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Abstract

Satellite passive ocean color instruments have provided an unbroken ~20-year record of global 

ocean plankton properties, but this measurement approach has inherent limitations in terms of 

spatial-temporal sampling and ability to resolve vertical structure within the water column. These 

limitations can be addressed by coupling ocean color data with measurements from a spaceborne 

lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent 

breakthroughs have now demonstrated that plankton properties can be measured with a satellite 

lidar. The satellite lidar era in oceanography has arrived. Here we present a review of the lidar 

technique, its applications in marine systems, a prospective on what can be accomplished in the 

near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multi-

platform ‘virtual constellation’ of observational assets enabling a 3-dimensional reconstruction of 

global ocean ecosystems.
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1. INTRODUCTION

Marine ecosystems are complex entities encompassing vast numbers of species functioning 

over a wide range of spatial and temporal scales. Phytoplankton constitute the base of most 
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marine ecosystems and their annual net photosynthetic carbon fixation is roughly equivalent 

to that of all terrestrial plants (Field et al. 1998; Behrenfeld et al. 2001). This production at 

the base of the aquatic food chain drives CO2 exchange between the atmosphere and ocean 

and fuels carbon sequestration to the deep sea (Falkowski et al. 1998; DeVries et al. 2012). 

Accordingly, plankton productivity plays a vital role in Earth’s coupled ocean-atmosphere 

system. Furthermore, and in stark contrast to terrestrial vegetation, the entire global ocean 

phytoplankton stock is consumed and regrown every week (Antoine et al. 1996; Behrenfeld 

& Falkowski 1997). This rapid turnover underpins ocean food webs and, hence, fish stocks 

and global food supply. In addition, and through an array of trophic interactions and 

metabolisms, some of the organic carbon products initially produced by phytoplankton 

become converted into volatilized molecules that leave the surface ocean and function as 

important atmospheric aerosols that influence clouds and the Earth’s radiative budget 

(Falkowski et al. 1992; Gantt & Meskhidze 2013; Meskhidze & Nenes 2006).

Our understanding of links between biodiversity, ecosystem structure, and ecological and 

biogeochemical function is incomplete, as is our grasp of how these linkages and processes 

vary over space and time. With our current observational and modeling tools, we have only 

begun to constrain the flow and cycling of elements within and between ecosystems or the 

impact of climate and other physical and chemical environmental changes on ecological 

systems. However, from this work, clear paths have emerged for accelerating our 

understanding. Global satellite ocean observations are fundamental to these future scientific 

breakthroughs.

Many scientific advances have been made using satellite passive ocean color data (McClain 

2009), but there are fundamental geophysical properties that simply cannot be characterized 

with this technology alone (Section 2). The historical single-sensor (i.e., ocean color) 

approach for global ocean biology and biogeochemistry research contrasts sharply with the 

multi-instrument strategies used for atmospheric research. The A-Train constellation (ref A-

Train) ushered in a new era of remote sensing wherein synergies between data sets acquired 

by multiple instruments were routinely exploited to advance science. This includes the 

application of data sets from different types of sensors to draw conclusions on various 

processes, the use of data from one or more sensors to assess and improve algorithms for 

another sensor, and the use of data from two or more sensors in joint algorithms to provide 

new or improved data products. For instance, the CCCM radiative flux data product (Kato et 

al. 2011) combines active and passive measurements from four instruments1 on three 

satellites to provide the vertical distribution of cloud and aerosol properties and profiles of 

radiative flux to much greater accuracy than possible using any one sensor alone. Following 

such examples, two instruments are being considered for the Plankton Aerosol Cloud and 

marine Ecosystem (PACE) mission, a hyperspectral ocean color sensor and a co-deployed 

polarimeter. Here, the polarimeter complements the ocean color sensor by enabling more 

accurate atmospheric corrections, as well as potential ocean retrievals of particle type (Loisel 

et al. 2008). While this two-instrument PACE complement offers significant advantages, 

1CCCM stands for CERES CALIPSO Cloudsat MODIS. The CCCM algorithms employ data from the CERES broadband radiometer 
and MODIS spectroradiometer on the Aqua satellite, the CALIOP lidar on the CALIPSO satellite (see Sections 3 and 5), the Cloud 
Profiling Radar on the CloudSat satellite.
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even greater synergies can be achieved by the combination of passive ocean color with an 

ocean-optimized profiling lidar.

In this paper, we briefly review strengths and limitations of passive ocean color 

measurements (Section 2), present ocean lidar fundamentals (Section 3), describe airborne 

lidar measurements of ocean properties (Section 4), overview the current state of spaceborne 

lidar ocean remote sensing (Section 5), introduce an ocean-optimized lidar concept 

achievable in the near term with interdisciplinary science applications (Sections 6 & 7), and 

introduce a multi-platform vision of synergistic space and field observations for global 

biogeochemical and ecosystem research (Section 8).

2. PASSIVE OCEAN COLOR: ADVANCES AND CHALLENGES

In the modern era of Earth System science, the availability of global satellite-based 

observations is all too easily taken for granted. Yet, for the oceanographic community, such 

data are still a relatively new development, with the continuous global data record extending 

back less than 20 years. The Sea-viewing Wide Field of View Sensor (SeaWiFS) was the 

first ocean color sensor to provide multi-year, fully global ocean color data. The SeaWiFS 

design was built upon the proof-of-concept Coastal Zone Color Scanner (CZCS) and 

provided measurements at 8 spectral bands originally targeting a modest set of ocean 

geophysical properties (e.g., chlorophyll concentration). Subsequent missions (e.g., MODIS, 

MERIS, VIIRS) largely continued these heritage measurements, with some expansion (e.g., 

chlorophyll fluorescence bands on MODIS and MERIS) and improved spatial resolution and 

signal-to-noise. The science community, on the other hand, has greatly expanded the suite of 

retrieved ocean properties beyond the original targets.

Today, passive ocean color data are used to quantify surface layer chlorophyll 

concentrations, total particulate carbon stocks, and net primary production (McClain 2009). 

The development and application of spectral inversion algorithms (Garver & Siegel 1997; 

Maritorena et al. 2002; Lee et al. 2002; Werdell et al. 2013) to ocean color data has further 

provided assessments of absorption by colored dissolved organic matter, phytoplankton 

absorption coefficients, total particulate backscatter coefficients (Lee et al. 2002; Maritorena 

et al. 2002, Siegel et al. 2002, 2005; Werdell et al. 2013), and estimates of phytoplankton 

carbon biomass and division rates (Behrenfeld et al. 2005; Westberry et al. 2008; Silsbe et 

al. 2016). The combination of fluorescence line height data and phytoplankton pigment and 

carbon data has yielded insights on iron stress and photophysiology (Behrenfeld et al. 2009; 

Westberry et al. 2013; Lin et al. 2016). Additional algorithm development has led to new 

retrievals regarding plankton community composition, including phytoplankton size 

fractions, slope of the particle size distribution, and even specific phytoplankton groups, 

such as coccolithophores, Trichodesimum, and harmful algal species (e.g., Alvain et al. 

2005; Bracher et al. 2009; Sadeghi et al. 2012; Kostadinov et al 2010; IOCCG 2014 and 

references therein). Furthermore, the sustained time series of these diverse ocean properties 

has provided major advances in our understanding of plankton annual cycles and responses 

to climate variations and has been instrumental for informing and testing ocean ecosystem 

models. Quite simply, the satellite ocean color record has fostered a major revolution in 
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oceanography, one we can hope will continue with upcoming advanced sensors such as the 

hyperspectral instrument planned for the PACE mission.

Despite the major advances enabled through ocean color observations, the passive 

radiometric technique has several fundamental limitations. Specifically, (1) the top-of-

atmosphere signal measured by the sensors includes contributions from sources other than 

the target ocean properties, (2) the ocean color signal provides no information on the vertical 

distribution of ocean constituents, (3) measured ocean color is an optically integrated 

property without a direct signal for separating the absorption and scattering fractions, and 

(4) global sampling is compromised by atmospheric interferences and solar angle.

