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Abstract

Individuals are able to adjust their readiness to shift spatial attention, referred to as attentional 

flexibility, according to the changing demands of the environment, but the neural mechanisms 

underlying learned adjustments in flexibility are unknown. In the current study, we used functional 

magnetic resonance imaging (fMRI) to identify the brain structures responsible for learning shift-

likelihood. Participants were cued to covertly hold or shift attention among continuous streams of 

alphanumeric characters and to indicate the parity of target stimuli. Unbeknownst to the 

participants, the stream locations were predictive of the likelihood of having to shift (or hold) 

attention. Participants adapted their attentional flexibility according to contextual demands, such 

that the response time cost associated with shifting attention was smallest when shift cues were 

most likely. Learning model-derived shift prediction error scaled positively with activity within 

dorsal and ventral fronto-parietal regions, documenting that these regions track, and update, shift 

likelihood. A complementary inverted encoding model analysis revealed that the pretrial difference 

in attentional selection strength between to-be-attended and to-be-ignored locations did not change 

with increasing shift likelihood. The behavioral improvement associated with learned flexibility 

may primarily arise from a speeding of the shift process rather than from preparatory broadening 

of attentional selection.
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Attentional prioritization of a stimulus has traditionally been conceptualized as a product of 

low-level stimulus properties (Theeuwes, 1992, 1994; Yantis & Jonides, 1984), as well as 

top-down behavioral goals (Desimone & Duncan, 1995; Folk, Leber, & Egeth, 2002; Folk, 

Remington, & Johnston, 1992; Wolfe, Cave, & Franzel, 1989). However, recent work has 

suggested that our previous experiences also powerfully shape the likelihood that a stimulus 

will receive attentional selection (Anderson, Laurent, & Yantis, 2011; Awh, Belopolsky, & 
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Theeuwes, 2012; Sali, Anderson, & Courtney, 2016; Sali, Anderson, & Yantis, 2014). 

Accordingly, in addition to spontaneous changes in individuals’ readiness to shift spatial 

attention (Sali, Courtney, & Yantis, 2016), referred to here as attentional flexibility, 

individuals are able to adjust their shift-readiness according to the statistical regularities of 

their environment (Sali, Anderson, & Yantis, 2015). In particular, attention shift costs, the 

slowed performance in trials that require shifting attention versus holding attention, are 

smaller in task contexts that have been associated with a high likelihood of shifting attention 

in the past than in those that have been associated with holding attention. Moreover, 

neuropsychiatric disorders are associated with both elevated (e.g. attention deficit 

hyperactivity disorder and substance abuse; Barkley, 1997; Berridge, 2012; Keiflin & Janak, 

2015; Vaurio, Simmonds, & Mostofsky, 2009) and deficient (e.g. schizophrenia and autism; 

Koster-Hale & Saxe, 2013; Moore, Dickinson, & Fletcher, 2011; Murray, Corlett, & 

Fletcher, 2010) levels of attentional flexibility. Thus, the question of how individuals learn to 

adjust attentional flexibility according to moment-by-moment changes in environmental 

demands is of clear public health relevance. In particular, the neural mechanisms underlying 

such learned states of attentional flexibility are presently unknown.

In the current study, we investigated these mechanisms by combining functional magnetic 

resonance imaging (fMRI) with a well-validated rapid serial visual presentation (RSVP) 

paradigm of spatial attentional selection in which task contexts differentially predicted the 

likelihood of an upcoming attention shift (e.g. Sali et al., 2015). Specifically, we addressed 

three key questions: First, we sought to characterize brain regions involved in the acquisition 

of shift-likelihood predictions. In line with computational models and empirical studies of 

how participants exploit statistical task regularities in guiding cognitive control processes 

(e.g., Botvinick et al., 2001; Blais, Robidoux, Risko, & Besner, 2007; Verguts & Notebeart, 

2007; Abrahamse et al., 2016; Chiu, Jiang, & Egner, 2017; Jiang, Beck, Heller, & Egner, 

2015; Jiang, Wagner, & Egner, 2018; Waskom, Frank, & Wagner, 2017), we assumed that 

the contextual adaptation of attentional flexibility is based on cumulative learning of the 

current probabilistic associations between context (temporal and/or spatial) and shift-

likelihood. Accordingly, we used reinforcement learning (RL) models (Sutton & Barto, 

1998) to fit behavioral response times and compute the degree to which an individual’s shift 

predictions differed from the outcome (shift versus hold) of each trial, that is, the shift 

prediction error (shift PE), which serves to update shift-likelihood predictions. By 

employing trial-by-trial shift PE estimates in model-driven fMRI analyses (Chiu, Jiang, & 

Egner, 2017; Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Jiang, Beck, Heller, & 

Egner, 2015; Jiang, Wagner, & Egner, 2018; O’Doherty, Cockburn, & Pauli, 2017; 

O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003), we could identify brain regions that 

drive attentional flexibility learning.

Second, in addition to probing the neural mechanisms involved in the acquisition of 

attentional flexibility, we sought to determine the consequences of that learning on the 

brain’s attentional prioritization of stimulus locations. To this end, we used an inverted 

encoding model (IEM) of spatial representation in visual cortex (Sprague, Ester, & Serences, 

2014; Sprague, Saproo, & Serences, 2015; Sprague & Serences, 2013) to examine whether 

attentional orienting expectations, as defined by the RL model, modulated the strength of 

attentional selection at currently attended and unattended spatial locations, both preceding 
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and following a cued shift or hold of spatial attention. On the one hand, reduced shift costs 

for contexts with a high shift-likelihood may result from a preparatory increase in spatial 

selection at a to-be-attended location and/or decrease in selection at the currently attended 

location prior to the onset of a shift cue. Alternatively, learned states of attentional flexibility 

might not be associated with changes in preparatory attentional selection, but instead, with a 

speeding of the shift process itself. To investigate these questions, we examined whether 

trial-by-trial RL model-derived shift predictions covaried with the deployment of spatial 

attentional selection, as measured via the IEM.

