmann et al., 

2017; Dammert et al., 2019; George et al., 2015; Peifer et al., 2012; Poirier et al., 2015; 

Rudin et al., 2012). Large-scale gene expression analyses of human tumors and cell lines 

suggest that SCLC comprises four distinct molecular subtypes based on expression of 

lineage-defining transcription factors: ASCL1 (SCLC-A), NEUROD1 (SCLC-N), POU2F3 
(SCLC-P) or YAP1 (SCLC-Y) (Rudin et al., 2019). Studies suggest that SCLC subtypes 

have unique therapeutic vulnerabilities (Cardnell et al., 2017; Chalishazar et al., 2019; 

Dammert et al., 2019; Huang et al., 2018a; Huang et al., 2018b; Mollaoglu et al., 2017; 

Owonikoko et al., 2019), emphasizing the clinical importance of understanding these 

subtypes. The origins and relationships amongst SCLC molecular subtypes are currently 

unknown (Poirier et al., 2020; Rudin et al., 2019).

The SCLC-ASCL1 subtype comprises ~70% of human SCLC. ASCL1 is a master regulator 

of neuroendocrine (NE) fate that is required for pulmonary NE cell (PNEC) development, 

and labels adult PNECs (Ito et al., 2001). The adult PNEC is a cell of origin for ASCL1+ 

tumors in multiple Rb1/Trp53 (RP)-null genetically-engineered mouse models (GEMMs) of 

SCLC (Meuwissen et al., 2003; Park et al., 2011; Sutherland et al., 2011). In these GEMMs, 

ASCL1 is essential for tumor development (Borromeo et al., 2016; Kim et al., 2016). MYCL 
is amplified or highly expressed in the SCLC-A subtype and is necessary for SCLC-A 

development (Borromeo et al., 2016; Dooley et al., 2011; George et al., 2015; Huijbers et al., 

2014; Kim et al., 2016; McFadden et al., 2014). In contrast, the other three SCLC subtypes 

representing ~30% of tumors (SCLC-N, SCLC-P, SCLC-Y) tend to exhibit amplification or 

overexpression of MYC, and exhibit a low or non-NE cell fate (George et al., 2015; Rudin et 

al., 2019). We showed that Myc expression drives a non-NE SCLC phenotype in RP 

GEMMs and tumors express NEUROD1 (Mollaoglu et al., 2017). However, the relationship 

between SCLC-A and SCLC-N, and whether MYC drives SCLC-P or SCLC-Y subtypes is 

unknown.

Notch signaling regulates PNEC fate and SCLC tumorigenesis with dichotomous functions. 

Notch acts as a tumor suppressor in SCLC with ~25% of tumors harboring loss-of-function 

alterations in Notch receptors (George et al., 2015). During lung injury, Notch2 marks an 

NE-stem cell population (NEstem) that undergoes self-renewal in the absence of Notch 

activation (Ouadah et al., 2019). Loss of Notch function in the context of Rb1 and Trp53 
loss is postulated to lock cells in a self-renewing NEstem-like state and thereby contribute to 

SCLC. However, Notch is active in a subset of human SCLC, and Notch activation can 
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promote non-NE SCLC fate (Lim et al., 2017). Moreover, an unknown signal activates 

Notch signaling during lung injury to promote transit amplification and deprogramming of 

NEstem cells to non-NE fates (Ouadah et al., 2019). While MYC and NOTCH have both 

been implicated in non-NE cell fate in SCLC, a functional relationship between MYC and 

NOTCH in this setting has not been defined.

Here, we investigate the function of MYC in the origins and relationships among SCLC 

molecular subtypes.

RESULTS

MYC drives multiple SCLC molecular subtypes in vivo

To determine which SCLC molecular subtypes are promoted by MYC, we analyzed tumors 

in Myc-driven (Rb1fl/fl;Trp53fl/fl;Lox-Stop-Lox (LSL)-MycT58A, RPM) and Mycl-driven 

(Rb1fl/fl;Trp53fl/fl;Rbl2fl/fl, RPR2) SCLC GEMMs (Figure S1A) at time points with similar 

tumor burden (Kim et al., 2016; Schaffer et al., 2010). We used adenoviral-Cgrp promoter-

Cre viruses (Ad-Cgrp-Cre) to specifically transform PNECs (Sutherland et al., 2011). Early 

in situ lesions in RPM and RPR2 models exhibit high expression of NE markers including 

ASCL1, SYP, CGRP, UCHL1, and DLL3 (Figures 1A, 1B, and S1B). Invasive RPR2 tumors 

retained a NE-high identity, whereas invasive RPM tumors displayed significantly reduced 

NE marker expression (Figures 1A, 1B, and S1B). Bulk gene expression data from human 

SCLC cell lines has shown that Myc, Notch/Rest, Hippo/Yap1, and epithelial-mesenchymal 

transition (EMT) pathways correlate with non-NE fate in SCLC (Zhang et al., 2018). We 

analyzed expression of SCLC subtype markers and a subset of the non-NE fate markers in 

RPM and RPR2 tumors. Invasive RPM tumors gained expression of non-NE markers 

including NEUROD1, YAP1, HES1, ZEB1, and CD44 (Figures 1C, 1D, and S1B). MYC 

expression was high in both in situ and invasive RPM tumors, and not detectable in RPR2 

tumors (Figure S1B). Interestingly, POU2F3 was rarely detected in RPM tumors derived 

from PNECs (Figure 1E). However, tumors initiated in RPM mice with a general promoter 

(Ad-CMV-Cre), but not a club or alveolar type II (AT2) promoter, were enriched for 

POU2F3 expression (Figures 1E, 1F, and S1C). POU2F3 was not detected in Mycl-
associated RPR2 tumors initiated from a general or NE promoter (Figure 1E). Analysis of 

serial sections of POU2F3+ tumors revealed that ~44% lacked expression of other SCLC 

subtype markers, whereas the majority of the remaining tumors expressed POU2F3 and 

NEUROD1 (Figures 1G and 1H). The fraction of cells expressing other subtype markers 

within POU2F3+ tumors was relatively minor (< 16% of cells) (Figures 1G and 1H). These 

data suggest that MYC-driven SCLC-P tumors predominantly arise from an unknown cell-

of-origin that is not a PNEC, club, or AT2 cell, and that MYC (as opposed to MYCL) 

promotes SCLC-P development. Since POU2F3 is a master driver of the tuft cell lineage 

(Huang et al., 2018b), future studies will be required to determine whether MYC-driven 

SCLC-P tumors arise from tuft cells.

Together, these data suggest that in the context of Rb1 and Trp53 loss, MYC can promote 

SCLC-N and SCLC-Y molecular subtypes from an ASCL1+ PNEC cell-of-origin. Further, 

MYC drives SCLC progression in PNECs from an NE-high to non-NE phenotype. These 

findings are consistent with the enrichment of MYC expression in human SCLC-N, -Y and 
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P subtypes (Rudin et al., 2019), and demonstrate that MYC is a driver of these SCLC 

molecular subtypes in vivo.

MYC drives SCLC subtype evolution in vitro

Static observations of tumor histology provide limited insight into the potential temporal 

connections between SCLC subtypes. To address this point, we macro-dissected central 

portions of the lung of Ad-Cgrp-Cre-infected RPM mice prior to detection of macroscopic 

lesions at a time point with predominantly ASCL1+ in situ tumors (Figure 2A). We cultured 

dissociated cells and within 3-4 days, large clusters of tumor cells grew in suspension 

(Figure 2B). The tumor cells initially form tight, round, spherical aggregates that resemble 

classic, NE-high human SCLC cell lines (Figures 2B and 2C), but eventually form 

amorphous clusters with a “chain-link” morphology that resembles variant, non-NE human 

SCLC cells (Figures 2B, 2C, and S2A). This striking transition occurred reproducibly over a 

period of ~20 days, consistent with the time frame from early-to-invasive SCLC progression 

in the RPM GEMM (Mollaoglu et al., 2017). There was a minor level of cell death during 

culture that was relatively consistent throughout the time course (Figure S2B). Importantly, 

early-stage RPR2 tumor cells maintained a classic morphology in culture (Figures 2B and 

S2A).

To characterize the RPM tumor cell transition, we harvested RPM tumor cells at multiple 

time points during culture and assessed markers of SCLC subtypes. Cells at day 5 displayed 

an NE-high identity, marked by ASCL1 and NE marker expression (Figure 2D). NEUROD1 

was transiently expressed from day 5-12, followed by expression of the non-NE markers 

REST, YAP1, NOTCH2, NOTCH2’s active cleaved intracellular domain (N2ICD), and 

HES1 at day 10-24. In contrast, control RPR2 tumor cells expressed ASCL1, and did not 

induce non-NE markers (Figure S2C). Ectopic MycT58A-Ires-Gfp expression in RPR2 cells 

triggered a variant morphology of looser clusters or chains, and induced non-NE markers 

(Figures S2C and S2D). This finding indicates that the NE-high to non-NE fate transition is 

not simply a consequence of prolonged culture.

To test if MYC is sufficient to alter tumor cell fate in established human SCLC cells, we 

expressed MycT58A-Ires-Gfp in NE-high, MYCL-associated classic lines. Ectopic MYCT58A 

expression altered cell morphology from classic to variant-like, and induced non-NE marker 

expression (Figures 2E and 2F). The levels of ectopic MYC overexpression were 

consistently less than that of MYC-high SCLC cell lines and RPM tumors (Figure S2E), 

suggesting this phenotype is not due to supraphysiological MYC levels. NEUROD1 

expression was not detected in these experiments (Figures 2E and S2C), suggesting that 

NEUROD1 expression is either early and transient (as in Figure 2D) or that YAP1 

expression can be induced by MYC without NEUROD1 expression. Despite the gain of non-

NE marker expression and variant morphology induced by MYC, mouse and human MYC-

expressing cells retained expression of some NE-markers including ASCL1 (Figures 2E and 

S2C), suggesting either a heterogeneous population, and/or the presence of hybrid NE/non-

NE cells. Overall, these data demonstrate MYC’s ability to promote non-NE tumor cell fate 

and subtype evolution from SCLC-A to SCLC-Y in tumor cells in vivo and in human SCLC 

cells.
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Human SCLC subtypes correspond with MYC-driven evolution

Next, we sought to investigate the transcriptional states of MYC-driven tumor evolution in 

human SCLC tumors. We performed bulk RNA-sequencing of RPM tumor cells from Ad-

Cgrp-Cre infected mice at eight time points during the transition spanning 21 days in 

culture. Analysis of NE and non-NE pathway genes confirmed a temporal loss of NE 

identity, and a subsequent gain of non-NE signaling pathways including Notch/Rest, Hippo/

Yap1, and EMT (Figures 3A and S3A) (Zhang et al., 2018). Gene set enrichment analyses 

(GSEA) of an established 50-gene signature comprised of 25 NE and 25 non-NE-related 

genes from human SCLC cell lines (Zhang et al., 2018) demonstrated that MYC promotes a 

shift from NE to non-NE transcriptional states (Figures 3B and S3A). We observed dynamic 

and sequential expression of the subtype-defining transcription factor genes Ascl1, Neurod1 
and Yap1 during the transition (Figure 3C). Consistent with a lack of POU2F3 in RPM 

tumors derived from PNECs (Figure 1E), we observed extremely low counts of Pou2f3 
mRNA during the transition (Figure 3C).

To determine whether the expression of the subtype-defining transcription factors correlate 

with gene expression patterns in human tumors, we clustered ~81 human SCLC tumors and 

~51 human SCLC cell lines according to molecular subtype using bulk RNA-sequencing 

data (Figure S3B). We then created human SCLC-subtype-specific gene signatures using the 

most highly expressed genes per subtype (Table S1), and applied GSEA to determine 

whether each signature was enriched or depleted during the RPM transition (Figure 3D). 

Consistent with the patterns of transcription factor gene expression (Figure 3C), Day 3-5 and 

Day 7-10 cells were enriched for human SCLC-A and SCLC-N signatures, and depleted for 

the SCLC-Y signature. In contrast, Day 14-21 cells were enriched for the SCLC-Y signature 

and depleted for SCLC-A and SCLC-N signatures, demonstrating that MYC-driven tumor 

cell evolution in the mouse corresponds with subtype-defining transcriptional signatures in 

human tumors. We confirmed that Rb1 and Trp53 were recombined in RPM tumor cells 

(Figures S3C and S3D). Whole-genome sequencing (WGS) of early and late time-point 

RPM tumor cells also confirmed complete loss of expected regions of Rb1 and Trp53 with 

no detectable copy number variations (CNVs) (Figures S3E and S3F). Together, MYC-

driven tumor cell evolution in vitro reflects the temporal phenotypic changes observed in the 

RPM GEMM, and places three of four human SCLC subtypes along a defined MYC-driven 

trajectory from SCLC-A to -N to -Y.

MYC-driven SCLC subtypes progress along a single evolutionary trajectory

To better understand the transcriptional changes during MYC-driven SCLC progression, we 

performed single cell RNA-sequencing (scRNA-seq). We isolated unsorted early-stage 

tumor cells from RPM-Rosa26-LSL-Cas9-Ires-Gfp (RPM-Cas9) mice as they were 

transitioning from Day 4-21 in culture at six distinct time points (Figure 4A). Approximately 

4-8,000 cells were captured per time point (n = 31,519 total cells). Day 4 and -7 cells 

comprised both tumor and non-tumor cell populations and the non-tumor populations were 

depleted in culture by Day 11 (Figures 4A and S4A). For downstream analyses, non-tumor 

and low-quality cells were filtered out of the time-course (Figures 4B and S4A). Minor 

variation in gene expression due to cell cycle genes was regressed out for downstream 

analyses (Figure S4B). Unsupervised tSNE clustering of tumor cells based on top highly-
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expressed genes revealed at least three distinct clusters corresponding with the vast majority 

of Days 4-7, 11, and 14-21 cells, respectively (Figure 4B). Cells in the Day 4-7 cluster 

expressed high levels of Ascl1 and NE markers, which were largely absent in Day 11-21 

cells that instead expressed high levels of non-NE markers (Figure 4C). Though we captured 

only a few Neurod1-expressing cells in the time-course, these cells clustered with NE-high 

cells (Figure S4C).