With respect to the first limitation, there can be large uncertainties in retrieved parameters 

due to uncertainty in corrections for scattering and absorption from sources other than water 

molecules and particles suspended in seawater. The radiances measured by ocean color 

instruments are composed of several terms: scattered sunlight from ocean subsurface 

particles and water molecules, subsurface bubbles, surface foam, the surface interface itself, 

and atmospheric constituents, including aerosols, clouds, and air molecules. Easily 90% of 

the top-of-atmosphere measured signal can be due to scattering from the atmosphere. A 

small error in the estimation and removal of this atmospheric contribution creates a large 

relative error in the estimated water leaving radiances and associated geophysical retrievals. 

Similarly, unaccounted for contributions from bubbles, foam, and surface reflection degrade 

retrieval fidelity. Under particularly challenging conditions (e.g., sunglint, significant aerosol 

loads, nearby clouds), attempts to retrieve ocean properties are abandoned all together.

With respect to the second ocean color limitation, the ocean color signal is heavily weighted 

toward the surface. This results from the exponential decay of sunlight with depth due to 

absorption from water, particles, and dissolved matter. Similarly, the up-scattered photons 

suffer the same exponential decay on their path to the ocean surface. The result is that over 

92% of the ocean color signal emanates from the first optical depth (10 m geometric depth if 

the diffuse attenuation coefficient = 0.1 m−1) and 71% the first half of the first optical depth 

(5 m for the same case). This limitation of ocean color can result in significant errors in 

important water-column-integrated ocean properties, such as chlorophyll concentration 

(Stramska & Stramski 2005; Sathyendranath & Platt 1989) or net primary production (NPP) 

(Platt & Sathyendranath 1988, Churnside 2015; Jacox et al. 2015).

With respect to the third ocean color limitation, the strength and spectral characteristics of 

retrieved water leaving radiances represent the integrated signature of multiple factors. 

Dominant contributors to the signal include absorption by colored dissolved matter (acdm), 

phytoplankton pigments (aph), and non-algal particles (anap), plus backscattering by 

suspended particles (bbp) (note, the absorption and scattering by saltwater is a known 

function of salinity). Retrievals of these four fundamental properties and other geophysical 

parameters derived from them have an inherent uncertainty that cannot be reduced without 

additional information. This issue is a driving motivation for the PACE mission’s expanded 

measurement spectral range and resolution compared to heritage ocean color missions. 

Coupling such passive ocean color measurements with active satellite instruments can 

likewise reduce uncertainties in derived ocean properties.
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Finally, with respect to the fourth limitation, ocean color global sampling is significantly 

limited by atmospheric interferences and sun angle. On average, greater than 70% of the 

Earth’s ocean area is under sufficient cloud cover to make passive ocean retrievals 

impossible. Broken cloud scenes are a significant fraction of the remaining ocean area and, 

under these conditions, side-scatter from nearby clouds can compromise accurate ocean 

retrievals from otherwise clear sky pixels. Beyond issues of cloudiness, ocean color 

retrievals must be abandoned when strongly scattering aerosol layers are present. Some of 

these aerosol interferences can compromise ocean color monitoring for extended periods. 

Examples of such conditions include pollution outflow from populated regions (e.g., Eastern 

Seaboard of the US, India, China), systematic dust events (e.g., Saharan dust outflow at low 

northern latitudes in the Atlantic, Gobi dust outflow at mid latitudes in the Northern Pacific), 

and long-range and broadly distributed smoke transport (e.g., from boreal forest fires in 

North America and Siberia, agricultural fires from all continents). In polar regions, low sun 

angles, by themselves and exacerbated by cloud conditions (i.e., cloud shadowing of 

otherwise clear pixels), can eliminate ocean color sampling from late fall through early 

spring. Notably, these high latitude regions include some of the most productive waters in 

the global oceans and the lack of sampling for a significant fraction of the year can 

undermine any complete understanding of plankton annual cycles and biogeochemistry 

(Behrenfeld et al. 2017).

The intent of this section is not to criticize the passive ocean color approach, but rather to 

recognize both its benefits and inherent weaknesses and thereby highlight where additional 

technologies may contribute to improved understanding of global ocean ecosystems. Passive 

ocean color radiometry has enabled huge scientific advances and will remain a cornerstone 

of future ocean research. With increases in spectral coverage and resolution from missions 

like PACE and work toward increasing the number and coverage of geostationary sensors, 

such as Geostationary Ocean Color Imager (GOCI) (Ryu et al. 2012; O’Malley et al. 2014), 

the ocean color portfolio is set to expand significantly. With these new ocean color 

capabilities on the horizon, it is time to consider complementary remote sensing techniques 

that will enable additional breakthrough science on issues beyond the reach of passive 

radiometry. Lidar is just such a technique that, when flown in formation with a capable 

ocean color sensor, can revolutionize satellite ocean remote sensing.

3. LIDAR 101

Airborne lidars have been used for decades to study the atmosphere and the oceans. 

However, a longstanding question has been whether lidars can achieve the sensitivity 

required to provide useful ocean products from space. That question was answered 

decisively with data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 

instrument that has operated in space since 2006 on the Cloud-Aerosol Lidar and Infrared 

Pathfinder Satellite Observation (CALIPSO) platform (Winker et al. 2009). While CALIOP 

was designed solely for atmospheric measurements and has severe drawbacks as an ocean 

lidar, Yongxiang Hu developed an innovative technique for retrieving ocean subsurface 

particulate backscatter from CALIOP data (Hu 2009). But before telling the story of ocean 

science breakthroughs made with CALIOP, we here provide some background explanation 

of the lidar technique.
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Lidar is an acronym for light detection and ranging. Similar to radar, a lidar employs a time-

of-flight technique to provide range-resolved (i.e., for the current discussion, ‘vertically-

resolved’) measurements of optical properties. Unlike the ocean color technique’s reliance 

on the sun as a source of light (thus, ‘passive’ remote sensing), a lidar uses lasers to generate 

its own photons that are ultimately scattered back to the instrument’s receiver (thus, ‘active’ 

remote sensing). Figure 1 provides a simple illustration of the lidar approach, where the 

geometry depicted is a nadir or near-nadir viewing configuration. In this figure, laser pulses 

are directed downward and a small fraction of the backscattered light is collected in a 

telescope receiver. In the atmosphere, this backscattered light originates from air molecules 

and suspended particles, such as cloud droplets or aerosol particles. Similarly, the laser pulse 

is backscattered in the ocean by water molecules and suspended particles, such as 

phytoplankton. These signals are received by the telescope and imaged onto a high-speed 

optical detector. This detector generates a time-varying electrical signal that is proportional 

to the instantaneous optical power incident on the detector, and this electrical signal is 

recorded at a high sampling rate (e.g., 107 to 108 samples/s). The point of origin of the 

signal (in other words its vertical position in the atmosphere or ocean) is determined using 

the speed of light. Specifically, each sample is assigned a distance from the lidar based on 

the time difference between the firing of the laser and the detection of the backscattered 

signal. By sequentially recording all of the samples following a laser pulse into a data array, 

a vertically-resolved profile is created, with each sample reflecting the magnitude of 

scattering at a known altitude in the atmosphere or depth into the ocean (Figure 1d). 

Importantly, the vertical resolution of a lidar profile is determined by the rate of sampling by 

its detector. For example, a rate of 107 samples/s corresponds to the 15 m vertical resolution 

commonly used for atmospheric measurements, whereas a rate of 108 samples/s would 

correspond to a ~1 m vertical resolution that is more appropriate for ocean profiling.

For the scenario described above, a vertical profile of the atmosphere and ocean is acquired 

for every laser pulse. Combining data from multiple laser pulses thus creates a time series of 

profiles. When a lidar is mounted on a moving platform, such as an aircraft or satellite, this 

time series maps to a horizontally and vertically resolved data ‘curtain’ registered to the 

flight track (an example is shown in Section 4). One advantage of active lidar remote sensing 

is that it creates these ‘curtains’ of data during both day and night, thus providing 

opportunities to study diel changes in plankton properties and to continue observations 

during periods of polar night. During daylight hours, the contribution to the received signal 

from diffusely scattered sunlight is estimated from data acquired between laser pulses and 

subtracted from the measured profiles.