Third, we used an IEM analysis of the post-cue brain activity to test whether participants 

shifted attention according to the orienting cues rather than zooming attention out to include 

both target and distractor locations (Castiello & Umiltà, 1990; Jefferies, Gmeindl, & Yantis, 

2014). If participants shifted attention in response to cues, we would expect selection to be 

strongest at the location of the cue for hold trials, but strongest at the opposite location from 

the cue on shift trials. Conversely, if participants were able to attend to both stimulus 

locations simultaneously, we would expect to see equal selection at the cue and non-cue 

locations following the cue presentation. Furthermore, any difference in post-cue selection 

according to the probability context would shed light on the consequences of orienting 

expectations on the resulting strength of attentional selection in visual cortex.

Methods

Participants

Thirty-one individuals (14 male, 17 female) ranging in age from 21 to 38 years (M=28.6, 

SD=5.19) participated in exchange for monetary compensation. Of these participants, 2 were 

excluded for overall behavioral accuracies less than 75% on the RSVP task, 1 was excluded 

for a combination of excessive motion and falling asleep, and 5 were excluded for technical 

difficulties, resulting in a final sample size of 23 participants. One of the eligible participants 

completed a slightly different variation of the encoding model training task and is therefore 

excluded from the encoding model analyses alone. All participants completed a consent 

form that was approved by the Duke University Institutional Review Board. Compensation 

was $40 and the entire study lasted approximately 2 hours.

Design and Procedure

Attentional Flexibility Paradigm.—Participants completed a variant of a previously-

established paradigm for tracking learning of attentional flexibility (Sali et al., 2015; Sali, 

Courtney, et al., 2016). On each trial, participants fixated a centrally-presented dot while 

covertly attending to one of two rapid serial visual presentation (RSVP) streams of 

alphanumeric characters (approximately 1.4° x 1.5°) that were positioned to the left and 

right of fixation (see Figure 1A; 3° distance to fixation measured center-to-center; diameter 

of fixation dot = 0.2°). At the beginning of the trial, a flashing asterisk appeared at the to-be-

attended location for a total of 500 ms. Next, the two RSVP streams appeared and changed 

with a frame rate of 250 ms. During a distractor interval that was either 4 or 6 seconds 

(presented with equal frequency), each RSVP stream within each frame contained a single 

randomly-selected digit that ranged from 1 to 8. Following the distractor interval, a letter cue 
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appeared in the to-be-attended stream that signaled participants to either covertly shift 

attention to the opposite stream or to continue holding attention at the location of the cue. 

The letter “A” cued participants to hold attention at the location of the cue, while the letter 

“K” cued participants to covertly shift attention. The stimuli were presented within a circular 

grey aperture with a total diameter of approximately 16.7° of visual angle. Stimulus 

presentation in this and subsequent tasks was controlled with the Psychophysics Toolbox in 

Matlab (Brainard, 1997) and stimuli were viewed on a screen located in the bore of the 

scanner through a mirror that was attached to the head coil.

In order to measure the flexibility with which individuals shifted attention on a trial-by-trial 

basis, participants made a speeded parity judgment for the string of digits appearing at the 

cued location. Critically, as in earlier studies (Sali et al., 2015; Sali, Courtney, et al., 2016), 

all digits appearing at the cued location were either even or odd for a 2-second response 

window that began immediately following the presentation of the cue. Participants were 

asked to make the parity judgment based on the first digit that they detected. Specifically, 

they pressed a button with their left index finger if the stimuli were odd and a button with 

their right index finger if the stimuli were even. Participants only responded once during the 

response window and the digits at the unattended location continued to be randomly 

generated throughout the response window regardless of when the press occurred. Following 

the response window, there was a blank inter-trial interval of 1250 ms. Participants 

completed a total of four runs of the attentional flexibility paradigm and each run consisted 

of 60 trials in total.

In order to manipulate participants’ shift readiness, we varied the likelihood that participants 

would receive a cue to shift or hold attention across three location-defined contexts. Stimuli 

were always presented in one of the three pairs of spatial locations: along the horizontal 

meridian (x = −3° y = 0°; x = 3° y = 0°), diagonal with the left item above the horizontal 

meridian (x = −1.5° y = 2.598°; x = 1.5° y = −2.598°), and diagonal with the right item 

above the horizontal meridian (x =−1.5° y = −2.598°; x = 1.5° y = 2.598°; see Figure 1B). 

Importantly, for each context, the two stream locations were equidistant from the fixation 

point (approximately 3° of visual angle) such that the spatial representation of stimuli could 

later be realigned with a simple rotation procedure (see encoding model method below). 

Each of these location contexts (pair of two spatial locations) was associated with a different 

likelihood that the participant would receive a cue to shift attention. Specifically, one context 

was associated with 25% shift trials and 75% hold trials, while another was associated with 

75% shift trials and 25% hold trials. The final context was associated with an equal number 

of shift and hold trials. Shift and hold trials were randomized within each context with the 

constraint that there could never be a repeat of the “rare” trial types within the 25% shift and 

75% shift contexts. The probability associations of each of the three contexts were 

counterbalanced across participants and participants were not informed that stimulus 

location would predict the likelihood of shifting attention. Each context lasted for 20 trials 

such that all three contexts were presented once per experimental run in a blocked fashion. 

The order of contexts within each run was randomly selected.

After completing the experiment, participants answered a series of questions with increasing 

specificity to determine the degree to which they had explicit knowledge of the underlying 
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probabilistic structure of the task. Participants first read and answered the following 

question: “Was there any relationship between the three stimulus location contexts (–, \, or /) 

and the attention cues (K and A)?” They then read, “One location context was associated 

with Mostly Hold Cues, one was associated with Mostly Shift Cues, and one was associated 

with Equal Shift and Hold Cues,” and labeled diagrams of the three stimulus locations with 

labels of “Mostly Hold,” “Mostly Shift,” and “Equal.”

