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Abstract

Previous multi-model intercomparisons have shown that chemistry-climate models exhibit 

significant biases in tropospheric ozone compared with observations. We investigate annual-mean 
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tropospheric column ozone in 15 models participating in the SPARC/IGAC (Stratosphere-

troposphere Processes and their Role in Climate/International Global Atmospheric Chemistry) 

Chemistry-Climate Model Initiative (CCMI). These models exhibit a positive bias, on average, of 

up to 40–50% in the Northern Hemisphere compared with observations derived from the Ozone 

Monitoring Instrument and Microwave Limb Sounder (OMI/MLS), and a negative bias of up to 

~30% in the Southern Hemisphere. SOCOLv3.0 (version 3 of the Solar-Climate Ozone Links 

CCM), which participated in CCMI, simulates global-mean tropospheric ozone columns of 40.2 

DU – approximately 33% larger than the CCMI multi-model mean. Here we introduce an updated 

version of SOCOLv3.0, “SOCOLv3.1”, which includes an improved treatment of ozone sink 

processes, and results in a reduction in the tropospheric column ozone bias of up to 8 DU, mostly 

due to the inclusion of N2O5 hydrolysis on tropospheric aerosols. As a result of these 

developments, tropospheric column ozone amounts simulated by SOCOLv3.1 are comparable 

with several other CCMI models. We apply Gaussian process emulation and sensitivity analysis to 

understand the remaining ozone bias in SOCOLv3.1. This shows that ozone precursors (nitrogen 

oxides (NOx), carbon monoxide, methane and other volatile organic compounds) are responsible 

for more than 90% of the variance in tropospheric ozone. However, it may not be the emissions 

inventories themselves that result in the bias, but how the emissions are handled in SOCOLv3.1, 

and we discuss this in the wider context of the other CCMI models. Given that the emissions data 

set to be used for phase 6 of the Coupled Model Intercomparison Project includes approximately 

20% more NOx than the data set used for CCMI, further work is urgently needed to address the 

challenges of simulating sub-grid processes of importance to tropospheric ozone in the current 

generation of chemistry-climate models.

1. Introduction

Ozone is a key trace gas in the atmosphere. In the stratosphere, it absorbs UV-B 

(280<λ<320 nm) radiation and thus protects life at the surface. However in the troposphere, 

where approximately 10% of the total atmospheric ozone burden resides, ozone is a 

greenhouse gas and air pollutant, with adverse affects on human health and crop yields 

(Myhre et al., 2013; Stevenson et al., 2013; Silva et al., 2013, 2017). Approximately 90% of 

tropospheric ozone results from a series of photochemical reactions which are initiated by 

the reaction of NOx (nitrogen oxides, NOx = NO+NO2) and either CO (carbon monoxide), 

CH4 (methane) or a NMVOC (non-methane volatile organic compound) (Denman et al., 

2007). These ozone precursors are emitted from, amongst other sources, fossil fuel burning, 

industrial processes and agriculture. Ozone can also be transported from the stratosphere in 

stratosphere-troposphere exchange (STE) events. Greenslade et al. (2017) calculate the mean 

fraction of total tropospheric ozone attributable to STE at three sites between 38–69° S as 1–

3%, and show that during individual STE events, over 10% of tropospheric ozone may be 

directly transported from the stratosphere. Due to its global tropospheric lifetime of ~22 

days, ozone is subject to intercontinental transport (Auvray and Bey, 2005), and this is 

modulated by decadal climate variability (Lin et al., 2014). Ozone is lost from the 

troposphere either by dry deposition or photochemical destruction.

Most chemistry-climate models (CCMs), which are used to understand chemistry-climate 

interactions and project future atmospheric composition, overestimate tropospheric ozone in 
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the Northern Hemisphere compared with observations (Young et al., 2013; Parrish et al., 

2014; Young et al., 2018). In particular, version 3.0 of the SOCOL (Solar-Climate Ozone 

Links) CCM (Section 2.2) contains notable positive tropospheric ozone biases. Revell et al. 

(2015) identified that ozone concentrations in SOCOLv3.0 are up to 50% too high in the 

Northern Hemisphere mid-troposphere (500 hPa) compared with observations from the 

Tropospheric Emission Spectrometer (TES). The reasons underlying SOCOLv3.0’s 

tropospheric ozone bias were not completely clear to Revell et al. (2015), who noted that, 

while SOCOLv3.0 could accurately simulate the general geographic distribution of 

tropospheric ozone, the actual magnitude was wrong and likely to be “a source issue (that is, 

emissions), a sink issue (HNO3 washout), or a combination of the two.”

Staehelin et al. (2017) showed that the mean tropospheric ozone burden in SOCOLv3.0 is 

413 Tg, which is approximately 80 Tg larger than the multi-model mean burdens reported 

for the ACCENT (Atmospheric Composition Change: the European Network of Excellence 

(Stevenson et al., 2006)) and ACCMIP (Atmospheric Chemistry and Climate Model 

Intercomparison Project (Young et al., 2013)) activities, of 337 and 336 Tg, respectively. 

Furthermore, SOCOLv3.0 overestimates both the tropospheric ozone production and 

destruction rates compared to the multi-model means from ACCENT and ACCMIP 

(Staehelin et al., 2017). While SOCOLv3.0’s production rates are overestimated by 34% 

compared to ACCENT and 41% compared to ACCMIP, the destruction rates are 

overestimated only by 20% (ACCENT) and 31% (ACCMIP).

Recently a newer version of SOCOL has been developed, “SOCOLv3.1”, which remediates 

obvious deficiencies in SOCOLv3.0’s representation of tropospheric processes (Section 2.3). 

We compare tropospheric column ozone in SOCOLv3.0 and 3.1 with observations derived 

from OMI/MLS, the Ozone Monitoring Instrument/Microwave Limb Sounder (Section 3.1), 

and use Gaussian process (GP) emulation and sensitivity analysis to investigate the 

remaining ozone bias in SOCOLv3.1 (Section 3.2). Because thousands of simulations are 

required to perform a sensitivity analysis, and this would be computationally inefficient with 

a CCM, we supplement SOCOLv3.1 with a GP emulator. This allows a sensitivity analysis 

to be performed at low computational cost. Variance-based sensitivity analysis evaluates a 

suite of model input parameters, and their relationship to the variable of interest 

simultaneously.