Next, we performed scRNA-seq on four invasive RPM-Cas9 tumors, one predominantly 

ASCL1-high (RPM1) and three that had varying levels of NEUROD1 and YAP1 expression 

(RPM2-4) (Figures S4D and S4E). Combining the RPM transition time-points and tumor 

samples, we constructed pseudotime trajectories to identify predicted transcriptional 

relationships among the tumor cells. Unsupervised pseudotime ordering of combined tumor 

cells predicted a single lineage trajectory that corresponds with early to late transition time 

points (Figures 4D-4F). Faceted pseudotime trajectories reveal that cells of the RPM tumors 

progress along the same trajectory as transitioning cells in vitro, with the bulk of tumor cells 

in the earliest stages of pseudotime and fewer cells progressing to later stages (Figure 4D). 

RPM2-4 tumors had more cells in the later time points than RPM1, consistent with their 

lower ASCL1 levels and higher YAP1 protein expression (Figures 4D and S4D).

Expression of Ascl1, Neurod1 and Yap1 were consistent with MYC-driven temporal 

evolution, whereas Pou2f3 was rarely detected (Figure 4E). Mycl was associated with Ascl1 
expression in early time points and absent during tumor cell progression (Figure 4E), 

consistent with studies showing that ASCL1 and MYCL are coordinately expressed in 

chemo-naive SCLC, and reduced in chemotherapy-relapsed SCLC (Wagner et al., 2018). 

Expression of the top-500 differentially-expressed genes across pseudotime demonstrate 

broad loss of NE genes followed by gain of non-NE genes (Figure 4F and Table S2).

We detected a small number of Ascl1-high cells at Day 4 (n = 8 cells) that distributed to the 

late end of pseudotime (Figures 4D and S4F); only one of these cells clustered with late-

stage tumor cells in tSNE space (Figures S4F and S4G), suggesting these cells are 

transcriptionally dissimilar from both early and late-stage tumor cells. As an orthoganol 

approach to predicting cellular trajectories, we performed diffusion mapping (Angerer et al., 

2016; Coifman et al., 2005; Giraddi et al., 2018). Diffusion mapping revealed the same 

cellular trajectory from early, NE-high to late, non-NE cell states in transitioning cells in 

culture and in tumors (Figure S4H). Diffusion components (DCs) that best distribute time 

points in culture were compounded to define a principle curve predicting diffusion 

pseudotime (i.e. cellular trajectory) (Figure S4I). Diffusion pseudotime placed a small 

number of Day 4 cells late in pseudotime (Figure S4J), but these cells were transcriptionally 

distinct from other Day 4 cells and the bulk of late cells from other timepoints and tumors 

(Figure S4K). Diffusion analysis also revealed some features distinguishing primary tumor 

cells and transitioning cultured cells (e.g. DC6, DC4) (Figure S4L). Monocle and diffusion 

map pseudotime coordinates were significantly, positively correlated (Figure S4M). 

Together, pseudotime analyses are consistent with our data suggesting that MYC drives the 

temporal evolution of SCLC fate from NE to non-NE states in culture and in tumors in vivo.

Ireland et al. Page 7

Cancer Cell. Author manuscript; available in PMC 2021 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MYC-driven murine tumors exhibit intratumoral molecular subtype heterogeneity

Pseudotime analyses suggest that individual RPM tumors are composed of cells representing 

multiple SCLC molecular subtypes (Figures 4D and 4E). To test this more comprehensively, 

we analyzed serial sections of individual RPM tumors at the in situ or invasive stage for 

subtype markers (Figures 5A and 5B). In situ tumors were predominantly ASCL1+ and 

harbored a single molecular subtype marker (~ 87%). In contrast, invasive tumors 

predominantly harbored two or more subtypes, either ASCL1 and NEUROD1, or all three 

molecular subtypes (ASCL1, NEUROD1 and YAP1). CIBERSORT analyses from an 

additional 10 RPM tumors also predicted intratumoral heterogeneity with cells throughout 

the stages of MYC-driven progression (Figure 5C). Analyses of the RPM tumors by scRNA-

seq suggest that there is minimal coexpression of these markers within individual cells, with 

the exception of Ascl1 and Neurod1 (Figure 5D), consistent with their close connection in 

pseudotime. The average abundance of Ascl1, Neurod1, and Yap1 in these tumors is also 

relatively consistent with bulk RNA-seq and protein analyses (Figures 5B-5D). scRNA-seq 

analyses of the RPM transition in culture also shows little overlap between Ascl1, Neurod1, 

and Yap1 in individual cells (Figure 5E), with Day 11-21 cells resembling later stages of 

tumor progression. Thus, independent methods suggest that MYC drives the evolution of 

multiple SCLC subtypes in vivo.

MYC activates Notch signaling during NE dedifferentiation

To uncover transcriptional patterns associated with MYC-driven tumor cell evolution, we 

performed differential gene expression analysis using the scRNA-seq data (Figure 6A). 

ENRICHR analysis of top differentially-expressed genes between the major clusters of cells 

(Day 4-7 vs Day 11 vs Day 14-21) identified transcription factors predicted to be important 

for SCLC fate (Figure 6B) (Wooten et al., 2019), including REST, SUZ12, TCF3, 

NEUROD1, NHLH1, MYC and SOX2. As Notch/Rest signaling can promote non-NE fate 

in SCLC (Lim et al., 2017), and REST is a top predicted regulator of the earliest changes 

promoted by MYC, we focused on the NE phenotypic switch. Using the human-derived NE-

score vectors from (Zhang et al., 2018) (Table S3), we assigned an NE-score to every cell in 

the RPM time-series and bulk tumors (Figure 6C). The NE-score accurately predicted the 

decrease in NE identity over time with a dramatic reduction in NE-score between Day 7 and 

11 (Figure 6D).

To determine how MYC promotes this transition at a mechanistic level, we performed 

chromatin-immunoprecipitation-sequencing (ChIP-seq) for MYC in invasive RPM tumors (n 

= 4) representing a spectrum of tumor cell states (Figure S5A). The top-50 upregulated 

genes bound by MYC in RPM tumors whose expression was enriched in MYC-high vs -low 

human SCLC tumors and in mouse RPM vs RPR2 tumors were used to define a conserved 

MYC-ChIP score (Table S3). Application of the MYC-ChIP score to the time-series data 

revealed a small, but significant increase in MYC activity from Day 11 onward (Figure 6E), 

validating the ENRICHR predictions (Figure 6B). These analyses suggest that Day 7-11 

represents a key transition state, characterized by loss of NE identity and high-MYC activity.

Because we observed Notch/Rest pathway induction during MYC-driven SCLC progression, 

we analyzed the expression of Notch-related machinery and target genes during the 

Ireland et al. Page 8

Cancer Cell. Author manuscript; available in PMC 2021 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transition. Expression of Notch-inhibitory factors were increased at early time points 

(Figures S5B and S5C), including the inhibitory Notch ligand gene Dll3, Hes6 (HES6 is a 

repressor of HES1), Fbxw7 (FBXW7 promotes NOTCH degradation), and Ncor2 (NCOR2 

functions in a Notch-corepressor complex) (Gratton et al., 2003; Matsumoto et al., 2011; 

Saunders et al., 2015). In contrast, pro-Notch signaling genes increased in expression over 

time, including the Notch target genes Hes1 and Rest, and the Notch receptor gene, Notch2 
(Figures S5B and S5C). GSEA of Notch signaling and REST-transcriptional targets by bulk 

RNA-seq reveals increased Notch pathway activity and repressive REST activity in late 

compared to early transition time points (Figure S5D). Importantly, multiple Notch-

signaling components were identified as MYC target genes including Notch2, Hes1, Hes6 
and Jag2 (Figure 6F). Consistently, NOTCH2 and HES1 protein levels were induced by 

MYC in multiple cell types (Figures 2D, 2E and S2C). Pro-Notch signaling genes NOTCH2, 
HES1, and REST are also preferentially enriched in MYC-high human SCLC (Figure 6G), 

while Notch-inhibitory HES6 is reduced, suggesting broad positive regulation of Notch 

signaling by MYC in SCLC. Together, these data suggest that MYC increases NOTCH/

REST activity to destabilize NE identity during MYC-driven SCLC evolution.

Notch activation is required for MYC-driven tumor evolution

To determine whether Notch signaling is required for MYC-driven SCLC evolution, early 

RPM tumor cells were cultured in vehicle control or the gamma-secretase inhibitor (GSI-IX) 

(e.g. DAPT) to block Notch signaling. In contrast to control cells that began to convert to 

variant morphology on Day 10, DAPT-treated RPM cells did not switch to variant 

morphology until ~Day 20 (Figure 7A). Notch blockade increased and prolonged ASCL1, 

INSM1, EPCAM, and NEUROD1 expression compared to control cells (Figures 7A, S6A 

and S6B). In contrast, DAPT-treatment delayed or blocked expression of non-NE markers 

(Figures 7B, S6A and S6B). Interestingly, when DAPT is added to Notch-active fully-

progressed RPM tumor cells rather than cells in the classic/early state, we observe 

equivalent expression of non-NE markers and no reversion to NE marker expression, despite 

efficient Notch signaling blockade (Figure S6C). Therefore, it is possible that MYC-driven 

tumor evolution may be irreversible, but it remains to be determined whether blockade of 

other non-NE-related pathways could revert SCLC to an NE-high state. Next, we treated 

RPM mice with early stage tumors with DAPT to block Notch signaling in vivo and 

monitored tumor growth by microCT imaging for 10 days, since control animals live an 

average of ~12 days following tumor detection by microCT imaging. DAPT treatment led to 

a significant decrease in tumor burden in DAPT-treated vs control mice (Figure 7C). 

Quantification of H&E-stained tissue revealed that tumor burden was significantly reduced 

by DAPT treatment (Figure 7D). DAPT-treated RPM tumors exhibited an increase in classic 

morphology indicated by smaller cells with high nuclear:cytoplasmic ratios compared to 

control tumors and a significant increase in NE identity, measured by ASCL1 and DLL3 

levels (Figures 7E and 7F). Moreover, DAPT-treated tumors exhibited a decrease in tumor 

progression compared to control tumors evident by reduced expression of NEUROD1 and 

YAP1. We did not detect differences in HES1 expression, likely because HES1 levels were 

already low in control tumors at these time points (Figures 7E and 7F). MYC levels were 

high in both treatment groups with > 90% of cells positive for MYC, suggesting that the 

impact of Notch inhibition on cell state is not due to reducing MYC levels. Treatment of 
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tumor-bearing RPM mice with a second Notch inhibitor (dibenzazepine, DBZ) also 

significantly reduced tumor burden compared to control animals, but was highly toxic 

limiting analysis to Day 7 (Figures S6D and S6E). Together, these findings suggest that 

Notch inhibition significantly inhibits MYC-driven tumor progression.

Loss-of-function NOTCH mutations occur in ~25% of human SCLC, with mutually 

exclusive alterations in NOTCH1, −2, −3 and −4 (George et al., 2015). We hypothesized that 

MYC requires intact NOTCH to drive SCLC subtype evolution. Using published functional 

classifications of NOTCH mutations, we grouped human SCLC tumors and cell lines as 

either NOTCH-wild-type (WT) or silent, non-damaging, or damaging. Consistent with our 

hypothesis, MYC expression is significantly increased in NOTCH WT or silent mutant 

compared to NOTCH-damaging mutant samples (Figure 7G). All MYC-high SCLC samples 

(n = 30) are predicted to have intact NOTCH (Figure 7G, left panel). Many MYC-expressing 

tumors with intact NOTCH exhibit low NE-scores, whereas all of the NOTCH-damaging 

mutant tumors are NE-high (Figure 7G, right panel). We mined a recent cell line genomics 

database (SCLC_CellMiner) (Tlemsani et al., 2020), which allowed a similar analysis with 

50 additional human SCLC cell lines (Figure 7H). There was a significant difference in the 

quantity and proportion of MYC-high NOTCH-WT versus MYC-high NOTCH-mutant 

samples that were NE-low, consistent with our model that MYC promotes non-NE 

progression by activating NOTCH signaling. GSEA suggest that Notch signaling and MYC 

activity are enriched in NOTCH WT human SCLC compared to samples with damaging 

mutations (Figure 7I and Table S4). Together, these results suggest that MYC depends on 

NOTCH to promote NE dedifferentiation, and that Notch blockade can inhibit MYC-driven 

tumor progression.

Human SCLC exhibits intratumoral molecular subtype heterogeneity

We sought to determine the abundance of RPM time-point gene signatures in bulk RNA-seq 

data from human SCLC tumors and cell lines (George et al., 2015; Newman et al., 2015). 

CIBERSORT analyses revealed that most human tumors are predicted to have cells 

resembling multiple stages of MYC-driven progression, regardless of their classified SCLC 

subtype (Figure 8A), reminiscent of a similar approach predicting varying proportions of 

SCLC phenotypes in human tumors (Wooten et al., 2019). The majority of tumors harbor 

cells that resemble the NE-high ASCL1+ early time-point RPM cells (Figures 8A and 8B). 

The human SCLC-N subtype was enriched for the Day 7-10 time-point signature and the 

human SCLC-Y samples exhibit a significantly higher percentage of non-NE late-time-point 

signatures (Figures 8A and 8B). This suggests that individual human tumors have cells in 

multiple stages of tumor progression, with MYC-high tumors more likely to have cells at the 

latest stages of progression. Interestingly, some SCLC-A tumors were predicted to have a 

higher percentage of late-stage cells; these tumors had moderately higher MYC levels and 

significantly higher levels of NOTCH2, HES1 and REST, consistent with a reduction in NE 

identity (Figures 8A and 8C).

To verify these predictions in human tissue, we obtained 21 chemo-naive human SCLC 

biopsies (n = 6 limited and 15 extensive stage), since surgical specimens in SCLC are rare 

and difficult to obtain due to metastatic disease. We performed IHC for ASCL1, NEUROD1, 
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YAP1, and MYC on serial sections. Many tumors harbored cells with more than one 

subtype, with the majority of tumors having some frequency of ASCL1 and/or NEUROD1 

protein (Figures 8D and 8E), consistent with human gene expression data (Figure 8A). 