Producing useful geophysical data products from the measured lidar signals requires 

application of appropriate calibration factors and post-processing algorithms. Perhaps more 

importantly, the suite of products that can be produced and their accuracy depend on 

instrument design (e.g., the number and character of the receiver channels). Our illustration 

and discussion to this point has centered on the ‘elastic backscatter lidar’ technique, which 

relies on backscatter from air molecules and particles at the same wavelength as the 

transmitted laser pulse. Many atmosphere-ocean lidars employ alternate techniques 

involving additional optical processing in the receiver downstream of the telescope to 

expand retrieval capabilities. An important example of this is the separation of polarization 
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and spectral components of the received signal onto different detectors. By doing so, 

simultaneous profiles sensitive to different physical properties are measured on each 

detector, thereby increasing information content in the measurements and expanding the 

number and accuracy of retrieved products. Lidars capable of generating an array of 

geophysical data products have been demonstrated for decades from stationary platforms, 

ships, and aircraft. Scientific progress made with airborne lidars motivates some of our 

thinking about a future ocean-optimized satellite lidar and we focus on three airborne 

applications in the next section.

4. ESSAYS FROM THE FIELD

The first scientifically meaningful oceanographic applications of airborne lidar involved the 

use of fluorescence techniques, starting with chlorophyll (Kim et al. 1973) and later colored 

dissolved organic matter (CDOM) (Hoge et al. 1995). Fluorescence involves absorption of a 

photon of light by a constituent molecule and subsequent emission of a photon as that 

molecule relaxes back to a lower energy state. Chlorophyll readily absorbs the common 532 

nm laser wavelength employed in many lidars and emits fluorescence in the 670–690 nm 

region. Detecting the signal alone does not provide a useful measurement, however. One 

must correct the magnitude of signal for factors that are unrelated to chlorophyll 

concentration, such as variations in laser energy, atmospheric attenuation, and water 

attenuation. These corrections were made by dividing the measured fluorescence by Raman-

shifted backscatter from water molecules2 measured at a different wavelength (Bristow et al. 

1981) under the assumption that the aforementioned factors unrelated to chlorophyll cancel 

in the ratio (Poole & Esais 1982). The result is a relative, rather than absolute, measure of 

chlorophyll fluorescence. The ocean lidar research group at NASA Wallops Flight Facility 

made the most significant scientific contributions in this field with their Airborne 

Oceanographic Lidar (AOL) (Hoge et al. 1981). That lidar employed a grating spectrometer 

in the receiver to isolate the chlorophyll fluorescence and Raman-shifted water backscatter. 

This water-Raman-normalized chlorophyll fluorescence signal was used in many studies. 

For instance, Yoder et al. (1993) used chlorophyll fluorescence signals acquired with the 

AOL during flights on a long-range P3-B aircraft to study spatial scales of the North Atlantic 

bloom. From these measurements, they concluded that the pixel resolution of CZCS, 

SeaWiFS, and MODIS ocean color data captured the dominant scales of variability in the 

bloom and that mesoscale variability must be taken into account in the interpretation of ship-

based measurements to avoid confusing changes due to advection with those due to local 

ecosystem processes. Martin et al. (1994) used data from AOL during the IronEx in situ 

enrichment experiment to test the hypothesis that iron is a limiting factor for phytoplankton 

productivity in the equatorial Pacific. AOL fluorescence data were further used by Hoge et 

al. (2003) to validate MODIS ocean color fluorescence line height products. Hoge et al. 

(2005) subsequently used both AOL chlorophyll and CDOM fluorescence measurements to 

quantify chlorophyll biomass, using a modification of an ocean color algorithm and matchup 

data with ship-based in situ measurements to appropriately scale their fluorescence-to-

Raman ratios.

2The O-H vibrational stretching mode of the water molecule causes a frequency shift for a fraction of the scattered photons by 3418 
cm-1. For 532 nm laser excitation, the Raman-shifted water backscatter is at 645 nm.

Hostetler et al. Page 7

Ann Rev Mar Sci. Author manuscript; available in PMC 2020 July 31.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Due to weak signal levels, fluorescence retrievals typically involved vertically integrating the 

received backscatter to provide a column-wise value rather than a series of profiles along the 

flight track. True profiling measurements were first made possible with the application of the 

elastic backscatter lidar technique described in Section 3. Airborne implementations of this 

technique were demonstrated in the late 1900s by groups from around the world, including 

those from Australia (Billard et al. 1986), the US (e.g., Hoge et al. 1988; Smart & Kwon 

1996), and Russia (Bunkin & Surovegin 1992). A major challenge to this technique is 

ambiguity in the interpretation of the measured signal. The variation of the measured signal 

with depth depends on several known parameters (e.g., range and molecular density) and 

two unknowns: the coefficients of particulate backscatter and attenuation. Retrieving one of 

the unknowns requires assumptions on the behavior of the other, and such assumptions are 

uncertain and not universally valid. Another fundamental problem is that the measurement is 

difficult to calibrate. Because of these two issues, early results were typically confined to 

relative, rather than absolute, estimates of particulate backscatter and approximate estimates 

of the attenuation coefficient. Information content of the measurements were improved by 

adding polarization sensitivity. This involves transmitting a linearly polarized beam and 

separating the received backscatter into polarization components parallel and perpendicular 

to that beam (Churnside 2015). Even with this capability, the separation of backscatter and 

attenuation remains problematic and requires various assumptions and approximations.

Scientific application of elastic backscatter lidar began to flourish only in the last decade, 

largely reflecting the extensive deployments of the National Oceanic and Atmospheric 

Administration (NOAA) Fish Lidar (Churnside et al. 2001). This lidar was originally 

designed by James Churnside and colleagues for the detection and quantification of fish 

schools (Churnside et al. 1991; 2001; 2003), but they later turned their attention to 

application of the technique to retrieving ocean inherent optical properties. James 

Churnside’s excellent review article (Churnside 2013) provides a detailed technical 

description of the elastic backscatter technique and an overview of the contributions made 

by his group and others on the modeling and interpretation of backscatter signals. Early 

scientific contributions with the NOAA lidar included several studies of subsurface plankton 

layers (e.g., Churnside & Ostrovsky 2005; Churnside & Donaghay 2009). More recently, the 

focus has been on overcoming the ambiguity in the elastic backscatter retrieval through bio-

optical modeling. Churnside et al. (2014) employed a parameterization based on chlorophyll 

concentration to estimate the ratio of attenuation to backscatter, thereby reducing the 

retrieval to solving for a single unknown, as is done for atmospheric aerosol retrievals 

(Fernald 1984). Churnside (2015) extended this bio-optical approach with an iterative 

scheme that enabled the retrieval of chlorophyll concentration in addition to particulate 

backscatter and diffuse attenuation. Churnside & Marchbanks (2015) applied the bio-optical 

retrieval to measurements of subsurface plankton layers in the Arctic, and Churnside (2016) 

employed it and radiometric measurements to estimate the vertical distribution of primary 

productivity.

The application of bio-optical modeling has transformed the elastic backscatter lidar 

technique from that of layer detection to a means of quantifying ocean properties. However, 

the impact of errors in the chlorophyll parameterization has yet to be assessed. The two 

parameterized unknowns, particulate backscatter and diffuse attenuation, can vary 
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independently (e.g., with CDOM concentration) (Siegel et al. 2005). This affects attenuation 

but not backscatter and violates the retrieval assumptions. Unfortunately, retrieval errors 

accumulate as the retrieval proceeds downward through the profile, since the error at a 

particular depth interval is a function of the retrieval error at that depth interval and the 

accumulated error from intervals higher in the column. Also, the fundamental problem of 

absolute calibration of the signal still remains. Without calibration, the retrievals of 

particulate scattering are not possible. For the typical 300 m flight altitude of the NOAA 

lidar, the measured signals can be calibrated using preflight measurements and occasional 

ocean targets where scattering properties are uniform with depth. However, for the 

spaceborne application, the calibration of the ocean signal will vary significantly and rapidly 

with the optical depth of the overlying atmosphere (i.e., attenuation of the signal due to 

aerosol layers and tenuous clouds).