Here, we apply GP emulation and variance-based sensitivity analysis to the SOCOLv3.1 

tropospheric ozone budget to understand causes of the bias. In contrast to one-at-a-time 

testing, which investigates the model response to varying one input parameter while holding 

all others constant, GP emulation allows all parameters to be evaluated simultaneously and 

covers more of the parametric uncertainty space than one-at-a-time testing. GP emulation is 

computationally efficient and allows the interacting effects of the uncertainties on different 

input parameters to be accounted for. It also generates much more information than one-at-a-

time testing – typically the same level of information as a Monte Carlo approach, but 

requiring a fraction of the model simulations (O’Hagan, 2006). GP emulation has been used 

by the global atmospheric modelling community only in the last few years, in applications 

such as cloud and aerosol microphysics modelling (Lee et al., 2011, 2012; Carslaw et al., 

2013; Johnson et al., 2015) and chemical transport modelling (Ryan et al., 2018). This is the 
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first time the technique has been applied to global tropospheric ozone. Our GP emulator 

experiments have been designed to focus on recent developments regarding SOCOL’s 

tropospheric chemistry scheme, however the methodology has the potential to be expanded 

to also include meteorological parameters.

SOCOLv3.0 participated in phase 1 of the Chemistry-Climate Model Initiative (CCMI) 

(Eyring et al., 2013; Morgenstern et al., 2017), which is a joint activity of SPARC 

(Stratosphere-troposphere processes and their role in Climate) and IGAC (International 

Global Atmospheric Chemistry), and is the successor activity to phase 2 of the Chemistry-

Climate Model Validation activity, CCMVal-2 (SPARC CCMVal, 2010). Unlike CCMVal-2, 

which focussed on stratospheric processes and composition, CCMI includes many models 

with comprehensive representations of the troposphere, and aims to additionally address 

aspects of tropospheric chemistry and circulation. Here, we examine tropospheric column 

ozone in SOCOLv3.0 and 14 other CCMI models. This is the first time that global 

distributions of tropospheric ozone have been examined in the CCMI models, and results are 

presented in Section 3.3.

2 Computational and statistical methods

2.1 CCM simulations to compare with observations

We use the ensemble mean of three free-running SOCOLv3.0 simulations of the recent past 

to compare with observations (ETH-PMOD, 2015). These simulations were performed for 

CCMI, and conform to REF-C1 specifications (Eyring et al., 2013). The simulations cover 

the period 1960–2010, following a 10-year spin-up period. Greenhouse gas concentrations 

(CH4, CO2 and N2O) follow observations until 2005, then Representative Concentration 

Pathway (RCP) 8.5 (Riahi et al., 2011). Ozone precursor emissions (including NOx, CO and 

NMVOCs) follow a historical emissions inventory until 2000 (Lamarque et al., 2010), then 

RCP 6.0 (Masui et al., 2011). Sea surface temperatures and sea ice concentrations were 

prescribed following HadISST observations (Rayner et al., 2003). Concentrations of ozone-

depleting substances followed the World Meteorological Organization’s A1 scenario 

(WMO2011), and stratospheric aerosol surface area densities and optical parameters were 

prescribed from the SAGE-4λ data set (Arfeuille et al., 2013; Luo, 2013).

We also examine annual-mean tropospheric ozone in REF-C1 simulations performed by 

models participating in CCMI, described by Morgenstern et al. (2017) and references 

therein. Using the simulated ozone volume mixing ratio and WMO-defined tropopause 

height from each model, tropospheric ozone columns were calculated for the year 2005 by 

integrating ozone between the surface and WMO-defined tropopause. The WMO definition 

of the tropopause was selected to be consistent with the OMI/MLS tropospheric ozone 

product (Ziemke et al., 2006). Between 2010–2014, the average tropospheric ozone burden 

derived from OMI/MLS was 300 Tg, which is very close to the multi-instrument mean of 

five satellite products over the same period, of 301 Tg (Gaudel et al., 2018).

Where multiple ensemble members (‘realisations’) of the REF-C1 simulation were 

submitted to the CCMI archive, the ensemble mean is shown. The exception is NIWA-

UKCA, which submitted three realisations of the REF-C1 simulation; however only the first 
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realisation is shown as ozone precursor emissions were erroneously fixed at 1960 levels for 

the other two realisations (Morgenstern et al., 2017). The EMAC simulations used road 

traffic emissions which were updated every year rather than every month. Therefore when 

we examine year 2005 tropospheric column ozone in Section 3.3, the EMAC simulations 

used road traffic emissions for August 1954. Jöckel et al. (2016) show that this error results 

in tropospheric ozone columns that are ~2 DU lower than if the correct emissions were used. 

The UMUKCA-UCAM simulations used CCMVal-2 REF-B2 emissions for NOx aircraft 

emissions and NOx, CO and HCHO surface emissions.

2.2 The SOCOLv3.0 chemistry-climate model

The SOCOL CCM was developed in Switzerland at ETH Zurich and PMOD/WRC (the 

Physical Meteorological Observatory Davos/World Radiation Center). Version 3.0 of 

SOCOL (Stenke et al., 2013; Revell et al., 2015) consists of the middle atmosphere version 

of the ECHAM5 (European Centre Hamburg Model) atmosphere-only general circulation 

model (Roeckner et al., 2003) coupled to the MEZON (Model for Ozone Trends) chemistry 

transport model (Egorova et al., 2003). The chemical solver takes into account 41 chemical 

species, 140 gas-phase reactions, 46 photolysis reactions and 16 heterogeneous reactions. 

The oxidation of isoprene, an important NMVOC for the tropospheric ozone budget, is 

accounted for with the Mainz Isoprene Mechanism (MIM-1), which comprises 16 organic 

degradation products of isoprene and a further 44 chemical reactions (Poschl et al., 2000). 

Global isoprene emissions are estimated to range from 440 to 660 Tg(C)/yr, which is 

comparable to the annual amount of CH4 emissions (Guenther et al., 2006). About two 

thirds of the annual global emissions of volatile organic compounds (VOCs) are accounted 

for in SOCOLv3.0 by isoprene and methane. Apart from isoprene and formaldehyde, other 

NMVOCs are not included explicitly in the model but their contribution to CO is accounted 

for via the addition of a certain fraction of NMVOC emissions to CO. For anthropogenic, 

biomass burning and biogenic NMVOC emissions the conversion factors to CO are 1.0, 0.31 

and 0.83, respectively (Ehhalt et al., 2001).