Approximately ~14% of samples harbored detectable MYC protein, and of these, none of 

them were in the ASCL1-only group. Finally, we obtained one fresh human SCLC biopsy 

from a patient who briefly responded to carboplatin and etoposide and then progressed on 

carboplatin-irinotecan for scRNA-seq analyses. The biopsy harbored distinct ASCL1+ and 

NEUROD1+ populations, and high MYC expression overlapped specifically with the 

NEUROD1-high population (Figures 8F, 8G, S7A and S7B). While these data warrant a 

more comprehensive analysis in human tissue, these findings are consistent with 

bioinformatic predictions suggesting that tumors frequently harbor cells representing 

multiple SCLC subtypes.

DISCUSSION

While SCLC has historically been treated as a single disease, recent studies have converged 

on the concept that SCLC is composed of at least four molecular subsets with unique 

therapeutic vulnerabilities. Recent bioinformatic approaches suggest that SCLC subtypes 

may represent dynamic states of transition (Wooten et al., 2019). Our functional data here 

support that hypothesis and suggest that MYC has the capacity to shift SCLC molecular 

subtypes. We find in the context of Rb1 and Trp53 loss, MYC can promote three of the four 

molecular subsets from a PNEC cell of origin that proceed in a temporal evolution from 

SCLC-A, to SCLC-N to SCLC-Y in vivo. Studies in a limited number of human SCLC cell 

lines and patient-derived xenograft (PDX) models also suggest that MYC can convert 

ASCL1+ SCLC to a variant morphology with NEUROD1 expression (Johnson et al., 1986; 

Patel et al., 2019; Simpson et al., 2020). Interestingly, we observed SCLC-P in RPM mice 

when an unknown cell type was targeted that we speculate could be the tuft cell (Huang et 

al., 2018b; Rudin et al., 2019). These data demonstrate that cell of origin, genetics, and 

tumor cell plasticity can determine SCLC subtype.

Our data suggest that MYC requires Notch pathway activity to promote tumor progression. 

Notch activity can promote non-NE fate in Mycl-associated SCLC models in the absence of 

MYC expression (George et al., 2015; Lim et al., 2017). In the RPR2 model, tumors with 

MYC-negative Notch-active cells do not develop variant morphology or express NEUROD1 

or YAP1, in contrast to MYC-expressing Notch-active cells in our study. Together, these 

findings suggest that Notch activity alone is not sufficient to drive SCLC-N and SCLC-Y 

subtypes, and that MYC and NOTCH likely cooperate with one another to drive SCLC 

progression.

Recently identified NEstem cells are enriched for Notch2 and Hes1 expression (Ouadah et 

al., 2019). Hes1 is particularly enriched in RPM time points where MYC-driven tumor cells 

are transitioning to a non-NE fate. HES1 is also enriched in ASCL1+ human SCLC tumors 

that exhibit a more non-NE fate in the absence of high MYC, consistent with a model 

whereby Notch can promote non-NE fate, but may be limited in its ability to promote 

progression without MYC. We identify Notch2 and Hes1 as MYC target genes, suggesting 

that MYC could be the unidentified signal that induces Notch signaling to deprogram 
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NEstem cells to other cell fates during lung injury (Ouadah et al., 2019). We propose a model 

whereby NEstem-like tumors with defective Notch signaling are locked in a NE-high state, 

whereas tumors with intact Notch can be reprogrammed by MYC to non-NE fates—

explaining the dichotomous nature of Notch signaling in SCLC (Figure 8H). While our 

pharmacological studies suggest that Notch activity is critical for MYC-driven tumor 

progression, genetic Notch knockout studies are warranted to fully test this model. These 

data warrant evaluation of pharmacological approaches that activate Notch in SCLC (Augert 

et al., 2019; Oser et al., 2019) to determine whether they can promote tumor progression 

particularly in collaboration with MYC.

The RPM primary cell culture model should be a valuable tool to better understand the role 

of additional signaling pathways in MYC-driven tumor evolution. Lineage-tracing 

approaches in this model in vitro and in vivo would be a powerful complement to the studies 

here. As some of our assays suggest that SCLC can progress from SCLC-A to SCLC-Y 

without evidence of the SCLC-N subtype, further studies are warranted to determine 

whether NEUROD1 is required or dispensable for SCLC progression. The functions of 

Hippo/Yap1 and EMT in SCLC (also induced by MYC) are less well understood than Notch 

signaling (Horie et al., 2016; Jia et al., 2018; McColl et al., 2017). Previous studies suggest 

that SCLC-Y human tumors are often RB1 wild-type (McColl et al., 2017). We observe 

MYC-high YAP1+ tumor cells that appear to lack Rb1, suggesting there may be more than 

one mechanism to induce YAP1 in SCLC.

Our work builds on an emerging concept that MYC and MYCL are not functionally 

redundant in SCLC. MYC and MYCL correlate with distinct gene expression and 

methylation profiles, and localize to distinct super enhancers (Borromeo et al., 2016; 

Christensen et al., 2014; Poirier et al., 2015). Functional studies modulating MYC reveal 

MYC’s capacity to change cell fate, morphology, drug sensitivity, and molecular subtype 

(Dammert et al., 2019; Mollaoglu et al., 2017; Patel et al., 2019). In other tumor types like 

medulloblastoma, MYC and MYCN also appear to have distinct roles (Vo et al., 2016), 

illustrating divergent functions for MYC family members in cancer.

We find that many SCLC tumors are composed of cells representing multiple molecular 

subtypes at different frequencies, suggesting that bulk analysis methods may only identify 

the most abundant state in a given tumor. Studies are increasingly identifying unique 

therapeutic vulnerabilities for SCLC subtypes. For example, MYC-high tumors are 

preferentially sensitive to inhibition of AURKA/B, CHK1, IMPDH1/2, and arginine 

deprivation (Cardnell et al., 2017; Chalishazar et al., 2019; Dammert et al., 2019; Huang et 

al., 2018a; Mollaoglu et al., 2017; Sen et al., 2017). POU2F3+ SCLC cells are sensitive to 

IGF1R inhibitors (Huang et al., 2018b), while ASCL1+ tumors express more DLL3 and are 

sensitive to DLL3-targeting drugs (Cardnell et al., 2017; Saunders et al., 2015). Considering 

data that SCLC subtypes have distinct therapeutic vulnerabilities, this suggests that 

dynamically-evolving tumors represent a “moving therapeutic target”, adopting unique 

therapeutic vulnerabilities as they progress. Given many failed clinical trials with targeted 

therapies in SCLC, we speculate that the reason why chemotherapy (a “blunt instrument”) 

has remained the most effective therapeutic option is likely due to its non-specific 

cytotoxicity in the multiple subtypes of SCLC that evolve during progression.
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As clinical trials begin to assess biomarkers of SCLC subtype and potentially enroll patients 

based on these subtypes (Owonikoko et al., 2019; Poirier et al., 2020), it will be critical to 

assess subtype heterogeneity and anticipate tumor evolution to other subtypes. Multiple 

studies have implicated an increase in MYC and a decrease in MYCL and ASCL1 in 

chemotherapy-resistant mouse and human SCLC (Chalishazar et al., 2019; Farago et al., 

2019; Huang et al., 2018a; Mollaoglu et al., 2017; Stewart et al., 2020; Wagner et al., 2018) 

and have correlated high MYC with shorter patient survival and more aggressive, drug-

resistant phenotypes (Carney et al., 1985; Gazdar et al., 1985; Johnson et al., 1986). Recent 

studies also demonstrate an increase in intratumoral transcriptional heterogeneity in chemo-

resistant patient samples (Stewart et al., 2020). Together, these findings suggest the 

provocative notion that therapy selects for and/or promotes the latest stages of tumor cell 

progression identified here. We speculate that cancers in other tissues may also harbor cells 

in transcriptionally-dynamic states of progression, and would potentially benefit from either 

more blunt, combinatorial, or plasticity-directed therapies.

STAR+METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Trudy G. Oliver 

(Trudy.Oliver@hci.utah.edu).

Materials availability—The RPM mice used in this study are deposited at The Jackson 

Laboratory, JAX #029971. There are restrictions to the availability of the RPM-Cas9 mice 

due to further characterization of the Cas9 allele needed. Plasmids in this study will be 

deposited to Addgene.

Data and code availability—All software is commercially available or cited in previous 

publications. Mouse RNA-seq, scRNA-seq and WGS data in this study are deposited in 

NCBI GEO: GSE149180. ChIP-seq data is deposited in GEO: GSE142496. Human scRNA-

seq data is available at NCBI GSE149180. R scripts used to process single cell RNA-seq 

data are available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human SCLC samples—All patients provided informed consent for the collection of 

human specimens, and it was approved by the University of Utah Institutional Review Board 

(IRB_00010924) in accordance with the U.S. Common Rule. We queried for patients 

diagnosed with SCLC between 1st January 2011 and 1st April 2017 from the Cancer Clinical 

Research Database at Huntsman Cancer Institute (HCI). Chemotherapy-naive patients with 

availability and consent for utilization of archival tumor tissue for research purposes were 

isolated. We then retrospectively reviewed the available clinical data from the analyzed 

samples to obtain information about patient demographics, clinical staging, treatment 

response and survival. The original diagnosis of SCLC was made per standard-of-care by a 

board-certified pathologist at HCI, and a secondary confirmation of diagnosis for research 

purposes was obtained by board-certified pathologist Dr. Benjamin L. Witt. Single cell RNA 
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sequencing was performed on a tumor biopsy specimen collected from a patient with SCLC 

treated at the Siteman Cancer Center, Washington University School of Medicine in St. 

Louis. The biopsy specimen from this patient was banked for research purposes following 

consent through an IRB-approved protocol at the Washington University School of Medicine 

in St. Louis (HRPO 201305031).

Clinical details—21 unique patients with small cell lung cancer were identified between 

1st January 2011 and 1st April 2017 with adequate archival tissue for analysis. Lung was the 

most common site of tissue biopsy (95%, 20/21). All patients were chemotherapy-naïve and 

the majority of patients had extensive disease at the time of initial diagnosis (71%, 15/21). 

The liver biopsy specimen for single cell sequencing was collected from a patient with 

extensive stage SCLC, at the time of progression, following initial therapy with carboplatin 

and etoposide - to which the disease briefly responded (platinum-resistant relapse). Disease 

at relapse failed to respond to subsequent therapy with carboplatin and irinotecan, and 

nivolumab and ipilimumab.

Cell lines—Human SCLC cell lines were obtained from ATCC, Dr. Minna (UTSW), Dr. 

Bunn (UC-Denver) or Martin Sos (Germany) and cultured in either RPMI (Fisher cat# 

MT10-040-CV) supplemented with 10% fetal bovine serum (FBS) (Sigma cat# 12303C), 

1% L-glutamine (Invitrogen cat#2 5030-081), and 1% penicillin/streptomycin antibiotic 

cocktail (Invitrogen cat# 15140-122) (H889, GLC1, H1963, GLC8, H82); modified HITES 

medium DMEM/F12 (VWR cat#45000-344) supplemented with 0.005 mg/mL insulin 

(Fisher cat#12585-014), 0.01 mg/mL transferrin (Sigma cat# T2036), 30 nM sodium selenite 

(Sigma cat# S5261), 10 nM hydrocortisone (Sigma cat# H0888), 10 nM beta-estradiol 

(Sigma cat# E2758), 1% L-glutamine (Invitrogen cat#2 5030-081), and 1% penicillin/

streptomycin cocktail (Invitrogen cat# 15140-122) (H1092); or DMEM (Fisher cat# 

MT-10-013-CV) with 10% FBS, 1% L-glutamine, and 0.1% penicillin/streptomycin 

antibiotic cocktail (HEK-293T). Cell line identity was confirmed by STR profiling in 

December, 2019.

Mice—Rb1fl/fl;Trp53fl/fl;Rbl2fl/fl (RPR2) (Schaffer et al., 2010) (now deposited in 

MMRRC: 043692-UCD) and Rb1fl/fl;Trp53fl/fl;MycT58ALSL/LSL (RPM) (JAX #029971)

(Mollaoglu et al., 2017) mice have been previously described. We crossed RPM mice with 

Rosa26-LSL-Cas9-Ires-Gfp mice (Platt et al., 2014) (JAX # 024857) to generate RPM-Cas9 

mice with Cre-dependent expression of Cas9 and Egfp. Unfortunately, GFP was unreliable 

in marking tumor cells by flow cytometry and was highly variable by IHC in RPM-Cas9 

mice, so we did not sort cells by GFP for these experiments. All RPM, RPM-Cas9, and 

RPR2 mice were housed and treated according to regulations set by the Institutional Animal 

Care and Use Committee of the University of Utah. Viral infections were performed in a 

Biosafety Level 2+ room following guidelines from the University of Utah Institutional 

Biosafety Committee. Male and female mice were distributed equally for all experiments.

METHOD DETAILS

Mouse lung tumor initiation—Anesthetized RPM or RPR2 mice at 6-8 weeks of age 

were infected by intranasal instillation (DuPage et al., 2009) with 1x108 plaque-forming 
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units of Ad5-CGRP-Cre, Ad5-CMV-Cre, Ad5-CCSP-Cre or Ad5-SPC-Cre adenovirus 

(University of Iowa). For harvesting in situ lung tumor tissue, RPM mice were sacrified at 

3-6 weeks post-adenoviral infection, while RPR2 mice were sacrificed at 4-6 months post-

infection due to differences in tumor latency (Figure S1C). For harvesting invasive lung 

tumor tissue, RPM mice were sacrified at 4-9 weeks post-adenoviral infection, while RPR2 

mice were sacrificed at 4-8 months post-adenoviral infection in order to match stages of 

tumor development and burden.

In vivo DAPT and DBZ—For drug treatments, RPM mice were enrolled in treatment at 

the earliest signs of tumor burden determined by microCT imaging (typically 4-6 weeks 

post-Cre, 6-10% tumor burden). RPM mice (n = 8) were given freshly prepared DAPT (GSI-

IX) γ-secretase inhibitor (20 mg/kg, Apexbio cat no. A8200) diluted in corn oil from a 20 

mg/mL stock in 100% EtOH to a 4 mg/mL working concentration. Control mice (n = 6) 

received corn oil of equivalent volumes determined by body weight. Mice were treated via 

intraperitoneal (i.p.) injections every day for 10 days. Control and treatment cohorts were 

weighed daily to assess overall fitness and imaged 3-4 days/week to monitor tumor burden. 