Model Training Task.—In addition to the attention task described above, participants 

completed 4 runs of a visual target detection task that was used to independently train an 

encoding model of spatial representation (Sprague, Ester, & Serences, 2016). Participants 

alternated between the attention and model training tasks across consecutive runs of the 

experiment, beginning with the attention task. During the model training task, participants 

viewed flashing checkerboard stimuli that appeared one at a time at locations throughout a 

central portion of the visual field while fixating a central point with a diameter of 

approximately 0.2 degrees. Each checkerboard subtended approximately 1.8° of visual angle 

and was presented within a circular grey aperture with a total diameter of approximately 

16.7° of visual angle. During the task, each checkerboard was presented for a total of 3000 

ms and flickered at a rate of 6 hz (see Figure 1C). Following each checkerboard 

presentation, the aperture and fixation point alone were presented for a variable inter-trial-

interval (ITI), which ranged from 2000–6000 ms. These ITIs were randomly selected, 

without replacement, from a set of intervals spanning 2000–6000 ms in approximately 87 ms 

segments.

We varied the checkerboard locations across trials and across experimental runs. These 

locations were originally selected from a hexagonal grid of 37 potential locations that was 

centered in the grey aperture such that the distance between each location was 1.5°. Each 

trial’s checkerboard distribution was further jittered according to two different procedures. 

First the hexagonal grid was rotated 0°, 15°, 30°, or −15° for the four runs of the task. Next, 

each location was further jittered by randomly drawing coordinates from within a circle with 

a radius of 0.5° that was centered at the rotated grid location. At its widest point, the grid 

spanned 3 steps (4.5°). An aperture (0.8° in diameter) surrounded the fixation point on trials 

in which the checkerboard stimulus would overlap with the fixation dot. Given the spatial 

jittering and rotation described above, the maximum stimulated region of the visual field was 

5.9° from fixation, making the total field of view 11.8° × 11.8°. Each of the 37 grid locations 

was used for one checkerboard stimulus per run.

In addition to the 37 trials described above, on an additional 10 trials, a checkerboard 

appeared at one of the locations (determined by the same procedure as above), but slightly 

dimmed during the 3000 ms presentation. Participants were instructed to press a button with 

their right index finger as soon as they detected the stimulus dimming.

Fixation Training.—Immediately prior to entering the fMRI scanner, participants 

completed a 30-minute training session. In addition to receiving instructions and completing 

practice trials of both tasks, participants also completed a separate task that was designed to 

train them to fixate their eyes on a central target (Guzman-Martinez, Leung, Franconeri, 

Grabowecky, & Suzuki, 2009). In particular, use of this visual display, which produced real-
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time visual feedback if participants made an eye movement, has been associated with 

improvements in participants’ fixation performance in subsequent tasks.

Behavioral Reinforcement Learning Model.—In order to determine the neural 

substrates of adapting shift-readiness to the statistical structure of the task, we considered a 

series of six learning models with different assumptions of how the learning of shift-

readiness varied at the trial- and context-level. To compute a trial-by-trial measure of shift 

PE during the attentional flexibility task, we employed a reinforcement learning (RL) model 

(Sutton & Barto, 1998; see also Chiu et al., 2017; O’Doherty et al., 2017). In addition to 

modeling trial-level adjustments, we also considered block-by-block adaptations of shift-

readiness, which were modeled using a separate free parameter. The performance of each 

model in explaining trial-level variance in response time was measured using cross-

validation (see below). Model 1 used temporal integration that was independent of the 

location context, while model 2 added an extra free parameter to account for participants’ 

tendencies to partially reset shift predictions when there was a change of context or run, and 

model 3 accounted for context-dependent learning. Model 4 included free parameters for 

both context-independent and context-dependent learning, while model 5 added the reset 

factor from model 2. Finally, model 6 was identical to model 5, with the exception of the 

reset parameter being restricted to either the absence of resetting or a complete reset of shift 

predictions with each change of context or start of a new run (see Table 1 for an overview of 

models. Each model is also explained in greater detail below).

Model 1 captured learning through temporal integration that was independent from location 

context. Model 1 thus accounted for trial-by-trial learning that spanned across the location 

contexts. Specifically, learning was modeled as: Pi + 1 = Pi + αt Si − Pi , where for each trial 

i, P denoted shift-readiness on a linear scale from 0 (least ready to shift) to 1 (most ready to 

shift). Si denoted the shift outcome on each trial (1=shift attention, 0=hold attention). 

Importantly, Si − Pi  is a measure of the degree to which each shift outcome differs from the 

participant’s expectation at that particular moment, i.e., the shift PE, which is employed to 

update predictions accordingly for the next trial. The absolute (unsigned) value of shift PE 

thus represents a generalized learning signal that indicates the degree to which expectations 

were violated. Finally, how much shift PE influenced the new prediction Pi + 1 was mediated 

by the learning rate, a free parameter denoted as αt, which varied from 0.01 to 0.99. The 

model always began with a shift-readiness value of 0.5 for the first trial of the first run, 

reflecting a neutral belief of shift-readiness. The first trial of all subsequent runs began with 

the shift-readiness value dictated by the last trial of the previous run.

Model 2 was identical to Model 1, except that it allowed for the possibility that participants’ 

shift predictions might reset approximately to neutral (0.5) whenever there was a change in 

the location context or a start of a new run. Just as in Model 1, Model 2 did not account for 

any context-specific learning. Since the degree of this resetting could vary across 

participants, we added another free parameter to the model, b, which varied from 0 to 1 to 

determine the degree to which predictions were reset to neutral at the start of each context 

and at the start of each run according to: Pi + 1 = b * Pi + 1 − b * 0.5. Critically, this resetting 

step was applied only after the standard updating had been applied at the last trial of the 
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previous block. For all other trials, shift predictions updated according to the same equation 

as Model 1.