Clear-sky photolysis rates are calculated using a look-up-table (LUT) approach, which 

provides photolysis rates as a function of overhead ozone and oxygen columns (Rozanov et 

al., 1999). Variability of solar irradiance is included in the LUTs. Cloud impacts on 

photolysis are accounted for in the troposphere by the inclusion of a cloud modification 

factor following the parametrization described by Chang et al. (1987). From a recent 

intercomparison of photolysis rates simulated by different CCMI models we learned that 

SOCOLv3.0 overestimates tropospheric NO2 photolysis by roughly a factor of 2 compared 

to other models (Nicely et al., 2018). This overestimation is likely related to the treatment of 

backscattering from clouds in the calculations of the photolysis LUTs and the missing 

impact of aerosols. Both effects cannot be easily corrected by the implemented cloud 

modification factor, and so an online photolysis scheme is planned for future model 

versions.

Dry deposition velocities of O3, CO, NO, NO2, HNO3 and H2O2 are based on Hauglustaine 

et al. (1994). This simplified approach assumes constant dry deposition velocities over land 

and ocean, without accounting for seasonal or geographical variability. The tropospheric 
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wash-out of HNO3 and H2O2 is calculated by using a constant removal rate of 4×10−6 s−1, 

irrespective of precipitation occurrence. At every chemical time step, i.e., every two hours, 

2.8% of tropospheric HNO3 and H2O2 below 160 hPa are removed. Boundary conditions for 

the ozone precursor gases NOx, CO and NMVOCs are implemented as surface emission 

fluxes. Methane’s global average surface mixing ratio is prescribed on the six lowermost 

model levels. For this study, both SOCOL configurations were run with 39 vertical levels 

between Earth’s surface and 0.01 hPa (~80 km) and T42 horizontal resolution (grid cells 

approximately 2.8° × 2.8°).

2.3 Upgraded model version SOCOLv3.1

SOCOLv3.1 was developed to address SOCOLv3.0’s representation of processes relevant to 

tropospheric ozone chemistry, with the aim of improving the model’s large tropospheric 

ozone bias as shown by Revell et al. (2015). First, we implemented heterogeneous 

hydrolysis of N2O5 on tropospheric aerosol, as this is an important removal process for 

atmospheric NOx and was not included in SOCOLv3.0. As SOCOLv3.0 does not explicitly 

simulate tropospheric aerosols, the new scheme makes use of the ECHAM5 internal 

tropospheric aerosol climatology considering aerosol properties of 11 Global Aerosol Data 

Sets types (Köpke et al., 1997). The reaction probabilities for the different aerosol types are 

calculated following the parametrization by Evans and Jacob (2005).

Second, the simplified treatment of dry deposition was replaced by a more sophisticated 

scheme in SOCOLv3.1 based on the surface resistances approach for the estimation of dry 

deposition velocities proposed by Wesely (1989). This takes into account actual 

meteorological conditions, different surface types and trace gas properties like solubility and 

reactivity. Further details of this scheme are given by Kerkweg et al. (2006).

Third, we adjusted how methane is prescribed in the model. In previous versions of SOCOL, 

methane was prescribed as a global surface average mixing ratio on the six lowermost model 

levels (covering approximately 2.5 km). This was changed to only the surface level in 

SOCOLv3.1. While the amount of methane entering the atmosphere is the same in both 

configurations, prescribing it on one level instead of six means that methane-induced ozone 

production in the mid-to-upper troposphere is reduced. Because SOCOLv3 has a high OH 

bias compared to the ACCMIP models (Staehelin et al., 2017), ozone production from 

methane oxidation is amplified by the continuous re-supply of methane due to the mixing 

ratio boundary condition when methane is prescribed on six levels instead of one. An 

interhemispheric gradient and seasonal cycle in methane have also been implemented in 

SOCOLv3.1; however these were not used in this study and instead methane was prescribed 

as a global average surface mixing ratio to test the general sensitivity of tropospheric ozone 

to surface methane concentrations.

Finally, because the LUTs used in SOCOLv3.0 cause tropospheric NO2 photolysis to be 

overestimated due to the treatment of backscattering from clouds (Section 2.2), we 

recalculated LUTs for SOCOLv3.1. While the SOCOLv3.0 LUTs were calculated assuming 

0.5 cloud coverage and a surface albedo of 0.3, the SOCOLv3.1 LUTs were based on clear-

sky conditions and also used a surface albedo of 0.3.
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2.4 SOCOLv3.1 simulations for GP emulator training and testing

Variance based global sensitivity analysis quantifies the contribution of a single parameter to 

the variance of a model’s output. Because the large number of model simulations required 

would make one-at-a-time testing computationally too expensive, a type of statistical model 

called a GP emulator can be used as a surrogate for the input-output relation of a complex 

model, such as a CCM (Le Gratiet et al., 2017). For “training” data on which the GP 

emulator is built, we know that the true value of the emulated output should be the same as 

the input, so the emulator should return the output with no uncertainty. For inputs that the 

emulator is not trained at, the outputs should have a probability distribution specified by a 

mean function and covariance function (O’Hagan, 2006). Here, we use tropospheric ozone 

columns from SOCOLv3.1 to train the emulator.

Interacting contributions to the overall uncertainty in tropospheric column ozone can be 

identified by comparing the main effect variance (the reduction in the ozone variance when a 

particular model forcing is fixed, e.g. NOx emissions), with the total effect variance (the 

remaining variance in the tropospheric column ozone when everything except a particular 

model forcing is fixed). Various software packages are available for GP emulation. We used 

the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA), available at http://

tonyohagan.co.uk/academic/GEM/index.html, to build an emulator for tropospheric column 

ozone.

Although many factors influence the tropospheric ozone budget, we restricted our analysis to 

9 model forcings/parametrizations (see Table 1 for details of the scalings applied). These are 

listed below, followed by a section rationalizing the inclusion of each variable. We reiterate 

that this list above does not constitute a comprehensive list of variables controlling 

tropospheric ozone; however by illustrating the methodology used, we aim to demonstrate 

its utility.

1. Natural and anthropogenic NOx emissions (Denoted in figures as ‘NOx’).

2. Methane concentrations (‘CH4’).

3. CO emissions (natural and anthropogenic), and NMVOC emissions 

(anthropogenic, biogenic and biomass burning) (‘CO’).

4. the number of vertical levels NOx and CO+NMVOC emissions were prescribed 

on in the model (‘ELEV’).

5. the number of vertical levels CH4 concentrations were prescribed on in the 

model (‘CLEV’).