At day 10, mice were imaged, then euthanized by CO2 asphyxiation followed by necropsy. 

For DBZ (Apexbio cat no. A4018), RPM mice were given 14 mg/kg DBZ in vehicle (0.1% 

Tween-80, 0.5% hydroxypropylmethylcellulose, and 5% DMSO) or vehicle control i.p. for 7 

days and imaged every 2-3 days.

MicroCT analysis and quantification—Beginning four weeks after tumor initiation by 

Cre-mediated recombination, RPM mice were imaged to monitor tumor development. Mice 

were anesthetized with isoflurane and imaged using a small animal Quantum GX2 microCT 

(Perkin Elmer). Quantum GX2 images were acquired with 18 s scans at 45 μm resolution, 90 

kV, with 88 μA of current. RPM mice were sacrificed for transition studies at first signs of 

airway thickening and early tumor development.

To determine tumor burden, resulting images were processed with Analyze 11.0 software 

(Analyze Direct) as described previously (Mollaoglu et al., 2017). Scans were calibrated for 

Hounsfield Units (HU) by determining the mean value of “Bed” and “Air” for representative 

scans through the region of interest (ROI) tool and matching those values to their known HU 

(40 HU and −1000 HU, respectively) using the “Image Algebra” tool. Every image was then 

applied a 3x3x3 Median Filter from the “Spatial Filters” window. Thresholds of “Air” vs. 

“Dense Tissue” were established using the ROI and histogram tools. For tumor burden 

analysis, the object map was created using the previously established thresholds; 

adjustments were made manually using “Spline Edit”, “Draw”, “Trace” and “Nudge Edit” 

tools. With the “Morphology” tool, the object map was made binary by using the threshold 

morphing tool. Then, the map was dilated 3 times using 5x5x5 Jack-shaped structuring 

elements. The holes were then filled on every 2D-orientation. The map was finally brought 

back to its original size using the “Erode” tool 3 times using 5x5x5 Jack-shaped structuring 

elements. The volumetric analyses were then performed in the ROI window using the pre-

established thresholds and non-airspace was calculated using the formula: Non- airspace = 1 

– (VolAir/ROIVol).
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Immunohistochemistry—Tissues were fixed in 10% neutral buffered formalin for 24 h 

at room temperature (RT), washed in PBS and transferred to 70% ethanol. Formalin-fixed 

paraffin embedded (FFPE) sections at 4-5 μm were dewaxed, rehydrated and subjected to 

high-temperature antigen retrieval by boiling 20 min in a pressure cooker in 0.01 M citrate 

buffer at pH 6.0. Slides were quenched of endogenous peroxide in 3% H2O2 for 15 min, 

then blocked in 5% goat serum in PBS/0.1% Tween-20 (PBS-T) for 1 h, and then stained 

overnight with primary antibodies in blocking buffer (5% goat serum or SignalStain 

antibody diluent, Cell Signaling Technology (CST) cat# 8112). For non-CST primary 

antibodies, an HRP-conjugated secondary antibody (Vector Laboratories) was used at 1:200 

dilution in PBS-T, incubated for 45 min at RT followed by DAB staining (Vector 

Laboratories). Alternatively, CST primary antibodies were detected using 150 μL of 

SignalStain Boost IHC Detection Reagent (CST cat# 8114). All staining was performed with 

Sequenza cover plate technology. The primary antibodies include: ASCL1 (BD cat# 

BD556604) 1:200; UCHL1 (Sigma cat# HPA005993) 1:300; SYP (Thermo-fisher cat# 

RB1461P1) 1:200; CGRP (Sigma cat# C8198) 1:250; NEUROD1 (Abcam cat# 109224) 

1:150; YAP1 (CST cat# 17074S) 1:400; ZEB1 (Abcam cat# ab133357) 1:2000; CD44 (CST 

cat# 37259) 1:250; POU2F3 (Sigma cat# HPA019652) 1:300; DLL3 (Abcam cat# 198505) 

1:200; HES1 (CST cat# 11988) 1:500; MYC (mouse) (Santa Cruz cat#sc-764) and MYC 

(human) (Abcam cat# ab32072). For manual H-score quantification, images were acquired 

on a Nikon Ci-L LED Microscope with DS-Fi3 Camera. H-score was quantified on a scale 

of 0-300 taking into consideration percent positive cells and staining intensity as described 

(Flowers et al., 1986), where H Score = % of positive cells multiplied by intensity score of 

0-3. For example, a tumor with 80% positive cells with high intensity of 3 = 240 H-Score.

For quantification of DAPT-treated vs control mice, H&E and IHC-stained slides were 

digitally scanned with the Zeiss Axio Scope.A1 microscope using AxioVision SE64 

software. Whole slide images containing 4-5 lung lobes per animal were analyzed using 

CaseViewer software (3DHISTECH). Tumor regions were manually annotated and image 

analysis algorithms were applied only on tumor regions. The nuclear algorithm distinguishes 

cells as positive or negative based on the staining intensity per cell. Results are expressed as 

percent positive cells per tumor area (i.e. the number of positive cells divided by the number 

of total cells in a tumor area, multiplied by 100) (P; 0-100%).

Primary tumor cell isolation—Early tumor cells in RPM and RPR2 mice are identified 

prior to detection of overt tumors by microCT at a time point in which we observe only in 

situ tumors, as illustrated in Figure 2A. To generate mouse primary early-stage SCLC tumor 

cells for time-series transition experiments, whole lungs from RPM or RPR2 mice were 

digested at earliest stages of tumor development determined by thickening of airways in 

microCT images: ~3-6 weeks (RPM) or 4-6 months (RPR2) post-infection with 108 plaque 

forming units of Ad5-CGRP-Cre virus (University of Iowa). Central portions of mouse lungs 

were mechanically dissociated with scissors, and digested to a single-cell suspension using 

an enzymatic digestion cocktail for 30 min at 37°C. Digestion media consists of 4200 mL 

HBSS-free (Thermo Fisher cat# 14175), 600 mL trypsin-EDTA (0.25%) (Thermo Fisher 

cat# 25200-072), 600 mL collagenase type 4 (Worthington Biochemical cat# LS004186) 

from 10 mg/mL stock prepared in HBSS with calcium and magnesium (Thermo Fisher cat# 
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14025), and 600 mL dispase (Worthington Biochemical cat# LS02104). 4 mL of digestion 

media was used per mouse lung. Enzymatic digestion was quenched on ice with 500 μL 

quench media containing 7.2 mL Leibovitz’s L15 media (Thermo Fisher cat# 11415-064), 

800 mL FBS (Sigma cat# 12303C), and 30 mL DNase (Sigma cat# D4527) at 5 mg/mL in 

HBSS-free media per mL of digestion media. Tissue was further dissociated by passing 

through a 16-gauge syringe to the point of no clogging. The tissue suspension was then 

passed through a 100 micron cell-strainer. Cells were spun at 2000 rpm for 5 min. 

Supernatant was removed and replaced with 3 mL ACK (Ammonium-Chloride-Potassium) 

lysis buffer per lung to remove whole blood cell contamination (Thermo Fisher cat#A10492, 

3 min incubation at 37°C). Reaction was quenched with 10 mL cold 1X PBS. Cells were 

spun at 1500 rpm for 5 min and resuspended in culture media (RPMI) as described above. 

Following various times in culture as indicated, malignant cells in suspension were isolated 

from the adherent lung cells, pelleted by centrifugation, resuspended in fresh media, and 

processed for downstream analysis. Suspension culture images were taken using an EVOS 

XL Core Cell Imaging System (Invitrogen) at each collected time point of the transition 

study.

Quantification of tumor cell morphology—Tumor cell morphology was quantified 

using ImageJ area output as well as analysis plugins for the common shape factors: 

Circularity and Roundness. Area in pixels of each cluster was converted to square microns 

(based on image scale) to represent individual cluster size. ImageJ’s Circularity function is 

calculated as 4*π*area/(perimeter^2). Roundness is calculated according to the equation 

4*area/(π*major_axis^2), which represents the ratio of height to width. Both Circularity and 

Roundess values range from 0-1 where 1 would indicate a perfect circle and <1 indicates an 

increasingly elongated or linear/elliptical shape. Circularity is more complex than 

Roundness and captures perimeter smoothness (i.e. looser clusters with chains growing 

asymmetrically off sides would be low in circularity value) versus Roundness, which 

estimates how close a cluster is to a perfect circle (e.g. long chains would be much lower 

than classic clusters for roundness). Figure S2A represents ~15 clusters of cells per 

timepoint and n = 3 individual biological replicates. Figure 2F quantification represents 6-16 

clusters per condition.

Live/dead assays—Live/dead assays were performed on n = 2-5 biological replicates of 

RPM transition experiments at indicated days in culture (Figure S2B). Approximately 

500,000 suspension cells were collected from culture at indicated timepoints following 

initial digestion and washed 1x with PBS by centrifugation at 1000 rpm. Cells were 

resuspended in 500 μL Accutase dissociation reagent (Invitrogen cat#A1110501) and 

dissociated for 15 min at RT. Cells were washed with PBS, stained with Invitrogen’s LIVE/

DEAD Fixable Violet Dead Cell Stain Kit (Invitrogen cat#L34963) and fixed with 

formaldehyde according to the manufacturer’s protocol. Human GLC8 cells were heat-

treated at 56° C for 45 min and cooled to room temperature before staining and fixation for a 

dead, positive control. Cells were stored in the dark at 4° C until flow cytometry analysis. 

Data acquisition was performed with the BD Fortessa flow cytometer (BD Biosciences) 

running BD FACSDiva v8 software. Data were analyzed using FlowJo v10.6.2 and 

represented using Graphpad Prism.
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Immunoblotting—Cell pellets were flash frozen and stored at −80°C until use. Total 

protein lysates were prepared as previously described, separated via SDS-PAGE and 

transferred to a PVDF membrane (Oliver et al., 2011). Membranes were blocked for 1 h in 

5% milk followed by overnight incubation with primary antibodies at 4°C. Membranes were 

washed for 4 x 10 min at RT in TBS-T. Mouse and rabbit HRP-conjugated secondary 

antibodies (Jackson ImmunoResearch, 1:10,000) were incubated for 1 h in 5% milk at RT 

followed by washing 4 x 10 min at RT in TBS-T. Membranes were exposed to 

WesternBright HRP Quantum substrate (Advansta) and detected on Hyblot CL film 

(Denville Scientific Inc).

Primary antibodies include: ASCL1 (1:300, BD Pharmingen #BD556604), EPCAM 

(1:1000, Abcam #ab71916), INSM1 (1:300, Santa Cruz sc-271408), NEUROD1 (1:1000, 

Abcam ab109224), REST (1:1000, Millipore #17-641), YAP (1:1000, CST #14074), 

NOTCH2 XP (1:1000, CST #5732), HES1 (1:400, CST #11988), MYC (1:1000, CST 

#5605), NKX2-1 (1:2000, Abcam ab76013), ZEB1 (1:500, Bethyl Labs A301-922A), and 

HSP90 (1:1000, CST #4877) as loading control.

Quantification of immunoblots was performed using ImageJ across multiple biological 

replicates and normalized to the loading control for each replicate, HSP90.

PCR for recombination efficiency—Flash-frozen transition timepoints and established 

RPM cell lines were processed with the Qiagen DNeasy kit to isolate genomic DNA. 

Normal adult spleen DNA from an RPM mouse was isolated as an unrecombined control. 

DNA concentrations were measured on a BioTek Synergy HT plate reader. Equal quantities 

of tumor genomic DNA (100 ng) were amplified by PCR with GoTaq (Promega M7123) 

using primers to detect Rb1 recombination include the following: D1 5'-GCA GGA GGC 

AAA AAT CCA CAT AAC-3', 1lox 5' 5’-CTC TAG ATC CTC TCA TTC TTC CC-3’, and 

3' lox 5’-CCT TGA CCA TAG CCC AGC AC-3’. PCR conditions used were 94 deg 3 min, 

30 cycles of (94 deg 30 s, 55 deg 1 min, 72 deg 1.5 min), 72 deg 5 min, hold at 4 deg. 

Expected band sizes were ~500 bp for the recombined allele, and 310 bp for the floxed 

allele. Primers to detect Trp53 recombination include the following: A 5'-CAC AAA AAC 

AGG TTA AAC CCA G-3', B 5'-AGC ACA TAG GAG GCA GAG AC-3', and D 5'-GAA 

GAC AGA AAA GGG GAG GG-3'. PCR conditions used were 94 deg 2 min, 30 cycles of 

(94 deg 30 s, 58 deg 30 s, 72 deg 50 s), 72 deg 5 min, hold at 4 deg. Expected band sizes 

were 612 bp for the recombined allele, and 370 bp for the floxed allele. PCR products were 

run on 1-2% agarose/TAE gels containing ethidium bromide and images were acquired 

using an Azure Biosystem C200 imager.

MYC overexpression and virus production—Mouse MycT58A cDNA was cloned into 

MSCV-Puro-IRES-GFP (MSCV-PIG) (Addgene cat# 21654) (Mayr and Bartel, 2009) 

plasmid for retroviral overexpression of MYC in vitro. MSCV-PIG-MYCT58A plasmid was 

confirmed by direct sequencing. For generation of high-titer virus, HEK-293T cells were 

transfected with a three-plasmid system including: MSCV-PIG (Addgene cat# 21654) with 

an empty vector or Myc T58A insert, pCMV-VSVG (Stewart et al., 2003), (Addgene cat# 

8454), and pCMV delta R8.2 (Stewart et al., 2003) (Addgene cat# 8455). Viruses were 

harvested at 48 and 72 h post-transfection, concentrated by ultracentrifugation (24,000 x g 
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for 1.45 h), and stored at −80°C until use. MYCT58A was overexpressed in human cell lines 

(H889, H1963) or RPR2 primary cells through retroviral spinoculation. Spinoculation was 

performed at 37°C, 900 x g, for 75 min. During spinoculation, 0.5-1 million cells per well of 

a 6-well plate were cultured with 2 mL RPMI, 25 μL HEPES buffer (Thermo Fisher cat# 

15630080), 8 μg/mL polybrene (Santa Cruz cat# sc-134220), and 25 μL retroviral MSCV-

PIG or MSCV-PIG-MYCT58A with titer >106 infectious units/mL. Cells were selected 48 h 

after spinoculation with puromycin at a concentration of 1 μg/mL (H889) or 0.5 μg/mL 

(H1963, RPR2) until uninfected control cells were dead.