Both Models 1 and 2 update shift predictions according to trial history but do so in a manner 

that is context-independent, i.e., no memory of previous experience with a given context is 

used to adjust predictions when that context re-occurs. Conversely, Model 3 computed shift 

predictions separately for each location context. Unlike the earlier models, Model 3 did not 

account for any context-independent trial-by-trial learning of shift likelihood. The context-

dependent prediction of Model 3 was defined as Pci + αc Sci − Pci , where all parameters 

were defined the same as in the earlier models. Importantly, shift predictions were updated 

for each context separately such that the prediction on the first trial of a particular context 

was equal to the value after updating during the last presentation of that specific context. 

The shift-readiness value for each context began at 0.5 and to simplify the model, we used 

the same context-based learning rate (αc) for each context for a given individual.

Unlike Models 1–3, Model 4 accounted for the possibility that participants’ shift readiness 

could vary based on a combination of both (a) the trial-by-trial outcomes captured by the 

temporal integration of Model 1 and (b) the context-specific learning of Model 3. Thus, 

Model 4 tested whether participants learned to associate particular contexts with the shift-

likelihood probabilities above and beyond any effect of the ongoing trial history. 

Accordingly, shift-readiness was separately predicted by two learning processes: the context-

independent prediction from Model 1 [Pi + αt Si − Pi ] and the context-dependent prediction 

from Model 3 [Pci + αc Sci − Pci ]. Each prediction had a dedicated learning rate αt and αc 

for context-independent and context-dependent predictions, respectively, in order to account 

for the difference in which the predictions were updated.

Model 5 was identical to Model 4, but added the temporal integration resetting factor from 

Model 2. Consequently, Model 5 accounted for independent temporal integration and 

context-based sources of shift prediction but allowed for the possibility that temporal 

integration predictions reset, at least partially, to 0.5 whenever there was a change in context 

or run. All equations were identical to those listed above.

Finally, Model 6 also accounted for independent temporal integration and context-based 

sources of shift prediction but differed from Model 5 in how predictions were reset when 

there was a change in context or run. Unlike Model 5, we restricted the reset factor to values 

of only 1 or 0, effectively limiting the possibilities to no reset of predictions or to a complete 

reset of predictions as the context or run changed.

For each participant, we applied a grid search for the best-fitting learning rate parameter(s), 

and in the case of Models 2, 5, and 6, the reset parameter, to find the best set of free 

parameters that fit the participant’s trial-level response time (RT) data. In each case, we 

employed a leave-one-run-out cross-validation procedure such that for each participant, we 

trained the models iteratively on all but one run of data and tested them on the left out run to 

prevent overfitting. Note that this procedure renders it unnecessary to penalize model 

complexity in the model comparison (see below). If an RL mechanism can account for shift-

readiness learning, as in other domains of cognitive control (Chiu et al., 2017; Jiang et al., 
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2015; Waskom, Frank, et al., 2017) participants’ RTs should be longest on trials in which 

their shift expectations are violated, regardless of whether that violation is an unexpected 

shift or hold cue. Thus, for each participant, we exhaustively searched through a grid of 

possible α and b parameters, ranging from α = 0.01 to α = 0.99 and b = 0.00 to b = 1.00 in 

increments of 0.01, to select the one that would best minimize the sum of squared error 

when predicting RTs. For models 4, 5 and 6, this search was done for all possible 

combinations of αt and αc. We excluded all trials in which the participant failed to make an 

accurate response, trials immediately following an inaccurate response, and trials with an 

outlier RT according to a non-recursive procedure (see below; Van Selst & Jolicoeur, 1994) 

when fitting the model. For each combination of free parameters, we ran a general linear 

model to predict trial-by-trial response times with regressors that coded for the unsigned PE, 

block type (25% shift, 50% shift, 75% shift), and cue outcome (shift attention or hold 

attention). Importantly, unsigned PE can be conceptualized as the degree to which a 

participant’s shift prediction differed from the trial outcome, regardless of whether 

participants were cued to shift or hold attention. For Models 4–6, two separate regressors 

coded context-independent and context-based unsigned prediction errors, due to the 

assumptions that shift-readiness was separately predicted by the two learning processes.

For each participant and for each model, we computed the mean squared error as a measure 

of model performance. Finally, we conducted a Bayesian model comparison using SPM12 

(revision number 7219) (Stephan, Penny, Daunizeau, Moran, & Friston, 2009) to determine 

the model that best accounted for the behavioral data. Model evidence was computed for 

each model and each participant according to: evidencems = −ns * ln(MSEms), for each 

model, m, and each subject, s, where n denotes the total number of trials included for the 

given subject and MSE is the mean of the squared errors across the folds of the cross-

validation procedure. The winning model was then run without cross validation to determine 

the best-fit parameters across the entire dataset for each participant.

fMRI Data Acquisition and Analysis.

All images were acquired with a GE MR750 3T scanner using an 8-channel head coil. We 

first acquired an anatomical T1-weighted Spoiled Gradient Echo (SPGR) acquisition in 116 

1-mm-thick axial slices (TR = 8 ms, TE = 3 ms, FoV = 256 × 256 mm, voxel size = 1 × 1 × 

1 mm). All functional images were acquired with a T2*-weighted gradient-echo EPI 

sequence in 40 interleaved slices (TR = 2000 ms, TE = 25 ms, flip angle = 90°, FoV = 192 × 

192 mm, voxel size = 3 × 3 × 3 mm). We acquired a total of 278 volumes for each run of the 

attention task and a total of 176 volumes for each run of the mapping task. NIFTI images 

were created from dicoms using dcm2niix (version 1.0.20190410).