6. the impact of clouds on photolysis rates, via the cloud modification factor 

(‘CMF’).

7. the rate of HNO3 washout (‘HNO3’).

8. the N2O5 uptake coefficient, which represents the probability of N2O5 hydrolysis 

occurring (‘N2O5’).
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9. the specific reactivities for ozone dry deposition (‘O3DD’), which are used to 

estimate the dry deposition velocity.

Variables (1–3) were selected due to their importance as tropospheric ozone precursors. CO 

and NMVOC emissions were varied simultaneously (3) because the only NMVOCs included 

explicitly in SOCOL are isoprene and formaldehyde; other NMVOCs are represented via 

additional CO using a ‘lumped’ approach (Section 2.2). For models with a more complex 

representation of NMVOCs, we recommend testing CO and NMVOC emissions separately 

when constructing a GP emulator.

The remaining variables were included to investigate the sensitivity of tropospheric ozone to 

the model improvements implemented in SOCOLv3.1. SOCOLv3.0 and its predecessors 

prescribed methane on the lowermost six model levels. This was changed to only the surface 

level in SOCOLv3.1, and variable (5) was included in our analysis to investigate the 

sensitivity of tropospheric ozone to this implementation. The lowermost level in SOCOL 

covers approximately 100 m, and the 6 lowermost levels combined cover approximately 2.5 

km. To explore whether other ozone precursors are sensitive to the number of levels they are 

prescribed on, variable (4) was included, even though it is prescribed only as a surface 

emissions flux in most, if not all, CCMs. By doing so, we aim to test the exchange of 

emissions between the boundary layer and free troposphere.

Because ozone production and destruction reactions are mostly photochemical, i.e. they 

occur in the presence of sunlight, we selected variable (6) to test the sensitivity of the current 

CMF parametrization, and examine impacts of the updated LUTs on tropospheric ozone in 

SOCOLv3.1. HNO3 washout is the main sink for NOx, and therefore affects the ozone 

budget. Future SOCOL versions will include an online wet deposition scheme, and so 

variable (7) was selected to probe the sensitivity of tropospheric ozone to the rate of HNO3 

loss. Heterogeneous N2O5 hydrolysis is similarly important as it leads to HNO3 formation, 

however it was not included in SOCOLv3.0. Therefore variable (8) was included in our 

analysis to quantify its relevance for tropospheric ozone abundances. Finally, variable (9) 

was chosen to test the sensitivity of tropospheric ozone to the newly-implemented dry 

deposition parametrization (Section 2.3).

Typically 10n simulations are recommended for training a GP emulator, where n is the 

number of variables under investigation (Loeppky et al., 2009). Hence we performed 90 

SOCOLv3.1 “training” simulations, and used the resulting annual-mean tropospheric ozone 

column to construct the GP emulator in several geographical regions (Europe, United States, 

Asia, the Southern Ocean and the global mean). For each of the 90 training simulations, the 

9 input variables were scaled simultaneously, with the scaling factors determined using a 

“maximin” Latin hypercube design, which generates a nearrandom sample of parameter 

values from a multidimensional distribution and fills the uncertainty space of the parameters 

(McKay et al., 1979). The Latin hypercube was generated using GEM-SA. For the discrete 

input parameters (e.g. (4) and (5) in the list above), the scaling factor was rounded to the 

nearest whole number. Table 1 summarises the minimum and maximum scalings applied to 

each of the 9 variables. This is discussed further in Section 3.2. Figure 1 shows the 

experimental design for the 90 training simulations.
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SOCOLv3.1 training simulations were performed for the year 2005 (following a common 

model spin-up period of 10 years, which was discarded from our analysis). The feedback 

between chemistry and radiation was switched off to keep internal variability as small as 

possible. Switching off the chemistry-radiation feedback means that all simulations have the 

same meteorology (given that they started from the same initial conditions and ran with the 

same dynamical boundary conditions), despite having different chemistry. Therefore, we can 

be confident that the differences between the simulations, are caused by differences in 

chemistry and not dynamics.

The emulator was constructed using tropospheric ozone columns calculated between the 

surface and the WMO-defined tropopause. Alongside the global mean, we focus on four 

regions, namely Europe (37–60° N, 0–42° E), the United States (32–52° N, 67–124° W), 

Asia (6–49° N, 70–146° E) and the Southern Ocean (45–60° S, all longitudes), where 

different chemical regimes may dominate, e.g. Sillman et al. (1990).

After constructing the GP emulator, the next step is to validate it by comparing emulator-

predicted ozone with SOCOL-simulated ozone. This was done by performing a further 27 

(i.e. 3n) SOCOLv3.1 “testing” simulations. The set-up for these simulations was similar to 

the training simulations, with a new Latin hypercube generated by GEM-SA to supply the 

scaling factors.

3 Results

3.1 Tropospheric ozone in SOCOLv3.1

Figure 2 compares annual-mean tropospheric column ozone as simulated by SOCOLv3.0 

and 3.1 with observations derived from OMI/MLS. Although SOCOLv3.0 captures the 

spatial distribution of tropospheric ozone fairly well in a qualitative sense, i.e. elevated 

ozone in the Northern Hemisphere and a minimum over the tropical Western Pacific (Fig. 

2a), it overestimates tropospheric column ozone between 60° N–40° S by up to 30 DU – 

approximately a factor of 2 (Fig. 2c). The improved treatment of ozone sink processes in 

SOCOLv3.1 means that tropospheric ozone columns are reduced regionally by up to 8 DU 

compared with SOCOLv3.0 (Figs. 2d–e). Individual sensitivity tests (not shown) indicate 

that this is due mostly to the inclusion of heterogeneous N2O5 hydrolysis on tropospheric 

aerosol.

Both SOCOLv3.0 and 3.1 show a small negative bias in tropospheric ozone over the 

Southern Ocean. This was also visible in the SOCOLv3.0 and TES comparison presented by 

Revell et al. (2015). Recent work by Luhar et al. (2017) has indicated that the Wesely (1989) 

dry deposition scheme overestimates the observed ozone deposition velocity by a factor of 

2–4 in the Southern Ocean, where SSTs are low and chemical reactions are slow. Further 

upgrades to the model’s deposition scheme may therefore improve comparisons of simulated 

and observed tropospheric ozone in cold oceanic regions.