A significant leap in retrieval accuracy and information content has recently been made by 

applying the high spectral resolution lidar (HSRL) technique to ocean profiling. This 

technique has been used for decades in ground-based (e.g., Shipley et al. 1997) and airborne 

(Esselborn et al. 2008; Hair et al. 2008) aerosol and cloud measurements. It is based on the 

difference in the wavelength distributions of backscatter from particles and molecules 

(Figure 2). By adding a spectral filter (e.g., interferometer) in the receiver optical path and 

directing particulate and molecular water scattering differentially to separate detectors, two 

signals are acquired that enable separating backscatter from pure seawater and suspended 

particles (e.g., phytoplankton). This separation of water and particulate backscatter is 

fundamental to the technique as it provides two lidar profiles from which to retrieve the two 

unknowns (i.e., particulate backscatter and diffuse attenuation), thus creating a well-posed 

rather than ill-posed retrieval (Box 1). Another equally important aspect of the HSRL 

technique concerns calibration. The technique inherently maintains calibration through the 

atmosphere and into the ocean. Accurate calibration and independent measurement of water 

and particulate backscatter ensures reliably accurate retrievals of the diffuse attenuation 

coefficient and particulate backscatter. Accurate calibration and optically separating the light 

scattered by water molecules and particles enables reliable retrievals of the both the diffuse 

attenuation coefficient and particulate backscatter.

The first extensive HSRL retrievals of diffuse attenuation, Kd, and particulate backscatter, 

bbp, were made during the 2014 Ship-Aircraft Bio-Optical Research (SABOR) experiment 

(Hair et al. 2016, Schulien et al. 2017) and the 2015 and 2016 North Atlantic Aerosols and 

Marine Ecosystems Study (NAAMES) deployments. Figure 3 shows atmospheric and ocean 

retrieval ‘curtains’ from a flight of the NASA HSRL-1 instrument during NAAMES. These 

data, acquired from a flight altitude of 9 km, illustrate the calibration advantage of the HSRL 

technique. Similar to a satellite viewing geometry, the optical path traveled by the photons to 

and from the ocean include attenuating layers of smoke in the free troposphere and marine 

aerosol in the boundary layer, producing large variations in the strength of the ocean 

backscatter signals along the flight track. This would create a significant calibration 

challenge for the elastic backscatter technique, but not the HSRL (Hair et al. 2008; 2016).

The SABOR campaign provided an opportunity to compare HSRL-1 ocean retrieval 

products to independent measurements of the same properties. For example, Figure 4a 

Hostetler et al. Page 9

Ann Rev Mar Sci. Author manuscript; available in PMC 2020 July 31.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



shows an along-track comparison of the HSRL-derived Kd at 10 m depth and MODIS Kd 

values collected on the same day, with excellent agreement between products. The HSRL-1 

ocean products also showed excellent agreement with optical properties measured at sea 

during SABOR. For example, Figure 4 c and d shows comparisons of depth-resolved bbp 

values from HSRL-1 with near-coincident in situ data from optical profiling casts at the 

SABOR ship stations (Schulien et al. 2017). These comparisons with MODIS and in situ 

data have correlation coefficients ≥ 0.94 and slopes of ~1.0, giving high confidence in the 

HSRL technique.

Schulien et al. (2017) used in situ and HSRL-1 data from SABOR to quantify the value of 

vertically resolved measurements of bbp and Kd for improving estimates of net primary 

production (NPP) relative to estimates based solely on the surface properties retrievable 

from passive ocean color data. Data from 17 SABOR sampling stations with lidar 

overflights indicated ‘ocean color type’ surface properties yielded estimates of water column 

integrated NPP that consistently underestimated values calculated with vertically-resolved 

data, with errors up to 54%. It should be further noted that vertical plankton structure during 

SABOR was modest at best and previous estimates of NPP errors associated with a wider 

range in vertical structure indicate that such errors can exceed 100% (Hill & Zimmerman 

2010; Churnside 2015). Clearly, information on plankton vertical structure can significantly 

improve understanding of ocean plankton stocks, productivity, and carbon cycling.

As a final note for this section, we have largely focused the above discussion on lidar 

applications for retrieving surface and vertically-resolved ocean optical and plankton 

properties. Information on plankton vertical structure might further provide insight on 

physical mixing processes (Zawada et al. 2005). Specifically, the expectation is that particle 

concentrations in the active turbulent mixing layer will be homogeneous with depth. 

Accordingly, detection of subsurface scattering layers can be used to delineate the maximum 

depth of active mixing. This constraint on active mixing can be used as a global data set for 

testing physical mixing models and has the potential to significantly improve understanding 

on dynamic relationships between physics, plankton biomass, and bloom trajectories. 

However, there has also been a long interest in applying lidar technology to directly measure 

vertical profiles of ocean temperature and salinity (see, for instance, Hirschberg et al. 1984; 

Hickman et al. 1991; Fry et al. 1997; Popescu et al. 2004; Rudolf & Walther 2014; Liu et al. 

2015). While much has been accomplished in terms of theoretical studies, development of 

instrument concepts, laboratory demonstrations, and sensitivity analyses, to our knowledge a 

practical lidar for measuring temperature or salinity has yet to be developed and deployed in 

the field from ship or aircraft. We therefore deemed these techniques as not yet mature 

enough for inclusion in our near-term vision for a spaceborne ocean lidar (Sections 6 & 7).

5. DAWN OF SATELLITE LIDAR IN OCEANOGRAPHY

The Coastal Zone Color Scanner (CZCS) was certainly not the best satellite sensor ever built 

to globally sample surface ocean properties, but it was the first. The idea of deriving 

plankton properties from remotely-detectable optical signals significantly pre-dates the 

CZCS and the concept had been demonstrated from aircraft. But, eventually the time comes 

to ‘bite the bullet’ and launch a proof-of-concept instrument into space. The launch of CZCS 
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was that proof-of-concept for ocean color and a landmark event. The dawn of the satellite 

lidar era in oceanography shares some parallels with this CZCS story in that the lidar 

approach was initially demonstrated with airborne sensors (in fact to a far greater degree for 

lidar than CZCS) and the first satellite demonstration was based on an instrument with 

limited capabilities. Unlike the CZCS story, however, the satellite lidar instrument was 

designed with no intention of retrieving properties of the ocean. That lidar was CALIOP.

As discussed above, CALIOP is a simple elastic backscatter lidar with emissions at 532 and 

1064 nm, but in-water attenuation of the latter band is too great to provide any useful 

information on subsurface ocean properties. Since it was designed for atmospheric science 

applications, the 22.5 m vertical resolution of CALIOP measurements is very coarse for 

ocean applications, and the backscatter from the ocean surface created an artifact in the co-

polarized subsurface data. Also, CALIOP simply lacks the advanced capabilities of an 

HSRL system, so it does not provide direct information required for independently 

separating the attenuation and backscattering components from the retrieved subsurface 

signal. However, what CALIOP does provide is a space-based measurement of an ocean 

signal at 532 nm from its cross-polarization channel. In addition, this ocean signal is 

measured at a constant viewing angle, has minimal atmospheric correction errors, is 

independent of solar angle, and is retrieved both day and night and through significant cloud 

and aerosol layers. The CALIOP orbit also has a 16-day repeat cycle that provides a globally 

representative sampling of ocean ecosystems (Figure 5a). Thus, while CALIOP was not the 

optimal lidar system for observing the ocean, it has not only yielded the first space-based 

proof-of-concept but significant scientific results as well.

The first challenge in using CALIOP data for oceanographic research was isolating the 

subsurface signal in a calibrated and quantitative manner. This was accomplished by 

employing the ratio of cross-polarized to co-polarized signal returns (the “depolarization 

ratio”), which is very well calibrated through the atmosphere and ocean column due to the 

fact that both channels respond similarly to absorption and scattering losses. The algorithm 

employed the sum of the depolarization ratio from the first few bins below the ocean surface, 

an estimate of the backscatter from the ocean surface itself, Kd values from MODIS, and 

assumptions based on empirical data to generate a surface-weighted column estimate of bbp 

(see Behrenfeld et al. 2013, Supplemental Materials for details).