Preprocessing and analysis of the fMRI data was carried out in FSL (version 6.0.1) with the 

exception of the encoding model analysis, which used custom code written in Matlab. First, 

the skull was removed from the structural scans using fsl_anat. The first 4 functional 

volumes acquired from each run were excluded to allow the magnetization to reach steady 

state. The functional images were then corrected for slice acquisition timing, corrected for 

motion, coregistered to each participant’s structural scan, smoothed with a Gaussian kernel 

of 5 mm FWHM (for all analyses other than the encoding model), intensity scaled, and after 
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running each GLM, resampled to an isotropic resolution of 2mm3 (again, only for analyses 

other than the encoding model). All data used for the encoding model analysis were 

preprocessed without spatial smoothing (other than that introduced during normalization 

into MNI space) to maximize our potential to reconstruct spatial representations. Each 

structural scan was brought into MNI space using nonlinear warping in FSL’s FNIRT with a 

warp resolution of 10 mm. All functional data were subjected to a high pass filter with a 

cutoff of 100 s to remove low frequency changes in signal. Finally, all data for the encoding 

model were brought into MNI space with spline interpolation using the warp field generated 

by the structural scan, resampled to an isotropic resolution of 3mm3 to preserve the 

dimensionality of the original dataset, and were subsequently converted to z-scores 

according to the mean and standard deviation of each run.

In an initial general linear model (GLM), we modeled each trial as a function of cue type 

(shift vs. hold) and probability context (25% shift, 50% shift, 75% shift) using FSL’s FEAT. 

The first level of analysis for this and all subsequent GLMs modeled each run for each 

participant independently by convolving a period of 2.25 seconds (the length of the cue plus 

response period) beginning at the time of each cue onset with a double-gamma 

hemodynamic response function (hrf). Specifically, we included regressors for accurate, 

non-outlier, response trials in each of the following conditions: shift trials in 25% shift 

contexts, shift trials in 50% contexts, shift trials in 75% contexts, hold trials in 25% shift 

context, hold trials in 50% contexts, and hold trials in 75% shift contexts. Finally, we 

modeled trials in which participants either failed to respond, made an incorrect response, or 

produced an outlier RT (see below; Van Selst & Jolicoeur, 1994) in a single regressor, as 

well as the 6 motion parameters from preprocessing, as regressors of non-interest.

In order to detect regions of the brain that code moment-by-moment PE signals, we ran two 

additional GLMs. One GLM was designed to identify regions that covaried with unsigned 

shift PE. Unsigned PE reflects the magnitude of the discrepancy between a participant’s 

shift prediction at any moment, and the outcome that they experienced and thus does not 

differentiate between trials in which participants shifted or held attention. Two regressors 

modeled shift and hold trials for which the participant made an accurate, non-outlier, 

response. A third regressor included all trials in which an accurate, non-outlier, response was 

made and was parametrically modulated according to the magnitude of trial-by-trial 

demeaned unsigned shift PE (see RL model description above). As in the previous GLM, we 

also included a regressor for trials in which participants failed to respond, made an incorrect 

response, or produced an outlier RT, as well as regressors for the 6 subject motion 

parameters. A final GLM, which tested signed PE, was identical to the one above, except 

instead of including a single parametrically-modulated regressor, we included two signed PE 

regressors in order to examine the difference in PE signals between shift and hold trials. The 

first coded demeaned signed PE for shift attention trials and the second coded demeaned 

signed PE for hold attention trials. Unlike the analysis of unsigned PE, which does not 

specify the outcome (shift vs. hold) of the trial, by also testing signed PE, we were able to 

determine whether violations of shift predictions for shift trials and for hold trials produced 

differing patterns of brain activity.
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All contrasts were initially carried out at the first level of analysis. For the GLM that did not 

include parametric PE regressors, we first sought to define brain regions that were associated 

with shifting covert spatial attention. Next, we contrasted activity in the 75% shift context 

with that in the 25% shift contrast to determine whether there were context-wide 

modulations of activity according to shift probabilities. Finally, we compared the shift cost 

in the 75% shift context with that in the 25% shift context (i.e., the interaction of context by 

cue type) to determine whether the difference in activity between shift and hold attention 

trials differed as a function of context-defined shift likelihood. To better illustrate the results 

of the interaction, we independently defined a medial superior parietal lobule (mSPL) / 

posterior parietal cortex (PPC) ROI for each participant using a leave-one-subject-out 

(LOSO) approach so that we could extract percent signal change from each condition. The 

LOSO approach required that we run the group analysis a total of 23 times with each 

subject’s ROI defined as the resulting significant cluster according to FSL’s FLAME stage 1 

when that subject was excluded from the model. To convert the parameter estimates to units 

of percent signal change, we used a scale factor of 45.44, which was computed based on the 

estimated hrf baseline-to-maximum range of an isolated 2.25 second event in a dummy 

model (see http://mumford.fmripower.org/perchange_guide.pdf).

In the second and third GLMs, we sought to define which brain areas were associated with 

ongoing changes in unsigned and signed PE, respectively. In order to compute PE, we 

subtracted the subject-specific model-derived shift prediction for each trial from the model 

outcome (1= shift trial, 0 = hold trial). As a measure of general violation of expectations, we 

first defined unsigned PE as the absolute value of the PE scores. To identify the brain regions 

that were associated with unsigned PE, we contrasted the parameter estimate from the 

unsigned PE regressor vs. the implicit baseline of the model. Finally, to identify regions 

associated with PE for shift and hold trials separately, we contrasted shift trial signed PE and 

hold trial signed PE vs. the implicit baseline independently. Unlike unsigned PE, which 

represents a general error in prediction, signed PE carries information regarding whether the 

participant’s PE is due to falsely expecting to shift or to hold attention. Given our method of 

computing PEs, shift trial PE was always positive while hold trial PE was always negative. 

Thus our contrasts for the third GLM were hold trial PE < baseline and shift trial PE > 

baseline. Finally, we contrasted shift and hold trial signed PE to determine whether there 

was a significant difference in the regions recruited for each type of attentional flexibility 

updating.

In all cases, first-level parameter estimates were brought into MNI space by applying the 

warp parameters from the structural registration and resampling to an isotropic resolution of 

2mm3. A fixed effects second-level analysis was then run to compute parameter estimates 

for each participant. Finally, the parameter estimates from the second-level analyses were 

subjected to a third-level model that spanned all participants using FSL’s FLAME stages 1 

and 2.