The global-mean tropospheric ozone column in SOCOLv3.1 is 36.4 DU (Fig. 2d), which is 

still at the upper end of the range of the CCMI models (Fig. 6), but comparable to other 

models such as ACCESS (36.3 DU), EMAC-L47 (37.3 DU) and MRI-ESMr1 (35.7 DU). 
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Despite the improvements to SOCOLv3.1, a large bias in tropospheric ozone of 

approximately 20 DU compared with OMI/MLS remains (Fig. 2f). The bias maximises over 

continental regions in the Northern Hemisphere, and over Southeast Asia.

3.2 GP emulation and sensitivity analysis in SOCOLv3.1

To understand the drivers of the remaining tropospheric ozone bias in SOCOLv3.1, we 

constructed a GP emulator from the 90 SOCOLv3.1 “training” simulations (Section 2.4). 

Tropospheric ozone predicted by the emulator is compared with SOCOLv3.1 test 

simulations in Figure 3. In all geographical regions shown, the goodness of fit between 

emulated and simulated tropospheric ozone is high (R2≥0.85) and the points fall mostly 

along the 1:1 line, indicating that the emulator performs well in these regions. The point 

with the largest simulated tropospheric ozone column corresponds to a simulation in which 

two ozone loss processes, HNO3 washout and ozone dry deposition, were set to zero and 

large scalings (4.00 and 3.54) were applied to the ozone precursors NOx and CH4, 

respectively, following the Latin hypercube design (Fig. 1). The emulator underestimates 

tropospheric ozone for this point in all regions examined, indicating that it may not be well 

constrained at the extreme ends of the parameter uncertainty space.

Figure 4 displays the sensitivity of global-mean tropospheric ozone to each parameter, 

obtained by averaging over all other parameters, and indicates whether tropospheric ozone 

increases or decreases in response to an individual forcing/parametrization. Greater 

uncertainty is indicated where the lines diverge (appearing as a thicker line - i.e., the 

emulator is less well constrained). Tropospheric ozone exhibits a strong sensitivity to its 

precursor gases (Fig. 4a–c), and while the correlation between CH4 and CO+NMVOCs is 

approximately linear, for NOx there appears to be a saturation effect for scaling factors 

greater than one, likely due to the “NOx titration effect” (Thornton et al., 2002). In our 

calculations a uniform sampling distribution was applied when generating the Latin 

hypercube, which means that in 25% of our training simulations the NOx (and CH4, CO and 

NMVOC) scaling factors are less than one, while in the other 75% of simulations they are 

larger than one.

To test whether the emulator may be biased due to the sampling distribution used, we 

calculated tropospheric column ozone as a function of NOx and CO+NMVOCs using the 

gradients in Fig. 4a and c. Assuming a uniform sampling distribution between 0 and 4, as 

per the Latin hypercube design used here, the sensitivity indices for NOx and CO+NMVOCs 

are 0.68 and 0.32, respectively. If we assume a piecewise uniform distribution, so that 50% 

of the points are between 0 and 1 and 50% are between 1 and 4, the sensitivity indices are 

0.72 for NOx and 0.28 for CO+NMVOCs. That is, the differences are negligible, implying 

that the type of sampling distribution used doesn’t bias the result. However, given the NOx 

saturation effect above one (Fig. 4a), if we assume a uniform distribution between 0 and 2 

instead of 0 and 4, the NOx sensitivity index increases to 0.86, while the CO index decreases 

to 0.14. This shows the importance of selecting an appropriate range for the parameter 

uncertainty space. However, the conclusions of our emulator analysis - that ozone precursors 

are the dominant driver of tropospheric ozone variability – remain unchanged.
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Figure 5 shows the percentage of variance that each parameter contributes to in each 

geographic region, either jointly or alone. In all regions examined, ozone precursors - CH4, 

NOx, CO and NMVOCs - account for more than 90% of the variance in tropospheric column 

ozone. In other words, changing these ozone source input parameters has a far larger impact 

on tropospheric ozone abundances than changing ozone sink parameters does, and this 

applies to both polluted regions (Europe, the United States and Asia) and relatively pristine 

environments (the Southern Ocean). NOx emissions are generally the dominant driver of 

variability (in the European region they are approximately equal to the contribution from 

CH4, Fig. 5a). Over Asia, where CO emissions are larger than over Europe and the United 

States, the ratio of NOx:CO is also lower than it is over Europe and the United States (Revell 

et al., 2015). NOx emissions therefore become more important as a driver of ozone 

variability over Asia (Fig. 5c). In all regions, joint interactions between NOx, CH4 and CO

+NMVOCs play a relatively minor role compared with the individual influences of these 

species.

Although updating SOCOLv3.1 with regards to N2O5 hydrolysis, HNO3 washout, LUTs and 

ozone dry deposition results in a reduction in tropospheric ozone of up to 8 DU regionally 

(Fig. 2e), as drivers of tropospheric ozone variability in SOCOLv3.1 they are insignificant 

compared with ozone precursors. However, we cannot discount the possibility that it is not 

the ozone precursor emissions themselves that are responsible for SOCOLv3’s tropospheric 

ozone bias, but rather the way in which the emissions are handled by the model; this is 

considered further in the Discussion and conclusions.

3.3 Tropospheric ozone in the CCMI models

We now consider SOCOL’s tropospheric ozone bias in the context of the CCMI models. 

Figure 6 illustrates the diversity in simulated tropospheric ozone amongst the CCMI models. 

Despite most of the models using ozone precursor emissions following the REF-C1 

recommendations (Section 2.1), they simulate vastly different representations of 

tropospheric ozone. A few of the models are closely related, as discussed by Morgenstern et 

al. (2017); for example the CESM1 models, WACCM and CAM4-chem, are essentially the 

same model in terms of tropospheric ozone. They differ only in the height of the model lid, 

which is 140 km for WACCM and 40 km for CAM4-Chem.

ACCESS and NIWA-UKCA can also be considered the same model for the REF-C1 

experiment; although a coupled ocean was used for most of NIWA-UKCA’s CCMI 

simulations, for the REF-C1 experiment they used the same prescribed sea surface 

conditions (temperature and ice coverage) as ACCESS. Differences between ACCESS and 

NIWA-UKCA in the REF-C1 simulation, therefore, are likely related to issues with the 

different compilers used which may induce small differences in stochastic physics and 

tropospheric age of air (Dietmuller et al., 2018).