The second challenge in using CALIOP data was to validate the ocean products. An ideal 

opportunity for this arose from a NASA funded airborne field campaign based in the Azores 

that was coupled to ship-based optical measurements being conducted as part of a UK 

Atlantic Meridional Transect cruise (Behrenfeld et al. 2013). The validation component of 

the lidar study was focused on ship, aircraft, MODIS Aqua, and CALIOP measurements bbp. 

For the overall ship transect data, the study found a significantly better agreement between 

in situ bbp and CALIOP retrievals (r2 = 0.54) than for the MODIS ocean color retrievals (r2 

= 0.13 and 0.27 for different inversion algorithms). For the three aircraft flights of the 

campaign, CALIOP retrievals were well aligned with airborne HSRL-1 based bbp data (r2 = 

0.58). Overall, these results were viewed as highly encouraging, given that the ship, aircraft, 

and satellite data diverged significantly in spatial resolution and were not temporally 

coincident.
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Given the success of the field validation analysis, Behrenfeld et al (2013) then provided the 

first published global map of surface bbp from a space based lidar and associated estimates 

of phytoplankton carbon biomass (Cphyto) and total particulate organic carbon (POC). These 

data were compared to MODIS-based bbp values from the Garver-Siegel-Maritorena (GSM) 

inversion algorithm (Garver & Siegel 1997; Maritorena et al. 2002; Siegel et al. 2002) and 

the Quasi-Analytical Algorithm (QAA) (Lee et al. 2002) and associated Cphyto (Figure 5b) 

and POC values. The CALIOP-based products exhibited similar global distributions and 

seasonal cycles as the MODIS based products, but also highlighted some inconsistencies. 

For example, the CALIOP global POC data showed a dual-mode frequency distribution 

similar to QAA, but with peaks at lower POC concentrations, and a low-POC peak (~45mg 

C m3) that was consistent (but of smaller magnitude) with the peak in GSM data (see Figure 

S4 in Behrenfeld et al. 2013). One intent of these comparisons was to highlight how 

independent, active-sensor based retrievals of fundamental ocean properties may provide 

critical constraints for improving passive ocean color algorithms. An additional study 

attempted to retrieve vertically-resolved information in the ocean, but quantification of the 

profile data in terms of ecosystem parameter was not possible (Churnside et al. 2013).

The Behrenfeld et al. (2013) study focused on the utility of satellite lidar measurements for 

global ocean studies, but lidar measurements may be even more important for specific 

regions and science questions. One such example is an improved understanding of high 

latitude ecosystems. As noted above, high latitude regions present particularly challenging 

conditions for passive ocean color sensors. They tend to be plagued by persistent cloud 

cover, solar geometries change significantly during the year, and periods of polar night 

prevent any passive measurements at all over broad areas. Because of these challenges, 

incomplete ocean color records at high latitudes can completely miss critical events in 

plankton annual cycles. Here again, CALIOP has provided the first demonstration of how 

active lidar measurements from space can complement passive ocean color data to yield new 

scientific insights.

Over polar regions, convergence of the CALIOP orbit tracks provides its most dense spatial 

sampling (Figure 5a). Active sensing is particularly valuable here because the lidar 

measurements can be made throughout the annual cycle, including polar night, and valid 

retrievals can be made between clouds and through clouds (for cloud optical depths <1). 

These advantages have allowed CALIOP to provide 1˚ binned spatial coverage comparable 

to that of MODIS in both the North and South Polar regions during late-spring to early-

autumn months and better coverage from the late-autumn to early-spring period (Figure 5d). 

With these data, the recent Behrenfeld et al. (2016) study demonstrated that initiation of 

polar annual phytoplankton blooms generally occurs before conditions are suitable for 

passive ocean color retrievals. The CALIOP data further provided the clearest demonstration 

to date that annual cycles in polar phytoplankton biomass are driven, at the month time 

scale, by the rate of acceleration and deceleration in phytoplankton division rates. 

Accordingly, the climax of the bloom coincides with division rate maxima, rather than a 

decrease in division. The study also showed that interannual variability in the amplitude of 

the phytoplankton annual biomass cycle is related to the overall range in division rate 

between winter minima and summer maxima. Finally, the lidar data were used for a 
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complete annual accounting of the relative contributions of ecological processes and ice 

cover changes to a decade of variations in polar phytoplankton biomass.

The lidar era in satellite oceanography has arrived.

6. A NEW LIGHT ON THE HORIZON

There are 1224 words in the previous section. Perhaps the three most important of these are 

‘proof-of-concept’. CALIOP does not represent a blueprint of what a satellite lidar can 

achieve for global ocean studies, but rather provides a tantalizing glimpse of where lidar 

measurements can take us. Transitioning a new measurement from ground-based 

observations to an on-orbit system has been the demise of many exciting new remote sensing 

concepts. The simple fact is that satellite missions are expensive, so launching a totally new 

technology is unnervingly risky compared to iteratively improving an existing approach. 

CALIOP has unintentionally provided this key step from a field-verified ‘good idea’ to an 

on-orbit demonstrated capability. CALIOP is for satellite lidar what CZCS was for ocean 

color. It has shown us that an ocean signal is detectable from a space lidar. Now, it is time to 

think about what we can really achieve with a satellite lidar when it is actually built for 

ocean measurements.

There are 4 obvious targets for realizing major scientific advances from a space lidar, and 

each of these has airborne heritage: (1) improved vertical resolution of the detected signal, 

(2) expanded set of detection bands, and (3) additional laser emission wavelengths. Some of 

the science applications of these expanded capabilities are discussed in the following 

paragraphs.

Since the very beginning of the passive ocean color record, it has been recognized that the 

measurement was missing an essential property of the upper water column: the vertical 

distribution of suspended and dissolved constituents. CALIOP provided little information on 

vertical structure because of its coarse vertical sampling capability (22.5 m). An ocean-

optimized space lidar can provide much finer vertical resolution than CALIOP (note that the 

ICESAT lidar measures ice surface topography at centimeter scales), but the trade-space 

needs to be carefully considered between spatial resolution and measurement precision. 

From airborne lidar sensors, water column vertical structure is clearly resolved at 1–3 meter 

resolution and a similar scale can be envisioned for a future satellite system. With such 

capabilities, phytoplankton and total suspended particulate distributions within the upper 

light field could be characterized globally to enable improved estimates of NPP and carbon 

stocks.

A counterpart to improved vertical resolution is increased penetration of the retrieved signal. 

The maximum depth from which valid retrievals can be achieved with a satellite lidar is a 

function of multiple factors, including laser pulse energy and repetition rate, laser emission 

wavelength, telescope size, horizontal averaging, and the optical clarity of the water column. 

As a general ‘rule of thumb’, it is anticipated that an ocean-optimized satellite lidar will be 

able to retrieve valid ocean properties to approximately 2.5 to 3.0 optical depths3. Such 

retrieval depths have already been demonstrated with airborne lidar. Thus, a space lidar can 

Hostetler et al. Page 13

Ann Rev Mar Sci. Author manuscript; available in PMC 2020 July 31.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



detect plankton properties within as much as 65% of the euphotic zone. Importantly, 

phytoplankton within this upper layer are the dominant contributors to water column 

integrated primary production and vertical distribution within this layer is a significant 

source of uncertainty in ocean color based assessments of production (Platt & 

Sathyendranath 1988; Hill et al. 2012; Zhai et al. 2012). These studies clearly demonstrate 

the value of vertically-resolved lidar profiles for assessing ocean production and standing 

stocks, however, there are additional subsurface plankton features that are simply beyond the 

reach of lidar. Perhaps the most widely recognized of these is the deep chlorophyll 

maximum that is ubiquitous in the permanently stratified ocean (roughly the ocean region 

between 40°N and 40°S) and often lies very near the bottom of the photic zone (i.e., > 3.5 

optical depths) (Cullen 1982; 2015). In many cases, the deep chlorophyll maximum 

predominantly reflects light-driven changes in phytoplankton chlorophyll:carbon (i.e., 

photoacclimation), rather than an increase in cell concentration (Fennel & Boss 2003). In 

such cases, this common feature can be effectively accounted for by assuming constant 

phytoplankton concentrations between 3.0 and 4.6 optical depths and applying a depth-

dependent photoacclimation model to reconstruct the vertical structure in chlorophyll (e.g., 

Westberry et al. 2008). In other cases, however, the deep chlorophyll maximum can reflect 

significant changes in phytoplankton biomass. Routinely characterizing these features on a 

global scale will require augmenting measurements from an advanced ocean lidar with 

additional technologies (see Section 8).