Finally, we tested whether our RL model-based analysis accounted for the fMRI data better 

than a simpler model that only encoded whether or not a cue type was presented in a 

statistically improbable context. In this model, we replaced the unsigned PE regressor from 

GLM 2 with a regressor that was parametrically modulated in a binary fashion according to 
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the likelihood of a cue in a particular context. Cues that were presented in statistically 

unlikely contexts (e.g. a shift cue in a 25% shift context) were assigned a weighting of 1, 

while all other cues received a weighting of 0. This meant that all cues within the 50% shift 

context received a parametric weighting of 0. The residual time series from this simplified 

model, as well as those from the primary unsigned PE model, were brought into MNI space 

with spline interpolation. We averaged the residuals time-point by time-point within the 

mSPL / PPC LOSO ROIs described above. We then squared and summed these residual 

errors across time and across runs for each participant to compute the residual sum of 

squared error for each participant and model. We used the Bayesian Information Criterion to 

evaluate whether the RL model better accounted for the data than the simplified model, 

summing BICs across participants to get a group value per model.

Spatial Encoding Model.—In order to reconstruct spatial maps of attentional priority in 

visual cortex both in the time window preceding cue onset and in the window following cue 

onset, we trained an encoding model of visual spatial attention. Given the evidence in recent 

studies that spatial representations may be reconstructed from brain activity within visual 

cortex (e.g. Sprague, Ester, & Serences, 2014; Sprague, Saproo, & Serences, 2015; Sprague 

& Serences, 2013), we restricted the fMRI data to an ROI that encompassed bilateral V1, 

V2, V3, and human V4 (hV4) as defined according to a recent probabilistic atlas of visual 

cortical regions (Wang, Mruczek, Arcaro, & Kastner, 2015). Previous research has identified 

robust modulations of activity throughout extrastriate visual cortex in response to covert 

shifts of visual attention, making this an ideal site to probe for changes in the strength of 

attentional selection (e.g. Chiu & Yantis, 2009). To determine the final ROI, we computed 

the overlap of these atlas-defined regions, resampled to a 3mm isotropic voxel size, and a 

group mask, thereby removing any voxels for which there were missing data. As in earlier 

studies, (see Sprague et al., 2016), we defined a set of 37 identical spatial filters that were 

arranged in a hexagonal grid that was centered in the visual display. The spacing and 

FWHM of the spatial filters was set to equal a recent study on visual attention that used a 

similar model training task (Sprague, Itthipuripat, Vo, & Serences, 2018). The center of each 

filter was spaced 1.59 degrees apart such that they subtended an area both outside as well as 

inside the stimulus locations in the attention task. Each filter was a Gaussian-like function 

that was defined with a FWHM of 1.75° according to the equation: 

f r = 0.5 + 0.5cos πr
s

7
for r < s; 0 otherwise, where r denotes the distance from each 

filter’s center and s reflects the distance from each filter’s center at which the amplitude of 

the filter reaches 0. Given the FWHM, s was set to 4.404° in order to make each filter a 

single round increase in amplitude at one location of the hexagonal grid.

For each of the non-target trials of the mapping task, we generated a binary stimulus mask 

by entering a 1 at each pixel location where the checkerboard stimulus was present and a 0 

at all other pixels. This mask, and consequently the resulting reconstructions, spanned the 

total stimulated region of the visual field (11.8° by 11.8°) at a resolution of 119 by 119 

pixels. Next we computed the overlap of each stimulus mask onto each channel and 

normalized these channel scores so that the maximum response was set to 1. To train the 

encoding model, we identified the volume recorded closest in time following the onset of the 

checkerboard stimulus and then averaged the volumes 6 seconds and 8 seconds after this 

Sali et al. Page 11

J Cogn Neurosci. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



initial volume (capturing the peak BOLD response) for each trial. Each voxel’s activity was 

then modelled as a weighted sum of the 37 spatial filters using ordinary least-squares linear 

regression according to B = CW, where B was the BOLD activity average from the model 

training task (n trials × m voxels), C was the normalized (ranging from 0 to 1) modeled 

response of each spatial filter for each trial (n trials × k channels), and W was the weight 

matrix that mapped changes in brain activity to changes in the channel responses (k channels 

× m voxels).

In order to reconstruct spatial representations, we used the Moore-Penrose pseudoinverse of 

the estimated weight matrix from the training data. Unlike the univariate process of 

determining the weight matrix, the pseudoinverse is multivariate and is based on all 

encoding models across all voxels within the ROI. As in the model training, we selected two 

volumes to average for each trial of the attentional flexibility task in which participants 

made an accurate response. We again excluded all trials that were flagged as RT outliers 

(Van Selst & Jolicoeur, 1994). For analyses looking at pretrial spatial selection, these 

volumes were acquired 2 seconds prior and at the time of cue onset. For early post-cue 

selection, we used volumes acquired 2 and 4 seconds after the onset of the attention cue. 

Finally, for analyses looking at late post-cue selection, we used volumes acquired 6 and 8 

seconds after the onset of the attention cue. Importantly, the inverted weight matrix allows 

for data in voxel space to be mapped back into channel space. For any volume entered into 

the analysis from the attentional flexibility task, a spatial reconstruction was generated by 

first computing the level of activity in each spatial channel according to the recorded fMRI 

signal and inverted weights. Finally, by multiplying the channel activations by the basis set 

of functions and summing the output, we generated trial-by-trial spatial reconstructions (see 

Sprague et al., 2016). As a check of the accuracy of the IEM at the group level, we 

conducted a leave-one-run out procedure for each participant in which we iteratively trained 

the model on trials from all but one run, and reconstructed target locations for the remaining 

run, accounting for the trial-specific jittering of each presentation by shifting the basis 

functions (see task description).

Since stimuli could appear in 6 different locations falling along a circle in the attention task, 

we spatially rotated the basis set of functions for each trial such that the attended location 

(with respect to the period just before cue onset) always corresponded to the left location 

along the horizontal meridian and the unattended location always corresponded to the right 

location. We then averaged across trials within each context at the individual subject level to 

compute the mean reconstruction response.