The EMAC L47 and L90 models are also very similar; both have a model lid at 0.01 hPa 

(~80 km), but they differ in the number of model levels between the surface and 0.01 hPa 

(47 and 90, respectively). They also use different time steps.
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Figure 7 shows the difference in tropospheric ozone between each of the CCMI models and 

OMI/MLS, and the root-mean-square error (RMSE) for the model-OMI/MLS difference. 

Alongside Fig. 6, Fig. 7 indicates clear outlying models in terms of tropospheric ozone. 

UMUKCA-UCAM simulates the smallest amount of tropospheric ozone (14.9 DU in the 

global mean Fig. 6o); however it only contains one NMVOC (formaldehyde) and does not 

‘lump’ NMVOCs together in the way that many other CCMs do. This means that additional 

NMVOC source gases are not considered by substituting with represented species, such as 

e.g. in SOCOLv3, whereby additional NMVOCs are included in the form of CO. Of the 

CCMI models, SOCOLv3.0 simulates the largest global-mean tropospheric ozone column, 

of 40.2 DU (Fig. 6a). In ULAQ-CCM, the zonal bands of large ozone abundances at 

northern and southern midlatitudes are related to the model’s coarse horizontal resolution 

(5.6°×5.6°), which affects surface fluxes and tropospheric transport (Orbe et al., 2018).

Interestingly, EMAC-L90 simulates a better representation of tropospheric column ozone 

than EMAC-L47, despite the fact that EMAC-L90 has three fewer model levels between the 

surface and 300 hPa than EMAC-L47 and a longer time step. The difference in tropospheric 

column ozone between the two models likely results from the increased vertical resolution 

around the tropopause in EMAC-L90, which has 11 levels between 300–100 hPa compared 

with 7 in EMAC-L47, meaning that EMAC-L90 better simulates stratosphere-troposphere 

exchange.

Figure 8 shows multi-model means (MMM) and standard deviations. The MMM in Fig. 8a 

was calculated for all models, while the MMM in Fig. 8d was calculated only for models 

with a RMSE less than 10 DU, as indicated in Fig. 7 – i.e., all models except SOCOLv3.0, 

ACCESS CCM, EMAC-L47, ULAQ-CCM and UMUKCA-UCAM. The CCMI models 

simulate a global-mean tropospheric ozone abundance of 31.1 DU (Fig. 8a), and 30.2 DU 

(Fig. 8d), depending on the MMM definition applied. Both global-mean MMMs are close to 

the OMI/MLS global mean of 28.6 DU (Fig. 2b); however the MMMs differ markedly from 

OMI/MLS in terms of the global tropospheric ozone distribution.

Compared to OMI/MLS, the models overestimate tropospheric column ozone almost 

everywhere between 60° N–60° S (the region where OMI/MLS data are available), 

regardless of the MMM definition. The exception is at southern midlatitudes, where the 

models underestimate tropospheric ozone compared to OMI/MLS. When the MMM is 

calculated for all models, the positive bias is up to 50%, and the negative bias reaches up to 

−33% (Fig. 8c). When models with an RMSE>10 DU are discarded from the MMM, the 

negative bias is largely unchanged at −32%, but the positive bias is reduced, and reaches up 

to 40% (Fig. 8f).

These results broadly agree with models evaluated as part of ACCMIP (Young et al., 2013), 

and phase 5 of the Coupled Model Intercomparison Project (CMIP5) (Eyring et al., 2013), 

which used the same ozone precursor emissions as for CCMI. The ACCMIP models 

simulated, on average, up to 30% more tropospheric column ozone compared with 

OMI/MLS at northern midlatitudes (Young et al., 2013). The global- annual-mean 

tropospheric ozone column simulated by these models was 30.8 DU, calculated from 15 

models. For the 18 CHEM models participating in CMIP5 (those models with interactive 
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chemistry, i.e. ozone was calculated online and not prescribed from a climatology), the 

climatological-mean annual-mean MMM averaged over 2000–2005 was 30.5 DU (Eyring et 

al., 2013), which is similar to the MMMs calculated here. The CMIP5 and ACCMIP MMMs 

also show a stronger interhemispheric gradient than OMI/MLS observations do, consistent 

with our findings.

The standard deviation on the MMM is up to 11.3 DU when calculated for all models (Fig. 

8b), and reduces to a maximum of 9.5 DU when calculated for only the “RMSE<10 DU” 

models (Fig. 8e). The variability between models is largest at northern midlatitudes, and in 

the continental outflow region off the west coast of Africa.

4 Discussion and conclusions

Despite using the ozone precursor emissions recommended for CCMI, SOCOLv3.0 

simulates the largest global-mean tropospheric ozone abundance of all the CCMI models 

(Fig. 6), and exhibits a bias of ~30 DU regionally compared with OMI/MLS observations 

(Fig. 2c). The CCMI MMM is biased high in the Northern Hemisphere and low in the 

Southern Hemisphere compared with OMI/MLS (Fig. 8c and f), consistent with previous 

studies (ACCMIP and CMIP5). Although ACCMIP, CMIP5 and CCMI all used the same 

emissions inventories, it is nevertheless interesting that they all produced very similar 

global-mean tropospheric ozone abundances (approximately 30 DU), given the different foci 

of the different model intercomparison activities; CCMI focussed on models coupling the 

stratosphere and troposphere, while CMIP5 focussed on coupling the atmosphere and ocean.

We have developed a new model version, SOCOLv3.1, which includes an upgraded 

treatment of tropospheric ozone sink processes. This results in a reduction in tropospheric 

ozone of up to 8 DU (Fig. 2e), which is mostly due to the inclusion of N2O5 hydrolysis on 

tropospheric aerosol. SOCOLv3.1 still exhibits a positive bias in tropospheric column 

relative to OMI/MLS (particularly in the Northern Hemisphere), but simulates tropospheric 

column ozone amounts that are much more comparable with the other CCMI models. 

Reducing SOCOL’s tropospheric ozone bias is expected to lead to improvements in the 

simulated abundance of species which are oxidised by the hydroxyl radical, such as CO and 

CH4, since ozone is the primary source of OH. Revell et al. (2015) showed that CO in 

SOCOLv3 was up to 40 ppbv too low in the Northern Hemisphere compared with 

observations from TES, due to the tropospheric ozone bias. In SOCOLv3.1, the Northern 

Hemisphere CO bias is reduced by approximately a factor of 2 (not shown).