With respect to the detection bands, the most important next step in satellite lidar 

measurements will be to depart from the simple elastic scatter approach employed by 

CALIOP and include measurement bands that allow the direct separation of attenuation and 

backscattering coefficients. We have called attention to this issue multiple times in this 

review but believe it cannot be overstated. In previous analyses using CALIIOP data the 

separation of bbp and Kd has been executed by using coincident ocean color data 

(Behrenfeld et al. 2013) or a simple empirical relationship (Behrenfeld et al. 2016). Clearly 

these approaches are less than satisfactory and a lidar-specific approach is needed. As 

discussed above (Section 4), the HSRL technique addresses this issue with additional 

detectors for distinguishing particulate and molecular backscattering. The significance of 

this advancement for ocean studies is that it will allow the lidar-retrieved geophysical 

properties to be independent of other satellite, field, or modeled data. One important 

application of such data is that the global sampling provided by a space lidar can provide an 

unprecedented test data set (in terms of temporal and spatial coverage) for improving ocean 

color geophysical retrievals. Currently, development and validation of ocean color 

algorithms rely on field collected data, which are sparse in time and terribly undersampled in 

space (Figure 5c). The benefit of the lidar data to ocean color retrievals is reciprocated by 

the improved spatial coverage of ocean color products that can allow extrapolation of lidar-

based properties between orbit tracks.

Another exciting avenue for advancement is expansion of the detection waveband set to 

include measurements of lidar stimulated fluorescence. As discussed in Section 4, 

3Optical depth is defined by the product of physical depth and attenuation coefficient. Over one optical depth, for example, a radiant 
flux is reduced by 63%. For reference, the surface photic layer is commonly defined as 4.6 optical depths.
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chlorophyll fluorescence measurements have been demonstrated with airborne lidar systems. 

A similar space-based fluorescence measurement could serve multiple scientific 

applications. First, the total fluoresced light can be quantitatively related to pigment 

concentration. As incident sunlight causes significant changes in the quantum yield of 

fluorescence (a process referred to as non-photochemical quenching), lidar based 

assessments of pigment concentration will be most accurate for measurements made on the 

dark side of the Earth. These chlorophyll assessments, in turn, can be used to separate 

measured Kd values into that associated with phytoplankton pigments and that associated 

with other absorbing compounds. An important benefit of the lidar fluorescence 

measurements compared to passive fluorescence measurements is that, obviously, the 

passive measurements cannot be collected at night and thus suffer from uncertainties in non-

photochemical quenching. In addition, the night-time lidar signal is based on fluorescence 

excitation of a known and fixed energy.

The benefit of a lidar chlorophyll fluorescence channel goes beyond simply an estimate of 

pigment concentration. Because the measurements are conducted both day and night with a 

fixed excitation energy, they permit an accurate quantification of the non-photochemical 

quenching (NPQ) response. Such data could enable more accurate descriptions of NPQ 

variability and thus be used to improve interpretations of ocean color base fluorescence data 

(again, the ocean color product then reciprocates by enabling spatial extension of lidar data). 

Lidar-based NPQ assessments could further be evaluated in terms of different types of 

phytoplankton assemblages, thus providing new insight on photoacclimation strategies. A 

final benefit from a lidar fluorescence channel is that it may provide information on iron-

limited growth conditions. For this application, coincident ocean color data will be 

necessary. Iron stress in the presence of high macronutrients results in the synthesis of non-

functional pigment-protein complexes that impact fluorescence quantum yields (Behrenfeld 

et al. 2006; Schrader et al. 2011; Behrenfeld & Milligan 2013). Quantum yields could be 

assessed by normalizing lidar measured fluorescence signals to ocean color based pigment 

absorption at 532 nm (a product from a spectral inversion algorithm), potentially allowing 

detection of these unique complexes and thus mapping of iron stressed populations.

A final avenue for advancing ocean satellite lidar capabilities is increasing the number of 

laser spectral emissions to a 3-wavelength system of 355, 532, and 1064 nm. Multiple 

benefits can be envisioned from the addition of a 355 nm source. First, under oceanographic 

conditions of low CDOM, 355 nm can penetrate deeper into the water column than 532. 

Perhaps more importantly, the combination of 355 and 532 nm can provide critical 

information on water column constituents. On the absorption side of the house, CDOM 

exhibits an exponential increase in absorption with decreasing wavelength, while 

phytoplankton pigment absorption peaks in the visible wavelengths and tends to decrease in 

the near-ultraviolet. Thus, the 355 nm lidar measurement would enable some separation skill 

between absorption by CDOM and pigments. Differences in backscatter coefficients at 355 

and 532 nm could similarly provide information on the slope of the particle size distribution, 

enabling improved assessments of phytoplankton biomass and total particulate carbon 

stocks. Here again it is important to emphasize the value of the HSRL technique, as the 

accuracy of these important advanced geophysical retrievals will be significantly 

compromised for a simple elastic scattering lidar.
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In closing this section, we note that cloud and aerosol measurements from the ocean-

optimized lidar described above would have powerful crosscutting applications in science at 

the ocean-atmosphere interface and atmospheric science in general. As highlighted in the 

Intergovernmental Report on Climate Change (Stocker 2014), clouds and aerosols are the 

largest drivers of uncertainty in estimates of the Earth’s energy budget. Accurate 

measurements of aerosol extinction at 532 nm from a spaceborne HSRL would provide 

significantly improved estimates of aerosol direct radiative effect compared to CALIOP 

(Thorsen & Fu 2015; Thorsen et al. 2017). The 532 nm extinction measurements would also 

provide a much improved satellite-based proxy for the concentration of cloud condensation 

nuclei (CCN) than is possible from passive sensors (Stier 2016), enabling advanced studies 

of aerosol-cloud interactions. A polarization-sensitive lidar with elastic backscatter channels 

at 1064 nm and HSRL channels at 532 nm would provide vertically-resolved curtains of 

aerosol type (i.e., identification of aerosol layers as marine aerosol, continental pollution, 

biomass smoke, or dust (Burton et al. 2012; 2014)) and lead to significant improvements to 

chemical transport models. The addition of HSRL channels at 355 nm would enable retrieval 

of aerosol effective radius and concentration (Müller et al. 2014), providing an even better 

proxy for CCN and valuable data for air quality applications. Finally, building on the work 

of Hu (2007) and Hu et al. (2007) using CALIOP data, coupling HSRL capability, 

polarization sensitivity, and finer vertical resolution in atmospheric measurements will 

significantly improve retrievals of cloud microphysical properties.

Table 1 is sort of a ‘shopping list’ summary of measurements enabled by the enhanced 

measurement capabilities described in this section. The first row in the table represents a 

CALIOP-like ‘base-case’, which is then followed by additional rows associated with an 

added capability and the value added for ocean and atmospheric science.