In order to quantify the degree to which learned changes in attentional flexibility modulated 

spatial representations in the brain, we defined a 1.4° × 1.4° square that was centered at each 

target location along the horizontal meridian. After averaging the individual reconstructions 

of each participant for each condition, we averaged all values within each box to compute a 

single amplitude response that reflected the strength of attentional selection at each stimulus 

location for each participant. These averages were then entered into repeated measures 

ANOVAs to probe the influence of (a) attention (attended vs. unattended), (b) cue type (shift 

attention vs. hold attention), and (c) context manipulation (25% shift, 50% shift, 75% shift) 

on the magnitude of spatial selection. Critically, classification as attended or unattended 
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depended on both the temporal epoch as well as the trial type. For pretrial analyses, attended 

refers to the left square since the reconstructions were rotated such that the cue always 

appeared in the left location along the horizontal meridian. However, for early and late post-

cue analyses, attended refers to the right square on shift trials and the left square on hold 

trials, accounting for the shift of attention (or lack thereof) that occurred over the course of 

the trial.

Experimental Design and Statistical Analysis

The experiment conformed to a within-subjects 3 × 2 factorial design. Accordingly, we 

analyzed the behavioral response time and accuracy data with separate two-way repeated 

measures analysis of variance (ANOVA) with factors of probability context (low shift 

probability, equal shift and hold probabilities, and high shift probability) and cue type (shift 

attention and hold attention). Only trials in which participants made an accurate response 

were included in the RT analysis. All behavioral and IEM analyses were corrected for 

violations of the sphericity assumption with the Geisser-Greenhouse correction when 

Mauchly’s test was statistically significant.

Given our cue type probability manipulation, some cells of our design had far more data 

points than others. In order to prevent the possibility that any outlier removal procedure 

would disproportionately remove RTs from some conditions, we employed a non-recursive 

trimming method with a moving standard deviation cutoff criterion that is designed to match 

the level of data that would be trimmed with a sample of 100 RT measures per cell at a level 

of 2.5 SD above and below the mean of each condition (Van Selst & Jolicoeur, 1994). This 

procedure resulted in the loss of less than 3 percent of all trials with an accurate response. 

Preprocessing and GLM analyses of the fMRI data were carried out in FSL (version 6.0.1). 

The results of all contrasts at the group level of analysis were thresholded at a voxelwise 

level of Z=3.1, p < .001 and then cluster corrected to maintain a family-wise error rate 

of .05, thus robustly guarding against false-positive findings (Eklund, Nichols, & Knutsson, 

2016). The IEM analyses used custom code running in Matlab (R2018a).

All behavioral and IEM data, as well as the code for running all behavioral and IEM 

analyses and for generating the corresponding figures, is available at https://osf.io/8zk6n/. 

The contrast images from the GLM analyses are available for download from https://

neurovault.org/collections/3872/. All raw data are available upon request.

Results

Behavioral Results

We first tested whether attentional flexibility (or shift-readiness) varied across the three 

different shift-probability contexts. There was a significant main effect of cue type, F(1,22) 

= 9.60, p = .005, ηp
2 = .304, as shift trials were associated with slower responses than hold 

trials. However, the main effect of context was not statistically significant, F(2,44) = 1.04, 

p= .360, ηp
2 = .045. Critically, there was a significant interaction of context and cue, F(2,44) 

= 27.18, p < .001, ηp
2 = .553: as predicted, the behavioral cost in RT associated with shifting 

(versus holding) attention decreased as shift likelihoods increased (see Figure 2A).
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We next analyzed behavioral accuracies. While the main effects of cue type, F(1, 22) = 0.36, 

p = .553, ηp
2 = .016, and context, F(2, 44) = 1.54, p = .226, ηp

2 = .065 failed to reach 

significance, the interaction approached significance, F(2, 44) = 3.07, p = .057, ηp
2 = .122. 

As in the RT data, the behavioral cost in accuracy associated with shifting as opposed to 

holding attention decreased as shift likelihood increased, thus ruling out the possibility of a 

speed-accuracy tradeoff accounting for the RT results (see Figure 2B).

One participant correctly stated the probability contingencies between location and shift 

likelihood during the open-ended question of the debriefing questionnaire. An additional 

participant wrote that they believed there was a relationship between location and shift 

likelihood, but was unable to specify the nature of that relationship. The remaining 

participants reported that they did not notice a relationship between location and shift 

likelihood. One participant failed to follow instructions on the subsequent forced choice 

judgment. Of the remaining 22 participants, 6 correctly matched the probability with the 

correct location for all three contexts. Thus, there was very little explicit knowledge of the 

task contingencies.

Model Training Task Performance

Participants indicated the detection of the occurrence of infrequent stimulus dimming by 

pressing a button. Overall, accuracies for target detection ranged from 75% to 100% (M = 

90.68, SD = 8.10). Furthermore, occurrences of false alarms were low, ranging from 0 to 14 

over the course of the experiment (M = 2.00, SD = 3.02). Importantly, the high accuracy on 

this demanding target detection task suggests that the participants were attending to each 

training task stimulus in accordance with the task instructions.

Reinforcement Learning Model

In order to probe the neural mechanisms associated with attentional flexibility learning, we 

fit the behavioral RT data with several RL models (see Method). In particular, the model 

fitting was performing using cross-validation to control for overfitting with extra free 

parameters. Furthermore, to select the RL model variant that best explained the behavioral 

data, we conducted a Bayesian model comparison of our 6 models. Model 6, which 

accounted for both context-independent and context-dependent learning as well as complete 

or absent resetting of context-independent learning with context and run changes, had the 

highest protected exceedance probability (0.617; see Figure 3A). That is, when considering 

the omnibus risk that all models had equal exceedance probability, Model 6, out of all 6 

candidate models, had a probability of 0.617 to be the model best explaining the behavioral 

data. Overall, the omnibus risk, which was the probability that the exceedance probability 

was equal across all 6 candidate models, was .023, indicating a low chance of equal 

performance among candidate models. Moreover, the median R-squared of Model 6 was 