We have quantified the contribution to tropospheric ozone variance in SOCOLv3.1 from 9 

model forcings/parametrizations using GP emulation and sensitivity analysis. By switching 

off the coupling between chemistry and radiation in the emulator experiments, we aimed to 

limit dynamical and meteorological variability. We did not consider stratosphere-troposphere 

exchange in our emulator experiments. Staehelin et al. (2017) showed that SOCOLv3.0’s 

ozone burden due to stratospheric influx, when calculated from ozone origin tracers as 

described by Garny et al. (2011) and Revell et al. (2015), is close to the multi-model mean 

values from the ACCMIP and ACCENT ensembles. Therefore, STE is unlikely to be a 

major driver of SOCOLv3’s tropospheric ozone bias. To the best of our knowledge, this is 
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the first time that GP emulation has been applied to global tropospheric ozone modelling. By 

selecting a relatively small number of model forcings/parametrizations and focussing largely 

on tropospheric ozone chemistry we aim to demonstrate the utility of the methodology; 

however it could also be extended to explore the variability in tropospheric ozone due to 

meteorological parameters.

Our GP emulation experiments and sensitivity analysis illustrate that the ozone precursors 

NOx, CH4, CO and NMVOCs are responsible for more than 90% of the variance in 

tropospheric column ozone in the improved model version, SOCOLv3.1. While CH4 is 

prescribed as a surface mixing ratio, the other ozone precursors are specified from emissions 

inventories. Collating emissions inventories is challenging as they are typically compiled 

using a bottom-up approach. Anthropogenic emissions must rely on accurate reporting, 

while for biogenic emissions there are no reporting requirements. Furthermore, emissions 

are generally prescribed in global models as monthly means, and thus do not reflect diurnal 

or weekly variability (Young et al., 2018). Hassler et al. (2016) identified that current global 

emissions inventories do not capture trends in the NOx/CO ratio, and previous multi-model 

studies have also identified potential deficiencies with the inventories (Young et al., 2013; 

Parrish et al., 2014). Jena et al. (2015) and Zhong et al. (2016) showed that different NOx 

emissions inventories can significantly alter simulated tropospheric ozone.

However, it may not be the emissions used for CCMI themselves that are incorrect, but 

rather problems in how they are handled in global models. Given the coarse grid sizes 

necessary to run a global model and still retain computational efficiency, resolution - 

horizontal, vertical and temporal - is likely important for simulating tropospheric ozone; 

especially in polluted regions where very large emissions in an urban environment may be 

spread over a model grid cell spanning thousands of square kilometers. In global models, 

polluted air coming from a point source is considered to be well-mixed throughout a large 

grid cell, which would generally lead to more efficient ozone production (Young et al., 

2018). Horizontal and vertical resolution are difficult to test in an emulator sensitivity study 

as presented here, however by examining the CCMI models collectively (Morgenstern et al., 

2017), we can derive some insights. For example, we note that GEOSCCM, HadGEM3-ES 

and the CESM1 models (CAM4Chem and WACCM), which simulate the smallest RMSEs 

relative to OMI/MLS (Fig. 7d,e,j,k), have fairly high horizontal resolution relative to other 

CCMs, of 2°×2°, 1.875°×1.25° and 1.9°×2.5° degrees, respectively. Of the models analysed 

in this study, HadGEM3-ES also has the largest number of levels in the troposphere (48). 

Similarly, tropospheric ozone in the EMAC model with 90 levels (EMAC-L90) compares 

better with observations than the 47 level version (EMAC-L47) (Fig. 7h,i), which may be 

due to a more realistic simulation of the ozone gradient across the tropopause (Section 3.3).

SOCOLv3.0 uses T42 horizontal resolution (approx. 2.8°×2.8°), which is also used by 

CCSRNIES MIROC 3.2 and EMAC. With 16 vertical levels, SOCOLv3.0 has the smallest 

number of vertical levels in the troposphere out of all the models analysed here, except 

CCSRNIES MIROC3.2, which has 15. CCSRNIES-MIROC3.2, CNRM-CM5–3 and 

CMAM do not include any NMVOCs, while SOCOLv3.0 includes only 2 NMVOCs – 

isoprene and formaldehyde. Models with complex NMVOC schemes tend to simulate 
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tropospheric ozone favourably compared to OMI/MLS, such as the CESM1 models, with 19 

NMVOCs, and GEOSCCM, with 13 explicit NMVOCs.

Another respect in which SOCOLv3.0 is an outlier amongst the CCMI models is its 

chemical time step of two hours. The other models analysed in this study have chemical time 

steps ranging from 6 minutes (CCSRNIES-MIROC3.2) to one hour (the models based on the 

UK Met Office Unified Model, i.e. HadGEM3-ES, NIWA-UKCA, ACCESS and 

UMUKCA-UCAM). In a sensitivity test, SOCOLv3.0’s chemical time step was reduced to 

15 minutes, which reduced the ozone burden in polluted urban areas by approximately 5 DU 

(not shown). To test how SOCOL responds to prescribing a surface mixing ratio of NOx 

rather than an emissions flux, we performed a further sensitivity simulation where surface 

NO2 mixing ratios from the CESM1 WACCM REF-C1 simulation were prescribed instead 

of NOx emissions. This also resulted in a reduction of tropospheric ozone of up to 5 DU. In 

reality there is likely no single solution for reducing SOCOLv3.0’s excessive tropospheric 

ozone bias; however assuming that the prescribed emissions are correct, then increasing the 

model’s spatial and temporal resolution within the bounds of computational efficiency will 

likely reduce the bias.

We have shown the importance of ozone precursor emissions for simulating the tropospheric 

ozone budget with SOCOLv3.1. This is in line with the findings of Revell et al. (2015), who 

analysed three SOCOLv3.0 simulations for the period 1960–2100: REF-C2 (based on RCP 

6.0), SEN-C2-fEmis (NOx, CO and NMVOC emissions fixed at constant 1960 levels) and 

SEN-C2-fEmis-fCH4 (Similar to SEN-C2-fEmis but with surface methane concentrations 

also fixed at constant 1960 levels). They showed that future global ozone abundances are 

governed largely by changes in methane and NOx, with methane causing an increase in 

tropospheric ozone that is approximately one-third of that caused by NOx. Future work 

should investigate how tropospheric ozone evolves in future under the various CCMI 

sensitivity scenarios in all CCMI models.

Finally, phase 6 of the Coupled Model Intercomparison Project (CMIP6) will use the 

emissions data set described by Hoesly et al. (2018). In this data set, year 2000 NOx 

emissions are ~20% larger than the emissions used for CCMI (Lamarque et al., 2010). 