7. AN OPTIMIZED OCEAN-ATMOSPHERE SATELLITE LIDAR

We will now consider the design of an ocean-atmosphere optimized lidar with the 

measurement capabilities discussed in Section 6. To facilitate this description, we have 

provided a basic conceptual illustration of the design in Figure 6. To begin, the laser 

transmitter is ‘seeded’ by a low-power continuous-wave 1064 nm laser to ensure 

narrowband frequency-stable output as required for the HSRL technique. The fundamental 

1064 nm output of the Pulsed Laser is frequency doubled to 532 nm and tripled to 355 nm, 

providing output pulses at all three wavelengths. The receiver begins with a 1–1.5 m 

diameter telescope, similar to CALIOP and the European Space Agency (ESA) Aeolus wind 

lidar due to launch in late 2018. Light collected by the telescope is focused onto a field stop 

that defines the receiver field-of-view (FOV), which would closely match the divergence of 

the transmitted beam to minimize the collection of diffusely scattered sunlight while still 

collecting most of the backscattered laser light. Next, the light is re-collimated into a small-

diameter beam (e.g., 2–3 cm) in the receiver and then dichroic beamsplitters are used to 

separate the various wavelengths for additional optical processing. Narrow-band solar 

rejection filters are employed in the various optical paths to reduce the magnitude of 

scattered sunlight remaining within the FOV. Polarizing beam cubes are further used to 

resolve the backscatter into polarization components that are parallel and perpendicular to 

the linear polarization of the transmitted laser pulses.
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While there are alternate means of doing so, the HSRL technique is implemented here with 

interferometric optical filters that separate the received backscatter onto two detectors: one 

for which the measured backscatter is predominantly from water or air molecules 

(“Molecular Channel”), and the other which measures a combination of particulate and 

molecular backscatter (“Particulate Channel”). As discussed in Section 4, the two HSRL 

channels essentially provide two equations to solve for two unknowns: Kd and, in this case, 

the co-polarized component of bbp. The cross-polarized component of bbp is derived in a 

similar manner by also employing the signal measured on the cross-polarized detector. 

Because >99% of the backscatter from water molecules maintains the polarization of the 

transmitted laser pulse, it is convenient to implement the interferometer downstream of the 

polarization beamsplitter. Finally, the design includes a channel for measuring the 

chlorophyll fluorescence signal in the 680 nm region. Unlike past airborne fluorescence 

lidars discussed in Section 4, the chlorophyll fluorescence signal will be normalized to the 

molecular backscatter measured via the HSRL technique and hence not rely on a separate 

water-Raman channel.

A critical feature in the design is spatial resolution. The vertical resolution would be ~2–3 m 

in the ocean, which reflects the laser temporal pulsewidth and the detection electronics 

bandwidth. The fundamental along-track horizontal resolution is determined by the receiver 

FOV and the laser repetition rate. For our concept, the FOV will be set to achieve a 90-m 

“footprint” diameter at the Earth’s surface consistent with CALIOP. By setting the laser 

repetition rate to 150 Hz, the horizontal spacing between samples will be ~50 m, ensuring 

contiguous along-track horizontal sampling.

With only a 90-m swath, orbital geometry must be considered to appreciate horizontal 

sampling. Our envisioned lidar mission would have a sun-synchronous orbit similar to that 

of CALIOP, achieving a global sampling pattern like that in Figure 5a. CALIOP orbits the 

Earth ~15 times per day with spacing between consecutive orbits of 2752 km at the equator. 

The orbit pattern repeats every 16 days resulting in a sampling grid that is spaced by171 km 

at the equator and 111 at ±50˚ latitude. While this sampling is sparse by ocean color 

standards, the capability for sampling day or night, through aerosol layers and tenuous 

clouds, and in small holes between broken clouds means that monthly coverage of lidar data 

can actually rival that of ocean color (Figure 5d) and, in some seasons and latitudes, exceeds 

that of ocean color (Behrenfeld et al. 2016).

Clearly, the satellite lidar capabilities described above would provide unprecedented 

contributions to ocean and atmospheric science. The obvious next question is, does the 

technology exists to build an instrument with these capabilities? The answer to this question 

is a resounding ‘yes’. Much effort has been expended in Europe and the US to develop 

HSRL capability for space. The European Space Agency (ESA) has built a 355 nm HSRL 

scheduled to launch on the EarthCARE satellite in 2018. NASA has also focused significant 

resources on maturation of lidar technology, achieving all of the capabilities mentioned 

above and in Section 6. In fact, one lidar design for the ACE mission concept incorporates 

all of the capabilities discussed above except for the chlorophyll fluorescence channel. Other 

NASA programs have contributed to the maturation of that design, and an airborne prototype 

with the capabilities recommended herein is due for flight demonstration in 2018. The 
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‘bottom line’ is that there is no technical obstacle to the deployment of an ocean-atmosphere 

optimized satellite lidar by the mid 2020s.

8. VISION OF A VIRTUAL CONSTELLATION

Oceanographic research with satellite lidars is in its infancy. We hope this review has 

provided a useful description of the lidar technique, an interesting narrative of its history in 

marine applications, an exciting account of recent achievements with the satellite CALIOP 

sensor, and some forward-looking ideas on future scientific pursuits with an advanced 

satellite lidar based on current technological capabilities.

Throughout this review, we have contrasted lidar measurements with traditional ocean color 

observations, but the most important message to take from these comparisons is that each 

approach has its strengths and weaknesses. In constructing a vision for future global ocean 

observing, we have learned from the A-train experience to capitalize on synergies between 

measurement approaches. An ocean optimized HSRL-type satellite lidar will alone 

revolutionize our understanding of ocean ecosystems, but the benefits of such a mission are 

greatly expanded if coupled to advanced ocean color observations (such as envisioned for 

the PACE mission sensor). Synergies from this pairing maximize global spatial and temporal 

data coverage, introduce the vertical dimension into ecosystem characterizations, and allow 

cross-instrument data comparisons for algorithm development, improved ocean color 

atmospheric corrections, and an expansion in the diversity of retrieved geophysical 

properties.

Adding a scanning polarimeter to this emerging constellation yields additional synergies. A 

polarimeter would provide valuable information for spatially extending the detailed 

atmospheric characterization from the lidar ‘curtains’, and together these data will further 

improve ocean color atmospheric corrections. Polarimetry can also provide additional 

information on particle characteristics within the upper water column (Loisel et al. 2008). 

Reciprocating, the ocean color measurements provide constraints on water leaving 

contributions to the signal measured by the polarimeter.

One additional piece that can be added to our measurement constellation is a global array of 

in situ bio-geo-Argo floats. In addition to providing sustained and coincident field validation 

data for the satellite sensors, these autonomous assets can address a fundamental constraint 

on all known remote sensing technologies: there is a depth-limit to ocean signals observable 

from space. Satellite lidar can push this detection limit to ~3 optical depths, but significant 

ecosystem and biogeochemical processes occur below this depth. A bio-geo-Argo array 

could provide a global sampling of these deeper properties and, while not at the spatial 

resolution of remote sensing data, a means for extending satellite observables to the deep 

sea.

Figure 7 is an artistic rendering of this virtual ocean observing constellation. If the PACE 

mission is launched in its desired two-instrument configuration, we would be halfway to 

realizing this broader vision. Discussions are also underway regarding developing a global 

bio-geo-Argo array and significant investments are already being made in deployments (e.g., 
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the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) program 

(https://soccom.princeton.edu). The final piece is an advanced ocean lidar.
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SIDEBAR - BOX 1

HSRL: TWO MEASUREMENTS, TWO UNKNOWNS

HSRL designs vary from instrument to instrument, but the fundamental approach is the 

same. We will consider here the simplest of HSRL architectures where there are two 

detection channels. One of these channels is more sensitive to particulate backscatter 

from the ocean (the middle peak in Figure 2) and one is more sensitive to molecular 

backscatter from seawater itself (the right and left peaks in Figure 2). This separation of 

the backscatter signal is accomplished in the lidar receiver (Figure 1) with a spectral filter 

(e.g., an interferometer) that has a well characterized frequency response. The two time-

resolved signals are combined to form two profiles proportional to backscatter at 180˚. 