DAPT treatments in vitro—RPM time-series transition cell lines were treated with 10 

μM DAPT (GSI-IX) γ-secretase inhibitor (Apexbio cat# A8200) from a 10 mM stock in 

DMSO starting on day 3 following initial digest. Control cells were given equal volumes of 

DMSO only. DAPT was replaced every 3 days upon media change and pellet collection. 

Cells grew in DMSO or DAPT for 20-30 days. Images were taken using an EVOS XL Core 

Cell Imaging System (Invitrogen) at each collected time point of the DAPT transition study.

ChIP-seq in RPM tumors—Mouse lung tumor ChIP-seq data is previously described and 

published (Chalishazar et al., 2019) and deposited in the NCBI GEO (GEO: GSE142496). 

Due to limited size of individual tumors for ChIP, we micro-dissected pieces of individual 

tumors and assessed them for ASCL1 and NEUROD1 by immunoblot; the corresponding 

tumor fractions were then submitted for ChIP. Binding profiles were visualized using 

Integrated Genome Viewer (IGV version 2.6.3) aligned to mm10 genome build.

Whole genome sequencing (WGS)—30X WGS data was collected from Day 4 and 

Day 23 samples, as well as from a blood sample from RPM mice as the normal control. 

Genomic DNA was extracted from flash frozen cell pellets of Day 4 and −23 cells along 

with whole blood from the same RPM mouse using Qiagen’s DNeasy Blood and Tissue kit 

(Qiagen cat#69504). Libraries were prepared using the Nextera DNA Flex Library Prep Kit 

(Illumina cat#20018705). Libraries were sequenced on a NovaSeq 6000 instrument targeting 

300 million read-pairs on a 2 x 150 bp run (~30x coverage of whole genome). Sequencing 

reads were aligned to mouse genome mm10 by BWA 0.7.17-r1188 (Li and Durbin, 2009). 

Rb1 and Trp53 deletions were examined in the Integrated Genome Viewer (IGV) software 

v2.5.0. SNVs were jointly called by Freebayes 1.2.0 and somatic SNVs were filtered by the 

following criteria: DP >15, AO < 2 and AF <0.05 in the normal sample. Variants were 

annotated by SnpEff 4.3 (Cingolani et al., 2012). Somatic non-synonymous coding variants 

were manually reviewed in IGV. CNVs were called, and plots were generated by FACETS 

(Shen and Seshan, 2016).

Mouse tumor and timepoint bulk RNA-seq—RNA isolation from ~15 mg flash-

frozen RPM (n = 10) and RPR2 (n = 5) primary tumors from mice infected with Ad5-

CGRP-Cre or flash-frozen RPM transition cell pellets (n = 8: Days 3, 5, 7, 10, 12, 14, 19, 

21) was performed using RNeasy Mini Kit (Qiagen) with the standard protocol. RNA from 

RPM tumors (n = 10) was subject to library construction with the Illumina TruSeq Stranded 

mRNA Sample Preparation Kit (cat# RS-122-2101, RS-122-2102) according to the 

manufacturer’s protocol. RNA from RPR2 (n = 5) tumors and RPM transition timepoints (n 
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= 8) were subject to library construction with the Illumina TruSeq Stranded Total RNA 

Library Ribo-Zero Gold Prep kit (cat# RS-122-2301) according to the manufacturer’s 

protocol. Chemically denatured sequencing libraries (25 pM) from RPM (n = 10) and RPR2 

(n = 5) tumors and RPM transition timepoints (n = 8) were applied to an Illumina HiSeq v4 

single read flow cell using an Illumina cBot. Hybridized molecules were clonally amplified 

and annealed to sequencing primers with reagents from an Illumina HiSeq SR Cluster Kit 

v4-cBot (GD-401-4001). Following transfer of the flowcell to an Illumina HiSeq 2500 

instrument (HCSv2.2.38 and RTA v1.18.61), a 50-cycle single-end sequence run was 

performed using HiSeq SBS Kit v4 sequencing reagents (FC-401-4002).

Bulk RNA-seq data analysis—Fastq raw count files were aligned in the R statistical 

environment (version “3.6”). The mouse GRCm38 FASTA and GTF files were downloaded 

from Ensembl release 94 and the reference database was created using STAR version 2.6.1b 

(Dobin et al., 2013) with splice junctions optimized for 50 base pair reads. Optical 

duplicates were removed using clumpify v38.34 and adapters were trimmed using cutadapt 

1.16 (Martin, 2011). The trimmed reads were aligned to the reference database using STAR 

in two pass mode to output a BAM file sorted by coordinates. Mapped reads were assigned 

to annotated genes in the GTF file using featureCounts version 1.6.3 (Liao et al., 2014). The 

output files from cutadapt, FastQC, Picard CollectRnaSeqMetrics, STAR and featureCounts 

were summarized using MultiQC (Ewels et al., 2016) to check for any sample outliers. To 

remove sources of unwanted variation from tumor RNA-seq sample preparation, all non-

coding features, histones, and ribosomal RNAs were removed from count matrices for 

downstream analyses. The featureCount output files for RPM and RPR2 tumors were 

combined into a single raw count matrix. Differentially expressed genes (DEGs) between 

RPM and RPR2 tumors were identified using a 5% false discovery rate with DESeq2 version 

1.24.0 (Love et al., 2014). PCA was performed on the first two principle components using 

the regularized log count (rlog) values of the top 500 variable genes. Log2(counts+1)-

transformed, normalized intensity values were obtained and averaged across samples to 

obtain gene expression levels for RPM and RPR2 tumors. RPM time-series transition cells 

(n = 8) are annotated by timepoint and combined into a separate single raw count matrix, 

with counts as reads per kilobase million (RPKM).

Human genomics data analysis—We analyzed publically available transcriptome and 

whole exome sequencing (WES) data of human primary SCLC tumor samples (n = 81, 

(George et al., 2015)) and human SCLC cell lines (n = 52, CCLE). Transcript expression 

values in Figure S3B are represented as log2(TPM+1). Due to the relatively low prevalence 

of genomic MYC amplifications in the SCLC patient samples (George et al., 2015), but a 

considerable number of patients with high MYC TPM values, MYC expression was used for 

sample stratification by setting a log2-TPM+1 cut-off to >6.0, independent of copy number 

variation. Analyses were performed in R statistical environment using the pheatmap function 

for data presentation and unbiased hierarchical clustering. Figures 6G is analyses of only 

human tumor RNA-seq data (n = 70), excluding POU2F3+ samples (George et al., 2015).

Figures 7G, 7I, and 8A are analyses of human tumor (n = 70; George et al., 2015) and cell 

line (n = 48; CCLE) bulk RNA-seq data with matching WES data, excluding POU2F3+ 
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samples. Predicted NOTCH-status in Figures 7G, 7I, and 8A are based on publicly available 

WES mutation data for human tumors (George et al., 2015) and for human cell lines on 

CCLE. Samples with wild-type NOTCH1, −2, −3, and/or −4 or with silent mutations are 

grouped together. Predicted non-damaging mutations include those with missense or in-

frame deletions in NOTCH1, −2, −3, and/or −4, and predicted damaging mutations include 

those with frame-shift deletions, nonsense, or splice variant mutations in NOTCH1, −2, −3, 

and/or −4. MYC-high samples in Figure 7G represent the upper quartile of MYC transcript 

levels. NE score for each sample was determined by calculating Spearman correlations of 50 

genes from the NE and Non-NE expression vectors as described in Zhang et al. 2018.

Figure 7H represents expanded analysis of human cell lines (n = 98, excluding POU2F3+ 

samples) that had publicly available expression and matching mutation data on the newly 

developed SCLC_Cellminer databse (https://discover.nci.nih.gov/SclcCellMinerCDB/), as 

well as the same human tumors (n = 70) used in Figure 7G. Cell line expression was 

downloaded from the Global SCLC dataset on the SCLC_Cellminer database (Tlemsani et 

al., 2020). In this dataset, global expression, including MYC expression, was determined 

based on average z-score intensity of gene expression from 5 sources (NCI SCLC, CCLE, 

CTRP, GDSC and UTSW). NE score values were calculated from the Global SCLC Dataset 

by Pearson correlation of 50 genes in the NE and Non-NE score vectors as described in 

Zhang et al, 2018. Mutation data was available from 3 of these 5 sources (CCLE, GDSC, 

and UTSW) on Cellminer—as values representing “Likelihood for Loss of Function (LOF) 

Mutation”. Mutation data for the 98 human cell lines that had matching expression data in 

the Global SCLC dataset were taken and averaged across the 3 sources. Cell lines with 

mutations in NOTCH1, −2, −3, and/or −4 that were estimated to have >0 likelihood for LOF 

were categorized as “Mutant”, all other samples were “WT”. To combine the 70 tumors 

from George et al. with the cell line data, z-score intensity of MYC expression across tumors 

was calculated. NE score values were determined by calculating the Pearson correlation of 

50 genes (in log2(TPM+1) counts) in the NE and Non-NE score vectors as described in 

Zhang et al, 2018. Human tumors in 7G with predicted non-damaging or damaging 

mutations were categorized as “Mutant” in 7H, all other tumors were “WT”. Cell line and 

tumor samples were marked as MYC-high with a z-score >0. The Fisher’s exact test, two-

tailed p value in Figure 7H was calculated using Graphpad 2 x 2 contingency table.

CIBERSORT—CIBERSORT is a tool developed by (Newman et al., 2015) at Stanford 

University that uses expression data input to estimate abundances of specified cell types in a 

bulk cell population, such as a bulk tumor. We utilized the interactive user interface of 

CIBERSORT at https://cibersort.stanford.edu. Gene signatures were automatically 

determined by the software from a provided sample file with a matching phenotype class file 

(Table S5). For this sample file and class file, the bulk RNA-seq data from 8 RPM transition 

timepoints (adjacent groups of 2 representing 1 of 4 timepoint signatures) were input to 

derive a signature gene expression matrix with 4 “cell types” representing Day 3-5, Day 

7-10, Day 12-14, and Day 19-21 timepoints. Mixture files of bulk sample data included a 

single normalized counts file from bulk RNA-seq of n = 10 RPM GEMM tumors infected 

with Ad-CGRP-Cre (Figure 5C), or a single file of human SCLC bulk RNA-seq data (n = 70 

tumors, n = 48 SCLC cell lines from CCLE, not including POU2F3+ samples) in TPM 
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counts (Figures 8A-8C). For each run, 100 permutations were performed. Relative and 

absolute modes were run together, with quantile normalization disabled for RNA-seq data, 

kappa = 999, q value cut-off = 0.3, and 50-150 barcode genes considered when building the 

signature matrix.

Single cell RNA-seq sample and library prep—For single-cell RNA seq (scRNA-

seq) of bulk RPM-Cas9 tumors, ~100-200 mg live or viably frozen tumor (in 95% FBS, 5% 

DMSO) was digested into a single-cell suspension following the same methods described 

above, in “Primary tumor cell isolation”, for generation of RPM and RPR2 time-series 

transition cells. Single cell populations from bulk tumors were immediately processed for 

sequencing following digestion. Live RPM time-series transition cells underwent library 

preparation directly from cell culture at days 4 (n = 2 of the same sample), 7, 11, 14, 17, and 

21 post-digestion for a total of 6 distinct transition timepoints. RPM time-series transition 

cells were made into single cell suspensions through gentle enzymatic dissociation of cell 

clusters with Accutase (Innovative Cell Tech Inc, cat#AT104-500) for 10-20 min with 

constant shaking at RT. The liver biopsy specimen collected from a patient with relapsed 

SCLC was viably frozen before being made into a single cell suspension through gentle 

enzymatic digestion with type 1A collagenase (Sigma, cat#C9891) for 10-20 min with 

shaking at RT. The cell suspension was filtered through a 40 micron cell filter and the 

resulting single cell suspension was flow sorted to isolate viable cells using the Zombie 

Green viability fluorescent dye (Biolegend, cat#423111) on a Sony Synergy SY3200 cell 

sorter. All single-cell suspensions were further prepared for sequencing according to 10x 

Chromium platform protocols found on: https://support.10xgenomics.com/single-cell-gene-

expression.

In brief, the Chromium Single Cell Gene Expression Solution with 3' chemistry, version 3 

(PN-1000075) was used to barcode individual cells with 16 bp 10x barcodes and to tag cell 

specific transcript molecules with 10 bp Unique Molecular Identifiers (UMIs) according to 

the manufacturer’s instructions. The following protocol was performed at High-Throughput 

Genomics Shared Resources at Huntsman Cancer Institute, University of Utah. Cells were 

suspended in PBS with 1.0% bovine serum albumin. The cell suspension was filtered 

through a 40 micron cell strainer. Viability and cell count were assessed on a Countess I 

(Thermo Scientific). Suspensions were equilibrated to targeted cell recovery of 8,000 cells. 

10x Gel Beads and reverse transcription reagents were added and cell suspensions were 

loaded to the Chromium Single Cell Controller (PN-120263) to form Gel-Bead-In 

EMulsions (GEMs)—the micro-droplets. Within individual GEMs, cDNA generated from 

captured and barcoded mRNA was synthesized by reverse transcription at the setting of 

53°C for 45 min followed by 85°C for 5 min. Subsequent A tailing, end repair, adaptor 

ligation and sample indexing were performed in bulk according to the manufacturer’s 

instructions. The resulting barcoding libraries were assessed on Agilent D1000 ScreenTape 

on an Agilent Technology 2200 TapeStation system and quantified by quantitative PCR 

using KAPA Biosystems Library Quantification Kit for Illumina Platforms (KK4842). 

Multiple libraries were then normalized and sequenced on NovaSeq 6000 with 2x150 

paired-end (PE) mode. Single cell 5' PE chemistry was utilized for the SCLC liver biopsy 
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specimen, which was sequenced according to manufacturer’s instructions at the McDonnell 

Genome Institute, Washington University School of Medicine in St. Louis.