Therefore, simulated ozone biases by the current generation of CCMs will likely be 

amplified in CMIP6.

Given the results of our multi-model intercomparison as well as previous multi-model 

studies, our results highlight the need for careful validation of emissions inventories used by 

global models. However, the way in which emissions are handled by the models also appears 

to result in biased ozone abundances, and further work is needed to address the challenges of 

simulating sub-grid processes of importance to tropospheric ozone, in SOCOLv3 as well as 

in other CCMs. GP emulation may prove a useful tool for such studies, and we have 

demonstrated its usefulness for understanding tropospheric ozone biases. GP emulation is a 

powerful tool, and should be considered for use by those wanting to perform detailed 

sensitivity analyses at low computational cost.
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Figure 1. 
Experimental design for the 90 SOCOLv3.1 simulations performed to train the GP emulator. 

Each column of dots indicates the relative scaling applied to each of the 9 variables – see 

Table 1 for more details. For clarity the inputs have been scaled between 0 and 1.
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Figure 2. 
Annual-mean year 2005 tropospheric column for: (a) SOCOLv3.0; (b) OMI/MLS 

observations; (c) The difference between SOCOLv3.0 and OMI/MLS; (d) SOCOLv3.1; (e) 

The difference between SOCOLv3.1 and SOCOLv3.0; (f) The difference between 

SOCOLv3.1 and OMI/MLS. The global-mean tropospheric column ozone amount is 

indicated in the title for (a), (b) and (d).

Revell et al. Page 23

Atmos Chem Phys. Author manuscript; available in PMC 2020 July 31.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 3. 
Tropospheric column ozone as predicted by the GP emulator, vs. the amount simulated in 

SOCOLv3.1 “test” simulations (i.e., the simulations used to validate the emulator). The 

errorbars indicate the uncertainty (mean ± standard deviation) on the GP emulator output, 

and the 1:1 line and coefficient of determination (R2 value) are also shown. These 

simulations correspond to running the GP emulator and the simulator (SOCOLv3.1) at each 

of the 27 validation inputs, for: (a) Europe (37–60° N, 0–42° E); (b) United States (32–52° 

N, 67–124° W); (c) Asia (6–49° N, 70–146° E), (d) the Southern Ocean (45–60° S, all 

longitudes); and (e) globally.

Revell et al. Page 24

Atmos Chem Phys. Author manuscript; available in PMC 2020 July 31.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 4. 
Sensitivity of annual-, global-mean tropospheric column ozone in 2005 to each of the 9 

sensitivity forcings/parametrizations listed in Table 1, averaging over the other inputs. The 

horizontal axis shows the range of scaling factors applied to each variable. Plots for 

individual regions (Europe, the United States, Asia and the Southern Ocean) are in the 

supplementary material.
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Figure 5. 
Contributions to variance from the sensitivity forcings/parametrizations applied (Table 1), 

for the same regions shown in Figure 3. For clarity only those which contribute at least 1% 

to the variance are shown. NOx = NOx emissions; CH4 = CH4 concentrations; CO = CO

+NMVOC emissions; ELEV = the number of vertical model levels that NOx, CO and 

NMVOC emissions are prescribed on. HNO3 the rate of HNO3 washout. Joint interactions, 

indicated by e.g. NOx.CH4 are also indicated where these contribute at least 1% to the 

variance.
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Figure 6. 
Annual-mean year 2005 tropospheric ozone columns in REF-C1 simulations from CCMI 

models (calculated relative to the WMO-defined tropopause pressure for each model). The 

global-mean tropospheric column ozone amount for each model is indicated in the title.
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Figure 7. 
Difference between annual-mean year 2005 tropospheric column ozone in CCMI models 

compared with OMI/MLS, i.e. model minus OMI/MLS. The root-mean-square error for 

each model compared with OMI/MLS is indicated in the title.
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Figure 8. 
Annual-mean year 2005 tropospheric column ozone. (a) The multi-model mean (MMM) of 

all CCMI models; (b) multi-model standard deviation for the models shown in (a); (c) 

percent difference between the MMM in (a) and OMI/MLS (MMM minus OMI/MLS); (d) 

MMM for a subset of CCMI models – those with a root-mean-square error (RMSE) less 

than 10 DU when compared with OMI (see Fig. 7); (e) multi-model standard deviation for 

the models shown in (d); (f) percent difference between the MMM in (d) and OMI/MLS 

(MMM minus OMI/MLS).
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Table 1.

Range of the sensitivity forcings/parametrizations. P and L indicate whether the variable is of relevance to 

ozone production and/or loss, respectively.

Minimum Maximum Descriptions

(1) NOx emissions (P) 0 4 The surface NOx emissions field as a function of latitude and longitude was 
multiplied by a scaling factor between 0 and 4, to explore the sensitivity of 
tropospheric ozone to a range of NOx emissions.

(2) CH4 concentrations (P) 0 4 The global-mean CH4 mixing ratio was multiplied by a scaling factor between 0 
and 4, to explore the sensitivity of tropospheric ozone to a range of CH4 

concentrations.

(3) CO+NMVOC (P) 
emissions

0 4 As for (1), but the scaling factor was applied to CO and NMVOC emissions 
simultaneously.

(4) ELEV for NOx and CO
+NMVOCs (P)

1 6 Emissions were prescribed on the lowermost 1–6 levels (between the surface and 
~2.5 km), to test whether the number of levels is important for tropospheric ozone 
abundances.

(5) CLEV for CH4 (P) 1 6 CH4 concentrations were prescribed on the lowermost 1–6 levels (between the 
surface and ~2.5 km), similar to (4).

(6) CMF (P+L) 0.25 1 1 implies clear-sky photolysis, whereas 0 would imply no photolysis. As photolysis 
rates of 0 do not occur during daytime, we selected a lower bound of 0.25 to 
represent cloudy sky conditions.

(7) HNO3 washout (L) 0 0.5 To test the sensitivity of tropospheric ozone to HNO3 removal, we removed 
between 0–50% of tropospheric gas-phase HNO3 at each chemical time step.

(8) N2O5 hydrolysis (L) 0.001 0.3 The probability of N2O5 hydrolysis occurring. Since the default is 0.1, we explored 
the sensitivity of tropospheric ozone to a range from 0.001–0.3.

(9) O3 dry deposition (L) 0 1 A specific reactivity of 0 stands for a nearly non-reactive gas, while 1 stands for a 
gas similarly reactive to ozone.
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