The first of these derived profiles, SM(z), represents photons backscattered by water 

(βM):

SM(z) = CMβMexp −2∫
0

z
Kd z′ dz′ (Atmos . Transmission)2

(1)

where the integral of Kd and the square of the atmospheric transmission account for the 

attenuation that the transmitted and backscattered photons undergo along their optical 

paths. CM is a channel-specific instrument constant that incorporates factors like laser 

energy, telescope area, and the efficiency of receiver components. The second profile, 

SP(z), represents photons backscattered by suspended particles in the ocean (βP) and 

likewise attenuated by the ocean (Kd) and atmosphere:

SP(z) = CPβP(z)exp −2∫
0

z
Kd z′ dz′ (Atmos . Transmission)2

(2)

where CP is the instrument constant for the second channel. Because the density of 

seawater molecules is relatively constant in the near-surface ocean, the value of βM is 

well known. Thus, the value of Kd can be calculated from changes in SM(z) from one 

depth interval to the next through the water column:

Kd(z) = − 1
2

d
dz ln SM(z) (3)

Importantly, the influence of Kd and atmospheric transmission are the same for SP(z) and 

SM(z). Consequently, these two terms cancel in the ratio SP(z):SM(z), allowing the 

attenuation-corrected profile of particulate backscatter at 180˚ to be calculated as:

βP(z) = βM
CM
CP

SP(z)
SM(z) (4)

where the only scaling factors required are estimates of βM (well-known) and the CM:CP 

ratio (which is easily calibrated with high accuracy). βP is then scaled to hemispheric 

backscatter, bbp, following Boss & Pegau (2001).
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In summary, the power of the HSRL technique is that it provides two measurements to 

solve for two unknowns and requires only relative (i.e., the CM:CP ratio), rather than 

absolute, calibration. This contrasts critically from the elastic backscatter lidar technique, 

which provides the combined SP(z)+SM(z) profile only and therefore requires absolute 

calibration, correction for the atmospheric transmission, and either ancillary data or 

model assumptions on the relationship between bbp and Kd to retrieve either one.
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Figure 1. 
Illustration of the lidar time-of-flight ranging technique. (a)The laser transmits a short (e.g., 

15 ns) pulse of laser light which is directed downward. (b) As the laser pulse travels toward 

Earth, photons are scattered from air molecules and cloud/aerosol particles in the 

atmosphere. (c) Shortly thereafter, the pulse penetrates the ocean where photons are also 

scattered by water molecules and suspended particles. Some of the scattered photons in the 

atmosphere and ocean are intercepted by the telescope, and the magnitude of this signal is 

recorded as a function of time by detectors located in the receiver. (d) Using the speed of 

light, time is converted to distance, creating a vertically-resolved profile of received 

backscatter.
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Figure 2. 
The HSRL technique (Box 1) relies on the spectral separation between 180˚ backscatter 

from seawater and suspended particles (e.g., phytoplankton). The spectrum of particulate 

backscatter is nearly identical to that of the transmitted single-frequency laser pulse. 

Molecular backscatter, on the other hand, is shifted (~7.5 GHz at 532 nm) and broadened by 

Brillouin scattering processes (Hickman et al. 1991).
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Figure 3. 
Along-track ‘curtain’ plots acquired with the NASA airborne HSRL-1 instrument on the 

May 2016 during a NAAMES deployment. (top panel) Vertically resolved aerosol 

backscatter in the atmosphere along the flight track in the North Atlantic. Vertical scale is in 

kilometers. (bottom panel) Vertically resolved diffuse attenuation coefficients in the ocean 

along the flight segment delineated by dashed pink arrows. Vertical scale is in meters. From 

35° N to ~40° N, the transect sampled oligotrophic conditions with significant subsurface 

features north of 38° N. A strong near-surface bloom was encountered between ~41° N and 

~43° N, followed by more mesotrophic waters with significant subsurface biomass between 

~10 and 20 m depth.
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Figure 4. 
Results from the SABOR field campaign, which encompassed 24 flights with the HSRL-1 

and 23 ocean sampling stations on the RV Endeavor. (a) MODIS Kd at 488 nm values (Lee 

et al. 2005) for July 18, 2014 (background color) and Kd retrieved with the HSRL-1 along a 

flight track on the same day (white outlined data; modified from Hair et al., 2016). HSRL-1 

Kd values were calculated at 10 m depth and converted to 488 nm by accounting for the 

difference in pure seawater absorption. (b) Kd matchup data from HSRL-1 and MODIS for 

all flights during the SABOR campaign (modified from Hair et al., 2016). (c) Comparison of 

bbp profiles from HSRL-1 (532 nm, red line) and in situ measurements (529 nm, black line) 

from a Wet Labs ECO BB3 instrument (modified from Schulien et al., 2017). (d) Matchup 

comparison of HSRL-1 and in situ bbp data from the 16 offshore SABOR stations where 

overboard optical casts had near-coincident HSRL measurements (modified from Schulien 

et al., 2017). Colors indicate the optical depth of each sample.
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Figure 5. 
Sampling of the global ocean with CALIOP. (a) CALIOP ground tracks achieved within a 

single 16‐day repeat cycle. Red lines = 55° to 65° North latitude section used to compare 

CALIOP and MODIS data coverage in panel d. (b) CALIOP-based climatological annual 

average phytoplankton biomass (Cphyto) for the 2006 to 2012 period reported by Behrenfeld 

et al. (2013). (c) Location of all field bbp data in the NASA SeaBASS data archive. These 

data required 13 years to collect, yet still leave most of the ocean unsampled in space and 

time. By comparison, CALIOP can provide an unbiased global sampling of bbp every 16 

Hostetler et al. Page 30

Ann Rev Mar Sci. Author manuscript; available in PMC 2020 July 31.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



days that can be used for global ocean science investigations and to refine algorithms for 

passive ocean color retrievals. (d) Comparison of CALIOP and MODIS pixel coverage per 

month for the 55° to 65° North latitude section identified in panel a (from Behrenfeld et al. 

2016). Filled and unfilled symbols = Total number of 1° latitude × 1° longitude ice‐free 

ocean pixels per month with valid CALIOP and MODIS bbp data, respectively.
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Figure 6. 
Simplified block diagram of primary components in the advanced spaceborne ocean-

atmosphere optimized lidar discussed in Sections 6 and 7.
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Figure 7. 
Artistic rendering of a virtual ocean observing constellation including complementary 

HSRL, ocean color, and polarimeter instruments supplemented by in situ Bio-Geo-Argo 

floats that extend the depth-resolving capability of the lidar.
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Table 1.

Summary of the increase in science value with capability from the CALIOP base case.

Added Capability Added Value to Ocean Science Added Value to Atmospheric/Land 
Science

CALIOP 
Equivalent

CALIOP:
• Elastic backscatter 
technique at 532 and 1064 
nm
• Depolarization at 532 nm
• Vertical resolution: 23-m 
(30-m) ocean (atmosphere)

• Surface-weighted bbp and Kd (not 
independent)
• Sampling through aerosol layers and tenuous 
cloud
• Sampling regardless of sun angle
• Monthly coverage statistics ~50% of those 
for ocean color for 1°×1° bins
• Day-night comparisons possible

• Cloud vertical distribution and 
microphysical properties relevant to 
radiation budget studies
• Aerosol vertical distribution and scattering 
properties relevant to radiation budget and 
air quality studies. Accuracy limited by 
retrieval assumptions and loss of calibration 
with penetration into atmosphere.
• Crude aerosol typing with high 
uncertainty

Above Plus

Above plus:
+ <3-m vertical resolution

• Crude estimates of profile-average Kd; 
unknown error due to vertical variability in Kd 

and bbp.
• Crude bbp profiling capability: calibration 
will be an issue

• Enhanced capability for cloud 
microphysical retrievals

Above Plus

Above plus:
+ HSRL at 532 nm
+ Depolarization at 1064 
nm

• Accurate independent profiles of bbp and Kd 

at 532 nm
• Calibration maintained through ocean 
column.
• Products scalable to Cphyto, POC, and 
chlorophyll concentration via empirical 
relationships
• Vertically-resolved estimates of NPP

• Accurate profiles of aerosol extinction and 
backscatter through entire profile and into 
the BL.
• Improved satellite CCN proxies
• Improved air quality estimates
• Significant skill in aerosol typing and 
partitioning optical depth by type.
• More accurate estimates of optical 
thickness of tenuous clouds.
• Advanced cloud microphysical retrievals

Above Plus Above plus:
+ Chl Fluorescence

• NPQ
• Iron stress

Above Plus

Above plus:
+ HSRL at 355 nm
+ Depolarization at 355 nm

• Accurate independent profiles of bbp and Kd 

at 532 and 355 nm
• Independent estimates of CDOM and 
pigment absorption
• Information on the slope of the plankton size 
distribution
• Increased accuracy in vertically-resolved 
NPP

• Aerosol effective radius and concentration
• Enhanced satellite CCN proxies
• Enhanced air quality estimates
• Enhanced skill in aerosol typing, e.g., 
discriminating between fresh and aged 
smoke
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