10X single cell RNA-seq data processing

Demultiplexing and data alignment: Single cell RNA-seq data from the RPM time-series 

and bulk tumors were demultiplexed with 10x cellranger mkfastq version 3.1.0 to create 

fastq files with the I1 sample index, R1 cell barcode+UMI and R2 sequence. Reads were 

aligned to the mouse genome (mm10 custom EGFP+Cas9 reference v3.0.0) and count 

barcodes and UMIs were generated using cellranger count 3.1.0 with expected-cells set to 

8000 per library. Single-cell RNA-seq data from the human biopsy were demultiplexed with 

10x cellranger mkfastq version 3.0.1 and reads were aligned to the human genome 

(GRCh38). QC reporting, clustering, dimension reduction, and differential gene expression 

analysis using default parameter inputs (https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/using/reanalyze) were performed for primary data 

evaluation in 10x Genomics’ Cell Loupe Browser (v3.1.1). Primary QC reporting on 

aggregate time-series cells revealed capture of 31,519 cells total with 36,854 post-

normalization mean reads per cell and 3,856 median genes per cell—averaging 

1,161,920,045 total reads or ~165 million reads per sample timepoint submission. Primary 

QC reporting on RPM1 tumor revealed capture of 5,367 cells total with 41,503 mean reads 

per cell and 1,810 median genes per cell or ~222 million reads total. Primary QC reporting 

on RPM2 tumor revealed capture of 2,961 cells total with 90,733 mean reads per cell and 

995 median genes per cell or ~269 million reads total. Primary QC reporting on RPM3 

tumor revealed capture of 998 total cells with 222,206 mean reads per cell and 1,046 median 

genes per cell or ~222 million reads total. Primary QC reporting on RPM4 tumor revealed 

capture of 2,129 total cells with 101,198 mean reads per cell and 1,208 median genes per 

cell or ~215 million reads total. Lastly, primary QC reporting on the human liver biopsy 

revealed capture of 1,081 total cells with 637,671 mean reads per cell and 1,859 median 

genes per cell or ~689 million reads total. For further details of the primary Cell Ranger data 

processing, see: https://support.10xgenomics.com/single-cell-gene-expression/software/

pipelines/latest/algorithms/overview.

Filtering of non-tumor cell populations: Data from RPM time-series and bulk tumors were 

visualized by t-distributed stochastic neighbor embedding (tSNE) in 10x Genomics’ Cell 

Loupe Browser. Cell types were identified based on established cell type signatures derived 

from published single-cell RNA sequencing data (Treutlein et al., 2014; Xie et al., 2018; 

Zilionis et al., 2019). Low quality cell clusters were identified based on Loupe differential 

gene expression analysis, with clusters predominantly marked by mitochondrial genes 

tagged as low quality (Table S2). High to low gene expression in Figures S4A and S4E 

represent summed expression values of all cell-type-specific genes (Table S2). Tumor cells 

were identified and respective cell barcodes were exported from the Loupe browser to 

perform all tumor-cell-specific downstream analyses. Tumor cell barcodes from the time-

series and bulk tumors can be found in Table S2. Cell type assignment was validated by 

visualization of cell types via Seurat dot plots to confirm enrichment of cell-type specific 

gene signatures per population (Figures S4A, S4E).
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All cells from the human SCLC liver biopsy were imported directly into Seurat for cell-type 

assignment. Data dimensionality of the human biopsy was determined based on the 

ElbowPlot function to visualize data variance. To represent the majority of total data 

variance, n = 10 principal components were used for initial tSNE clustering to determine cell 

types. Unbiased tSNE clustering was performed and revealed 12 clusters (Figure S7A). 

Expression of cell-type-specific gene signatures (for tumor markers, endothelial cells, 

hematopoietic cells, and immune cells) were visualized per cluster using Seurat dot plot. 

From this analysis, clusters 0, 1, 4, and 6 were defined as tumor cells, clusters 2, 3, 5, 8, and 

11 were identified as potential immune cells, clusters 9 and 10 as potential endothelial, and 

cluster 7 as potential hematopoietic. All tumor cells (n = 1021) were subsetted as a separate 

Seurat object for downstream analysis.

Initial quality control: Basic quality control was performed on all identified mouse tumor 

cells with the following parameters. For each 10X library, aligned matrices were converted 

to Single Cell Experiment objects. All cells with high mitochondrial content, low library size 

(summed counts), or low gene content (number of genes>0) per cell (exceeding 5 absolute 

deviations from median of each metric per library) were flagged as outlying cells. Outlying 

cells were visualized per 10X library using the Scater package (McCarthy et al., 2017). Cells 

tagged as low quality were dropped from analyses, and remaining cells were processed 

further following the Simple Single Cell workflow. In brief, to remove cell-specific biases, 

cells were clustered based on genes with average expression in the top 50% and size factors 

per cluster were determined using the deconvolution method (Lun et al., 2016). Normalized 

log expression values were then determined for all cells. Cell-cycle phase assignment was 

then performed using a robust and commonly-used cell-cycle assignment method specific to 

single-cell transcriptomic data (Scialdone et al., 2015). Finally, doublet distribution was 

simulated by adding random cells together and comparing doublet density estimates to 

original cell density estimates. Cells with doublet scores exceeding 20 median absolute 

deviations per library were marked as putative doublets and additionally excluded from 

downstream analyses. Following tumor cell identification and initial QC, transition 

timepoints included 15,434 high-quality tumor cells of 31,519 total cells, RPM1 included 

2,107 high-quality tumor cells of 5,367 total cells, RPM2 included 809 high-quality tumor 

cells of 2,961 total cells, RPM3 included 248 high-quality tumor cells of 998 total cells, and 

RPM4 included included 772 high-quality tumor cells of 2,129 total cells. Tumor cell 

barcodes passing QC can be found in Table S2.

Human SCLC liver biopsy cells were subject to intial QC in Seurat. Cells passing QC 

included those with >100 and <10,000 genes detected per cell and with less than 25% 

mitochondrial content. Following tumor cell identification and initial QC, the biopsy 

included 1021 high-quality tumor cells of 2,201 total cells.

Calculation of a NE and MYC-ChIP scores: Following initial QC, pre-processed matrices 

were called into the R statistical computing environment (v3.5.3) for cell signature scoring 

(NE, MYC ChIP, and Cell Cycling/Prolif), tSNE, pseudotime, and differential gene 

expression (DGE) analyses using Monocle2 (tSNE and pseudotime) (Qiu et al., 2017; 

Trapnell et al., 2014) and Seurat (DGE) (Butler et al., 2018; Stuart et al., 2019) algorithms, 
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along with the Scater package (McCarthy et al., 2017) for NE and MYC-ChIP Score data 

visualization. NE score for cells of each single-cell RNA-seq library were determined based 

on Spearman correlation with an established 50-gene NE vs non-NE expression vector 

derived from (Zhang et al., 2018), where ~41 NE and ~87 non-NE human cell lines were 

used to identify a core 50-gene signature comprised of 25 NE genes and 25 non-NE genes 

that robustly predict NE phenotype (Table S3). NE score was added as metadata to Single 

Cell Experiment objects and visualized using the Scater plotColData function before 

conversion to CellDataSet for Monocle2 analyses.

MYC ChIP score was derived as follows. From all established MYC ChIP target genes 

according to ChIP-seq of four bulk RPM tumors, genes at least 3-fold up in RPM vs RPR2 

tumors by bulk RNA-sequencing were analyzed in human MYC-high vs MYC-low tumors 

(George et al., 2015). Of those target genes, only the top-50 differentially expressed genes in 

MYC-high vs MYC-low human tumors were used in calculating a conserved MYC ChIP 

score (Table S3). MYC ChIP scores were computed for each cell per single-cell RNA-seq 

library by converting expression data to a Seurat object, and utilizing the AddModuleScore 

function. Seurat objects were converted back to Single Cell Experiment objects and MYC 

ChIP score was visualized per library using the Scater plotColData function before 

proceeding to Monocle2 analyses.

Regression of cycling/proliferation effects: Variation due to expression of cell cycle/

proliferation genes was regressed out for all clustering and pseudotime analyses of RPM 

time-series and bulk tumor cells. A cell cycling/proliferation score was generated and added 

as metadata to Seurat objects using AddModuleScore based on the following cell cycle or 

proliferation related gene signatures from MSigDB: “Ben-Porath Proliferation”, “Ben-

Porath Cycling Genes”, “KEGG cell cycle” (Table S2). Cycling/proliferation was regressed 

out in Monocle2 reduceDimension analyses using the residualModelFormulaStr input option 

and tSNE clustering and cell ordering was not based on cycling/proliferation effects. Proper 

regression of cell cycling/proliferation effects was validated based on cell cycle phase 

assignment according to established single-cell-RNA seq-specific methods (cyclone) 

(Scialdone et al., 2015). Following cell cycle regression based on generic cycling/

proliferation gene sets above, there was no detected enrichment for distinct cell cycle phases 

in clusters of tSNE (Figure S4B) and no significant correlation of cyclone-assigned cell-

cycle phase with cell ordering in pseudotime (as determined by Pearson correlation of 

pseudotime coordinate vs likelihood of G1, S, G2M score vectors for all cells in the 

trajectory analysis)—confirming appropriate regression of cycling/proliferation effects.

tSNE Clustering: tSNE dimension reduction and visualization on timepoint data was 

performed using the Monocle2 package (Qiu et al., 2017; Trapnell et al., 2014). Cells were 

grouped with clusterCells according to global expression profiles and clustered in an 

unsupervised manner with setOrderingFilter based on genes with mean_expression >= 0.1. 

Dimensionality reduction was performed using Monocle2’s reduceDimension function with 

max_components set to 2, num_dim set to 10, and cycling/prolif regressed out using 

residualModelFormulaStr. 10 principle components (PCs) were sufficient to describe the 

biological variation of interest and led to coherent cell groupings as shown. Using more PCs 
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may encode higher-order biological complexities, but also minor variations and biological 

and technical noise. Interpretation of tSNE embeddings based on a larger number of PCs 

were thus confounded.

For tSNE clustering of the human SCLC liver biopsy tumor cells (identified as explained 

above using Seurat), cells were grouped with clusterCells according to global expression 

profiles and clustered in an unsupervised manner with setOrderingFilter based on genes with 

mean_expression >= 0.1. Dimensionality reduction was performed using Monocle2’s 

reduceDimension function with max_components set to 2 and num_dim set to 5. 5 PCs were 

sufficient to describe the majority of human tumor cell variation, as validated by the 

ElbowPlot function used to visualize data variability in Seurat (Figure 8F).

Differential gene expression analyses: Differentially-expressed genes (DEGs) per 

transition timepoint were determined using the FindAllMarkers function in Seurat (Butler et 

al., 2018; Stuart et al., 2019) with MAST test, which identifies DEGs between two groups of 

cells using a hurdle model tailored to scRNA-seq data. With this method, only genes with at 

least 0.25-log fold increase between a group and its comparators was taken as a marker gene 

of that group (Figure 6A and Table S3). DEGs per timepoints were visualized using Seurat’s 

DoHeatmap function. Notch machinery expression per timepoint was also visualized using 

Seurat’s DoHeatmap function with maximum and minimum thresholds set to 1. ENRICHR 

analyses (Kuleshov et al., 2016) were performed on all genes at least 0.25 log fold change 

increased between named groups shown in key of Figure 6B, as determined by Seurat’s 

FindMarkers function (Table S3).

Pseudotime analyses: To analyze the trajectory development of RPM transition and tumor 

cells (Figure 4D, 4E, 4F, 5D, 6C, S4B, S4F, S5C), an unsupervised pseudotemporal analysis 

was performed using Monocle2 (Qiu et al., 2017; Trapnell et al., 2014). Timepoint data (n = 

6) and bulk tumor libraries (n = 4) were combined into a single Seurat object using the 

merge function, following initial QC of each library as described. MYC-ChIP, cell cycling/

prolif, and NE scores were added to the merged Seurat object before conversion to a 

Monocle2 CellDataSet. To predict biological trajectories, Monocle2 uses DDRTree, a 

reversed graph embedding algorithm, to reduce the high-dimensional scRNA-seq data space, 

and predict how cells progress through a given biological process based on global gene 

expression levels. Monocle2 offers ideal unsupervised pseudotime analysis for this study as 

it predicts branch points and trajectory states without cell fate input information. Monocle2’s 

accuracy has been tested in multiple biological contexts and has yielded more robust 

pseudotimes compared to algorithms predicting pseudotime based on pairwise geodesic 

distances between cells rather than explicit tree construction (Qiu et al., 2017). Following 

size factor and dispersion estimates, trajectory ordering genes were called by 

mean_expression >=0.1 and dispersion_empirical >=1. Data dimensionality was reduced 

using the reduceDimension function with max_components set to 2, reduction_method set to 

DDRTree, and cycling/prolif regressed out with residualModelFormulaStr input. DEGs 

across pseudotime were determined using the differentialGeneTest function on all genes 

detected by the detectGenes function with min_expr set to 1 and expressed in >100 cells. 
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Resultant genes were ordered by q value and the top-500 genes changing in pseudotime 

were visualized using the plot_pseudotime_heatmap function (Table S2).

Diffusion mapping: Diffusion mapping utilized destiny, princurves and rgl packages all in 

R (v 3.5.2) similar to (Giraddi et al., 2018). For diffusion maps of RPM time-series and bulk 

tumors, genes present in more than 5 cells at more than 5 counts were included, and upper 

and lower bounds on cellular complexity (i.e. # of unique genes expressed) were imposed at 

8000 and 2000, respectively, which excluded an upper 0.7% of samples and a lower 7.6% of 

samples from analysis. As in Giraddi et al., high local variance genes were used for diffusion 

mapping of cell-cell relationships and lambda values of a fit principal curve were considered 

as pseudotime coordinates for cell ordering. Briefly, the diffusion trajectory was determined 

by first transforming the DC1,6 and 9 components to a ‘flattened’ coordinate graph as these 

DCs showed the greatest sequential separation of sequential culture stages (among DC’s 

1:10). The coordinates of the flattened graph are compound DCs designated DC1’ and 

DC2’, that were derived as follows to track with stage specific diffusion mapping across the 

DM: DC1’ = 0.5xlog(DC1+.1)+1.5+DC2’; DC2’=0.15+5xDC1+2xDC2+1.5xDC3. They 

represent uniform arithmetic modulation of DCs to form a square coordinate map. A 

principle curve was generated through the compound DC graph using the R package 

“PrinCurve” and positions along this curve were mapped as the diffusion trajectory. 

Diffusion map pseudotime assignment was directly compared to Monocle2 pseudotime 

assignment on RPM time-series and bulk tumors via Pearson correlation analysis in Rstudio 

(cor.test R function). Results were plotted using the ggscatter function from the “ggpubr” 

library (Figure S4M).

GSEA—Gene set enrichment analysis (GSEA) was performed using GSEA version 4.03 

software with default parameters, classic enrichment, inclusion gene set size between 15 and 

5000, and the phenotype permutation at 1,000 times. Normalized enrichment scores (NES) 

and p values are shown below each respective GSEA plot in the figures. For Figure 3D, 

GSEA was performed on pre-ranked gene lists representing log2 fold change expression of 

day 3-5 bulk RPM transition timepoints vs all later timepoints (Day 3-5 signature, Figure 

3D), day 7-10 bulk RPM transition timepoints vs all other timepoints (Day 7-10 signature, 

Figure 3D), and Day 14-21 bulk RPM transition timepoints vs all earlier timepoints (Day 

14-21 signature, Figure 3D) (Table S1). Gene signatures for hSCLC-A, hSCLC-N, and 

hSCLC-Y were determined by taking all genes increased per subtype by at least log2 fold 

change >1.5 vs all other subtypes (Table S1). Cell line and tumor samples were assigned by 

subtype according to unbiased grouping established in Figure S3A. Remaining GSEA 

included ranked gene expression files based on three late RPM transition timepoints (day 14, 

19, 21) vs three early timepoints (day 3, 5, 7) (Figure S5D) (Tables S1 and S3) or on 

NOTCH-damaging-mutant vs NOTCH-wild-type (WT) or silent mutant human SCLC 

tumors (George et al., 2015) and CCLE cell lines (Figure 7I) (Table S4). A catalog of 

functional gene sets from Molecular Signature Database (MSigDB, version 6.2, July 2018, 

www.broad.mit.edu/gsea/msigdb/msigdb_index.html) was used for the “Kegg Notch 

signaling” (Figure S5D), ”Rest targets NRSF_01” (Figure S5D), or “Notch signaling” 

(PID_Notch_Pathway) (Figure 7I) gene sets. “MYC ChIP score” gene set consists of the 50-

gene MYC ChIP signature described in Methods section “10X single cell RNA-seq data 
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processing: Calculation of a NE and MYC-ChIP scores” (Table S3). All gene sets can be 

viewed in Tables S1, S3, and/or S4.

Quantification and statistical analysis—Remaining statistical analysis was performed 

using GraphPad Prism. Error bars show mean ± SEM unless otherwise specified. 

Significance was determined by Student’s two-tailed unpaired t tests with 95% confidence 

intervals and p values <0.05 considered statistically significant, unless otherwise indicated. 

All statistical details are further described in respective figure legends. Additional statistical 

methods related to bioinformatic analyses can be found in Bioinformatic Analyses under 

Method Details. No statistical methods were used to predetermine sample sizes. Please see 

details of IHC quantifications in Immunohistochemistry section of Method Details.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SIGNIFICANCE

SCLC has historically been treated as a single disease, but is now recognized to comprise 

multiple molecular subtypes. We find that MYC directly activates NOTCH signaling to 

reprogram neuroendocrine SCLC from ASCL1+ to NEUROD1+ to YAP1+ non-

neuroendocrine states. Therefore, SCLC molecular subtypes are not distinct, but rather 

represent dynamic stages of MYC-driven tumor evolution. We find that individual human 

SCLC tumors are composed of multiple molecular subtypes. Given the reported unique 

therapeutic vulnerabilities of each subtype, we postulate that SCLC tumors represent a 

“moving therapeutic target” that may require more general, combinatorial, or plasticity-

directed therapeutic approaches to combat this transcriptional flexibility. We speculate 

that molecular subsets of other cancer types may also represent dynamic stages of tumor 

evolution.
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Highlights

• Multiple SCLC molecular subtypes arise from a neuroendocrine cell of origin

• MYC drives the NEUROD1+ and YAP1+ subtypes of SCLC in a temporal 

evolution

• MYC directly activates NOTCH signaling to reprogram neuroendocrine fate

• Multiple SCLC molecular subtypes are present within individual human 

tumors
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Figure 1. MYC drives multiple SCLC molecular subtypes in vivo
(A) Representative immunohistochemistry (IHC) for NE markers in early-stage (in situ) or 

invasive tumors in indicated GEMMs infected with Ad-Cgrp-Cre.

(B) IHC quantification from panel A.

(C) Representative IHC for non-NE markers in in situ or invasive tumors in indicated 

GEMMs infected with Ad-Cgrp-Cre.

(D) IHC quantification from panel C.
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(E) Representative IHC for POU2F3 in in situ or invasive tumors in indicated GEMMs 

infected with cell-type-specific Cre viruses. Positive control (+) is adult mouse skin. IHC 

quantification in right panel.

(F) Percent RPM tumors per animal that are POU2F3+ by IHC following cell-type-specific 

Cre viral infection. Indicated p values relative to Cmv.

(G) Left panel: Percent of POU2F3+ (P) tumors expressing subtype markers analyzed by 

IHC from serial sections (n = 27 total tumors). Right panel: Average percentage of positive 

cells for each marker within individual POU2F3+ tumors.

(H) Representative IHC from serial sections of POU2F3+ tumors analyzed for SCLC 

subtype markers. Left color label indicates classification as in panel G.

Data from n = 6-9 mice per genotype, except Ccsp- and Spc-Cre mice are n = 5. Number of 

tumors scored by manual H-Score method is indicated within bar graphs. Scale bars, 25 μm. 

Mean +/− standard error of the mean (SEM), Student’s two-tailed unpaired t test, * p < 

0.045, ** p < 0.009, *** p = 0.002, **** p < 0.0001, ns = not significant. See also Figure 

S1.
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Figure 2. MYC drives SCLC subtype evolution in vitro
(A) Schematic of early RPM tumor cell isolation and culture. From left to right: whole slide 

H&E with bottom lung lobe (dashed box) provided in higher magnification inset (scale bar, 

500 μm), with successive magnification of airway lesions (scale bar, 100 μm) with in situ 

tumors (red and blue boxes) labeled in right top panels (scale bars, 10 μm). IHC of serial 

sections of the same tumors (scale bars, 10 μm). Lungs were dissociated and single cell 

suspensions placed in culture.
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(B) Representative brightfield images of tumor cells in culture at indicated days following 

plating. Scale bars, 200 (top row), 100 (middle and bottom rows) and 50 (red inset) μm. 

Representative of > 60 independent assays for RPM cells and 5 assays for RPR2 cells.

(C) Representative brightfield images of human classic (H1092) and variant (H82) cell lines. 

Scale bar, 100 μm.

(D) Representative immunoblot on specified days following culture of early stage RPM 

tumor cells. Representative of n = 5 independent assays. Bands normalized to HSP90 values, 

with fold-change relative to Day 5 (red and black graphs) or Day 24 (blue graphs) and 

averaged across 3-5 experiments.

(E) Representative immunoblot on specified days following puromycin selection from H889 

(left) or H1963 (right) cells infected with vector control or MYCT58A constructs. MYC-

expressing human SCLC cells (GLC1) are used for positive controls (MYC+).

(F) Representative brightfield and GFP fluorescent images of H889 (left) and H1963 (right) 

human SCLC cells infected with retroviral control or MycT58A-Ires-Gfp viruses. Scale bars, 

100 μm, except H889 MycT58A is 50 μm. Average circularity, roundness and cluster size 

indicated +/− SEM. Student’s unpaired two-tailed t test for MYC vs vector control, **** p < 

0.0001, ** p < 0.009.

HSP90 serves as loading control. See also Figure S2.
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Figure 3. Human SCLC subtypes correspond with MYC-driven evolution
(A) Log2-fold change of indicated NE (relative to the last time point) and non-NE pathway 

genes (relative to the first time point) from bulk RNA-seq of primary RPM tumor cells at 

specific days in culture. Dashed lines in Notch signaling panel indicate genes predicted to be 

Notch-inhibitory.

(B) GSEA of 50-gene NE and non-NE gene signature from (Zhang et al., 2018) applied to 

early (day 3-7) vs late (day 14-21) time points of RPM transition.

(C) Log2 expression of SCLC-subtype defining transcription factor genes at indicated time 

points from bulk RNA-seq data of RPM transition.
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(D) GSEA for human SCLC-ASCL1 (SCLC-A), SCLC-NEUROD1 (SCLC-N) and SCLC-

YAP1 (SCLC-Y) gene signatures applied to bulk RNA-seq data grouped in day increments.

See also Figure S3 and Table S1.
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Figure 4. MYC-driven SCLC subtypes progress along a single evolutionary trajectory
(A) Schematic of primary RPM tumor cell transition analyzed by scRNA-seq with tumor 

cell populations colored by day, and number of cells analyzed per time point in the legend 

(bottom left). Predicted cell types based on gene expression labeled on the same cells by 

number in the bottom right panel.

(B) Following removal of non-tumor and low-quality cells, RPM tumor cells labeled by day 

in tSNE space using Monocle 2.

(C) Expression of individual NE and non-NE marker genes in tSNE space from cells in 

panel B.
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(D) Pseudotime trajectory by Monocle 2 from early to late time points of primary RPM 

transition and 4 RPM-Cas9 tumors from Ad-Cgrp-Cre-infected mice. Faceted pseudotime 

plots indicated on top right and bottom right panels. Dashed insets in RPM tumors highlight 

percent of cells in late-stages of progression; total post-QC number of tumor cells indicated 

below RPM1-4 labels.

(E) Expression of indicated genes projected onto pseudotime space as in panel D.

(F) Heatmap of top-500 differentially expressed genes over pseudotime from the primary 

RPM tumor cell transition and 4 RPM tumors.

See also Figure S4 and Table S2.
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Figure 5. MYC-driven murine tumors exhibit intratumoral SCLC subtype heterogeneity
(A) Representative IHC from in situ (n = 38) or invasive (n = 59) RPM tumors analyzed in 

serial sections. Left color panel indicates subtype classification matching panel B. Scale bar, 

25 μm.

(B) IHC quantification from serial sections in panel A where individual tumors have 

detection of 1 or more than 1 (> 1) subtypes.

(C) CIBERSORT analyses of bulk RNA-seq data from RPM tumors with average (Avg) 

percent similarity to gene expression signatures of RPM transition cells in culture.
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(D) Top panel: Percentage of cells per tumor expressing subtype-defining genes with 

average (Avg) across tumors. Bottom panel: Individual RPM 1-4 trajectories with 

localization of positive cells in pseudotime. Percentage of total tumor cells expressing 

indicated genes shown below trajectories.

(E) Percentage of cells expressing subtype-defining genes in the RPM transition experiment 

from Figure 4D.
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Figure 6. MYC activates Notch signaling during NE reprogramming
(A) Heatmap of top 30 (or fewer, if < 30 significant) differentially-expressed genes for each 

time point of RPM transition using Seurat.

(B) ENRICHR analysis of top differentially-expressed genes (0.25 log-fold change) in RPM 

tumor cell transition compared by day as color-coded in the bottom legend.

(C) 50-gene NE score from (Zhang et al., 2018) applied to RPM tumor cell transition in 

tSNE (left) as in Figure 4B and in pseudotime space (right) as in Figure 4D.

(D) Violin plots of NE-score from panel C applied to every cell of the RPM transition time 

points and individual RPM tumors. Student’s two-tailed unpaired t test, **** p < 2.22e-16.
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(E) Violin plots of MYC ChIP score applied to every cell of the RPM transition time points 

and individual RPM tumors. Student’s two-tailed unpaired t test, **** p < 2.22e-16, *** p < 

0.0004, ** p < 0.002, ns = not significant.

(F) ChIP-seq analysis of MYC (red) and H3K27Ac (blue) genomic binding at indicated gene 

loci from n = 3-4 independent RPM tumor samples. Blue rectangles below plots indicate 

gene exons with directionality of gene (->) near gene name. Black up-arrows indicate 

canonical E-Box 5‘-CACGTG-3’ or non-canonical ‘5-CANNTG-3’; motifs (“E-box motif”) 

selected in the vicinity of observed MYC binding.

(G) Gene expression from (George et al., 2015) analyzed according to MYC status (n = 59 

MYC-low and n = 11 MYC-high tumors). Mean +/− SEM, Student’s two-tailed unpaired t 

test, **** p < 0.0001, *** p < 0.0007, * p < 0.03, ns = not significant.

For box plots, median and interquartile range are shown (lower bar is 25th percentile, upper 

bar is 75th percentile, and end points indicate minimum and maximum values). See also 

Figure S5 and Table S3.
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Figure 7. Notch activation is required for MYC-driven tumor evolution
(A) Representative brightfield images of primary RPM tumor cells cultured in DMSO or 10 

μM DAPT treated every three days and visualized at indicated days. Red box on each row 

indicates the day that variant morphology was first observed. Scale bar, 100 μm. n = 4 

biological experiments.

(B) Immunoblot from cells in panel A. HSP90 serves as loading control. Bar graphs on left 

represent fold change in expression, summed across all timepoints where protein was 

detected, relative to HSP90. Error bars represent mean +/− SEM for n = 4 biological 

replicates. Student’s two-tailed unpaired t test, ** p < 0.004, * p < 0.03, ns = not significant.

Ireland et al. Page 48

Cancer Cell. Author manuscript; available in PMC 2021 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(C) Representative microCT (mCT) imaging from vehicle control (corn oil) (n = 6) and 20 

mg/kg DAPT-treated (n = 8) RPM mice. Lung tumors pseudocolored in yellow and heart 

outlined in red. Quantification of microCT imaging data for total tumor burden (% lung 

tumor volume/total lung volume) in graph on right at indicated days. Mean +/− SEM, 

Student’s two-tailed unpaired t test, ** p < 0.004, * p < 0.03, ns = not significant.

(D) Representative H&E from vehicle control (n = 7) or DAPT-treated (n = 6) RPM mice at 

Day 10 following treatment. Scale bar, 2,000 μm. Quantification of average tumor burden 

(% tumor area/total lung area) in right panel with box plots where each dot represents one 

animal, Student’s two-tailed unpaired t test, ** p < 0.009.

(E) Representative H&E and IHC in vehicle control (n = 7) or DAPT-treated (n = 6) RPM 

mice at Day 10 following treatment. Scale bars, 20 μm.

(F) Digital IHC quantification from lung tumor tissue (% positive tumor cells) in panel E 

where each dot represents a tumor. Student’s two-tailed unpaired t test, **** p < 0.0001, ** 

p < 0.03, ns = not significant.

(G) Left panel: MYC expression in normalized transcripts per million (TPM) + 1 grouped 

by NOTCH status with MYC-high samples in blue; RNA-seq data from n = 70 human 

tumors (George et al., 2015) and n = 48 human cell lines (CCLE), excluding POU2F3+ 

samples. Right panel: NE score applied to the same samples. “Non-damaging” indicates 

missense or in-frame deletions, and “damaging” indicates frame-shift deletions, nonsense, or 

splice variant mutations. Mean +/− SEM, Student’s two-tailed unpaired t test with Welch’s 

correction, * p < 0.01, ns = not significant.

(H) NE score applied to RNA-seq data from n = 70 human tumors (George et al., 2015) and 

n = 98 human cell lines (SCLC_CellMiner), excluding POU2F3+ samples; Student’s two-

tailed unpaired t test with Welch’s correction, *** p value = 0.0009. Contingency table 

analyzed by Fisher’s exact test.

(I) GSEA comparing hSCLCs with NOTCH WT or silent (“WT”) vs “damaging” mutations 

from samples in panel G. Normalized enrichment scores (NES) indicated.

For box plots, median and interquartile range is shown (lower bar is 25th percentile, upper 

bar is 75th percentile, and end points indicate minimum and maximum values). See also 

Figure S6 and Table S4.
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Figure 8. Human SCLC exhibits intratumoral molecular subtype heterogeneity
(A) CIBERSORT analysis of RPM transition signatures in 70 human SCLC tumors (George 

et al., 2015) (black ID) and 48 human SCLC cell lines from CCLE (red ID), excluding 

POU2F3+ samples, grouped according to SCLC molecular subtype. Gene expression values 

for indicated MYC family member or Notch-related genes overlaid above the stacked bar 

graphs. Predicted NOTCH-status marked by top color bar.

(B) Percent of RPM time-point signatures (Y-axis) within hSCLC molecular subtypes 

derived from panel A. Mean +/− SEM, Student’s two-tailed unpaired t test, **** p < 0.0001, 

** p < 0.007, * p < 0.02, ns = not significant.
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(C) Correlation of indicated genes (Y-axis) with percent late (Day 19-21) signature 

determined by CIBERSORT within the human ASCL1+ subset only, with Pearson 

correlation p values indicated.

(D) Venn diagram of human SCLC tissue IHC results with deidentified HCI-patient# for 

positive samples for ASCL1 (red circle), NEUROD1 (yellow circle) or YAP1 (blue circle) (n 

= 21 total). Samples in bold text harbor at least some cells with MYC+ IHC (HCI-12, −20, 

−14). Table on the right summarizes % of samples with indicated number of subtypes 

present at any frequency organized by MYC expression. * indicates tissue from limited stage 

as opposed to extensive stage.

(E) Representative IHC in indicated patient biopsies. Serial sections were stained, but 

multiple tumor regions are shown to illustrate tumor heterogeneity. Scale bar, 20 μm.

(F) tSNE unbiased clustering of tumor cell populations derived from chemotherapy-relapsed 

human SCLC liver biopsy analyzed by scRNA-seq. Number of post-QC tumor cells 

indicated.

(G) Relative expression of indicated genes in tSNE as in panel F.

(H) We propose a hypothetical model whereby NOTCH-deficient SCLC tumors are locked 

in an NEstem-like (ASCL1+) state (right circle) similar to Ouadah et al., 2019. In contrast, 

MYC reprograms NOTCH-WT tumors to non-NE SCLC fates that proceed either from 

NEUROD1 to YAP1 (left circle, top dashed line), or directly from ASCL1 to YAP1 (left 

circle, bottom dashed line).

See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Peroxidase AffiniPure Donkey Anti-Rabbit IgG (H+L) Jackson ImmunoResearch Cat#711-035-152; RRID: 
AB_10015282

Peroxidase AffiniPure Goat Anti-Mouse IgG1, Fcg Subclass 2b 
Specific

Jackson ImmunoResearch Cat#115-035-205; RRID: 
AB_2338513

HSP90 Cell Signaling Technology Cat#4877

ASCL1 BD Pharmingen Cat#BD556604

UCHL1 Sigma Cat#HPA005993

SYP Thermo Fisher Scientific Cat#RB1461P1

CGRP Sigma Cat# C8198

CD44 Cell Signaling Technology Cat#37259

POU2F3 Sigma Cat#HPA019652

EPCAM Abcam Cat#ab71916

INSM1 Santa Cruz Biotechnology Cat#sc-271408

NEUROD1 [EPR4008] Abcam Cat#ab109224

REST Millipore Cat#17-641

YAP XP Cell Signaling Technology Cat#14074

NOTCH2 XP Cell Signaling Technology Cat#5732

HES1 Cell Signaling Technology Cat#11988

MYC, for immunoblot Cell Signaling Technology Cat#5605

MYC, for human IHC Abcam Cat#ab32072

MYC, for mouse IHC Santa Cruz Biotechnology Cat#sc-764

NKX2-1 Abcam Cat#ab76013

ZEB1 Bethyl Laboratories Cat#A301-922A

DLL3 Thermo Fisher Scientific Cat#PA5-23448

MYC, for ChIP-seq Cell Signaling Technology Cat#13987

H3K27Ac Active Motif Cat#39133

Bacterial and Virus Strains

Ad5-CMV-Cre University of Iowa Viral Vector Core 
Facility

Cat#VVC-U of Iowa-5

Ad5-CGRP-Cre University of Iowa Viral Vector Core 
Facility

Cat#VVC-Berns-1160

Ad5-CCSP-Cre University of Iowa Viral Vector Core 
Facility

Cat#VVC-Berns-1166

Ad5-SPC-Cre University of Iowa Viral Vector Core 
Facility

Cat#VVC-Berns-1168

Biological Samples

Mouse tissues This paper N/A

Human SCLC tissue Huntsman Cancer Institute N/A

Chemicals, Peptides, and Recombinant Proteins
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REAGENT or RESOURCE SOURCE IDENTIFIER

DAPT Apexbio Cat#A8200

DBZ Apexbio Cat#A4018

Normal Goat Serum Jackson Immunoresearch Cat#005-000-121

ACK Lysing Buffer Thermo Fisher Scientific Cat#A10492

Collagenase Type 1A Sigma Cat#C9891

Collagenase, Type 4 Worthington Biochemical Cat#LS004186

Dispase Worthington Biochemical Cat#LS02104

StemPro Accutase Cell Dissociation Invitrogen Cat#A1110501

DMSO Fisher Scientific Cat#BP231-100

Puromycin Fisher Scientific Cat#BP2956-100

Gotaq G2 Colorless Master Mix Promega Cat#M7832

Formaldehyde (37% by weight) Thermo Fisher Scientific Cat#BP531-500

Polybrene Santa Cruz Biotechnology Cat#sc-134220

Hydroxypropylmethylcellulose (HPMC) Sigma Cat#H7509

Tween-80 Fisher Scientific Cat#BP338

Corn oil Sigma Cat#C8267

Critical Commercial Assays

LIVE/DEAD Fixable Violet Dead Cell Stain Kit Invitrogen Cat#L34963

Zombie Green Viability Fluorescent Dye Biolegend Cat#423111

DAB Peroxidase (HRP) Substrate Kit (with Nickel), 3,3’-
diaminobenzidine

Vector Laboratories Cat#SK-4100

VECTASTAIN ABC Kit (Rabbit IgG) Vector Laboratories Cat#PK-4001

SignalStain Boost IHC Detection Reagent (HRP, Rabbit) Cell Signaling Technology Cat#8114

SignalStain Antibody Diluent Cell Signaling Technology Cat#8112

Advansta WesternBright ECL HRP Substrate Kit VWR Cat# 490005-020

Mouse on Mouse (M.O.M) Basic Kit Vector Laboratories Cat#BMK-2202

Qiagen DNeasy Blood and Tissue Kit Qiagen Cat#69504

Nextera DNA Flex Library Prep Kit Illumina Cat#20018705

TruSeq Stranded mRNA Library Prep Kit Illumina Cat#RS-122-2101

TruSeq Stranded Total RNA Library Ribo-Zero Gold Prep Kit Illumina Cat#RS-122-2301

HiSeq SR Cluster Kit v4-cBot Illumina Cat#GD-401-4001

HiSeq SBS Kit v4 Illumina Cat#FC-401-4002

Chromium Single Cell 3’ Library & Gel Bead Kit v3 10X Genomics Cat#PN-1000075

Chromium Single Cell 5’ Library & Gel Bead Kit 10X Genomics Cat#PN-1000020

Chromium Single Cell Controller 10X Genomics Cat#PN-120263

D1000 Screen Tape Agilent Cat#5067-5582

D1000 Reagents Agilent Cat#5067-5583

KAPA Library Quantification Kit Roche Cat#KK4842

RNeasy Mini Kit Qiagen Cat#74106

Deposited Data
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bulk RNA Seq RPM Transition Timepoints This paper GEO: GSE149180

Bulk RNA Seq RPM and RPR2 Tumors This paper GEO: GSE149180

Single Cell RNA-Seq RPM Transition Timepoints This paper GEO: GSE149180

Single Cell RNA-Seq Bulk RPM Tumors This paper GEO: GSE149180

MYC and H3K27Ac ChIP-Seq from RPM Tumors Chalishazar et al., 2019 GEO: GSE142496

Single Cell RNA-Seq Human SCLC Liver Biopsy This paper GEO: GSE149180

Experimental Models: Cell Lines

Mouse: RPM Transition Primary Cells This paper N/A

Mouse: RPR2 Transition Primary Cells This paper N/A

Human: NCI-H889 Gift of John Minna, UTSW CRL-5817; CVCL_1598

Human: GLC1 Gift of Martin Sos, Germany CVCL_8200

Human: H1963 Gift of Paul Bunn, UC-Denver CVCL_1510

Human: NCI-H1092 Gift of David MacPherson, Fred Hutch CRL-5855

Human: NCI-H446 Gift of John Minna, UTSW HTB-171

Human: NCI-H82 Gift of John Minna, UTSW HTB-175

Human: GLC8 Gift of Martin Sos, Germany CVCL_8218

Human: HEK-293T ATCC CRL-3216; CVCL_0063

Experimental Models: Organisms/Strains

Mouse: Rb1fl/fl;Trp53fl/fl;Rbl2fl/fl (RPR2) Julien Sage, Stanford, Schaffer et al, 
2010

MMRRC 043692-UCD

Mouse: Rb1fl/fl;Trp53fl/fl;MycT58ALSL/LSL (RPM) Trudy G. Oliver, University of Utah, 
Mollaoglu et al, 2017

JAX#029971

Mouse: Rosa26-LSL-Cas9-Ires-GFP Feng Zhang, MIT, Platt et al, 2014. JAX#024857

Mouse: Rb1fl/fl;Trp53fl/fl;MycT58ALSL/LSL-Cas9 This paper N/A

Oligonucleotides

Rb1 recombination primers Tyler Jacks, MIT https://jackslab.mit.edu/
protocols/genotyping/rb1lox

Trp53 recombination primers Tyler Jacks, MIT https://jackslab.mit.edu/
protocols/genotyping/
p53_cond_recomb

Recombinant DNA

Puro-Ires-GFP Empty Mayr and Bartel., 2009 Addgene Plasmid #21654

Puro-Ires-GFP MYC T58A Mollaoglu et al., 2017 Will deposit to Addgene

pCMV-VSVG Stewart et al., 2003 Addgene Plasmid #8454

pCMV-delta-R8.2 Stewart et al., 2003 Addgene Plasmid #8455

Software and Algorithms

Graphpad Prism 8 Graphpad Software www.graphpad.com/scientific-
software/prism/

Image Studio Lite 5 LI-COR www.licor.com/bio/products/
software/image_studio_lite/

Quantum GX2 mCT Software PerkinElmer N/A

Analyze 11.0 AnalyzeDirect https://analyzedirect.com/
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REAGENT or RESOURCE SOURCE IDENTIFIER

FlowJo v10 FlowJo LLc www.flowjo.com

BD FACSDiva 8 BD Biosciences http://
www.bdbiosciences.com/us/
instruments/research/software/
flow-cytometry-acquisition/bd-
facsdiva-software/m/111112/
overview

ImageJ: Image processing and analysis in Java ImageJ https://imagej.nih.gov/ij/

Cell Ranger Analysis Pipeline 10X Genomics https://
support.10xgenomics.com/
single-cell-gene-expression/
software/pipelines/latest/what-
is-cell-ranger

Loupe Cell Browser 3.1.1 10X Genomics https://
support.10xgenomics.com/
single-cell-gene-expression/
software/visualization/latest/
what-is-loupe-cell-browser

Integrative Genomics Viewer (IGV) Broad Institute, and the Regents of the 
University of California

http://
software.broadinstitute.org/
software/igv/

Gene Set Enrichment Analysis (GSEA) Broad Institute, and the Regents of the 
University of California

http://
software.broadinstitute.org/
gsea/index.jsp

Enrichr Kuleshov et al., 2016 http://amp.pharm.mssm.edu/
Enrichr/

Cibersort Newman et al., 2015 https://cibersort.stanford.edu

Monocle2 Trapnell et al., 2014; Qiu et al., 2017 http://cole-trapnell-
lab.github.io/monocle-release/
docs/

Seurat Butler et al., 2018; Stuart and Butler et 
al., 2019

https://satijalab.org/seurat/

Scater McCarthy et al., 2017 http://bioconductor.riken.jp/
packages/3.9/bioc/vignettes/
scater/inst/doc/vignette-
intro.html

R Statistical Programming The R Foundation www.r-project.org

BioRender BioRender 201 https://www.getbiorender.com

SCLC_Cellminer Database Tlemsani, et al., BioRxiv preprint, 
2020

https://discover.nci.nih.gov/
SclcCellMinerCDB/
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