0.12, when testing without cross-validation (see below), with a range of 0.05–0.29 across 

participants. Thus, our results suggest that, at the group level, attentional flexibility learning 

reflects the combination of both trial-by-trial adjustments in shift readiness that are 

independent of contexts and the tracking of shift expectations tied to particular learned 

contexts.
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After selecting the winning model, we fit the three free parameters (the learning rate for 

context-independent trial-by-trial learning: αt, the learning rate for context-dependent 

learning: αc, and the reset factor: b, which could be 1 or 0 to reflect an absent or complete 

resetting of shift predictions, respectively). This fitting procedure determined optimal 

context-independent and context-dependent learning rates for each participant, which both 

indicate the degree to which that participant weighted the most recent (vs. more remote) 

previous trials when updating their shift predictions. As illustrated in Figures 3B–C, 

participants’ learning rates ranged from 0.01 to 0.99 for both context-independent (M = 

0.32, SD = 0.32) and context-dependent (M = 0.45, SD = 0.35) learning. Best-fit reset 

parameters for each participant are plotted in Figure 3D.

Given that the winning model binarized the prediction reset factor across the transition of 

contexts and runs, we tested whether participants with a reset parameter of 1 (n=11) 

demonstrated differential patterns in RT or accuracy compared to those with a reset 

parameter of 0 (n=12). Importantly, when testing RTs with an added between-subjects factor 

according to the reset factor, there remained a significant interaction of context by cue, 

F(2,42) = 27.52, Mauchly’s W = 0.71, Geisser-Greenhouse corrected p < .001, ηp
2 = .567. 

The main effect of reset factor, as well as all interactions involving the reset factor, failed to 

reach statistical significance, ps > .309. An identical analysis of behavioral accuracies again 

yielded an interaction between context and cue that approached statistical significance, 

F(2,42) = 3.03, p = .059, ηp
2 = .126. As in the RT analysis, the main effect of reset factor as 

well as all interactions involving reset factor were nonsignificant, ps > .134. Furthermore, 

there were no significant differences in context-independent, t(21) = 0.17, p = .864, or 

context-dependent, t(21) = 0.90, p = .378, learning rates according to the reset parameter 

(see Figure 3E–F). Finally, there was a trend of a positive relationship between context-

independent and context-dependent learning rates, r(21) = .41, p = .051 (see Figure 3G).

We computed trial-by-trial unsigned and signed prediction errors (PEs), defined as the 

difference between the model-based shift prediction and the actual outcome of that trial, 

according to each participant’s best-fit learning rates and reset factor. The winning model 

incorporated two learners/predictions, which have to be integrated to guide behavior. In our 

modeling of the fMRI data, we therefore searched for brain regions that coded for the 

integrated context-independent and context-dependent predictions (which also mitigates 

against the possibility of high collinearity of PEs resulting from the two forms of 

prediction). To this end, we integrated the context-independent and context-dependent 

predictions with a weighted sum according to the relative contribution of each factor in 

accounting for each participant’s behavioral RTs. Integrated shift predictions were thus 

computed according to: Pint =
Bt * Pt + Bc * Pc

Bt + Bc
, where Bt is the regression coefficient for 

context-independent predictions, Bc is the regression coefficient for context-dependent 

predictions, Pt is the trial-by-trial context-independent prediction and Pc is the trial-by-trial 

context-dependent prediction. If either Bt or Bc was negative for a given participant (n=19), 

we set that coefficient to 0. No participants had negative coefficients for both Bt and Bc. 

After computing trial-by-trial integrated shift predictions for each participant, we computed 

unsigned and signed PE. To illustrate the relationship between unsigned PEs derived from 
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Model 6 and trial-by-trial RTs, we divided the RT data for each participant into quintiles 

according to the corresponding strength of unsigned PE (see Figure 3H).

Imaging Data: Conventional Univariate Analyses

First, we assessed the main effects and interaction of the shift and context factors. To probe 

the main effect of shifting, we contrasted brain activity for trials in which participants shifted 

spatial attention compared to those in which they held attention at a single location. As in 

previous studies (e.g. Chiu & Yantis, 2009; Sali, Courtney, et al., 2016; Yantis et al., 2002), 

shifting attention was associated with an increase of brain activity, relative to when holding 

attention, within mSPL and surrounding bilateral PPC as well as the bilateral frontal eye 

fields (FEF; see Figure 4A; coordinates are displayed in Table 2). Conversely, there was 

greater activity within the ventromedial prefrontal cortex (vmPFC) for attention hold trials 

than for attention shift trials (see Figure 4B).

Next, we tested for a main effect of shift-probability context (collapsed across shift and hold 

trials) by contrasting 25% shift with 75% shift contexts, which did not yield any clusters that 

passed correction for multiple comparisons. We next ran the shift × context interaction 

contrast to detect brain regions where the effect of shifting varied as a function of shift-

likelihood. We observed significantly greater activity within a cluster spanning mSPL / 

bilateral PPC / bilateral intraparietal sulcus (IPS) / left angular gyrus, as well as clusters in 

right angular gyrus, left superior / middle frontal gyrus, left lateral occipital cortex (LOC), 

left middle frontal/ inferior frontal/ precentral gyrus, left anterior frontal cortex, and right 

middle temporal gyrus for cues appearing in a context for which that cue was rare (e.g. a 

shift cue in the 25% shift context) than for cues appearing in a context for which that cue 

was common (e.g. a shift cue in the 75% shift context; see Figure 4C). Thus, the neural shift 

cost (shift > hold) in these regions was greatest in the condition where shifts were the least 

likely. Interestingly, there was overlap of the significant clusters identified in the shift > hold 

contrast and in the shift × context interaction. No clusters passed correction for multiple 

comparisons when testing the opposite relationship (i.e. contextually common cues > 

contextually uncommon cues).

To illustrate the source of this significant interaction, we extracted the average percent signal 

change across all voxels in the mSPL / PPC. We used a leave one subject out approach to 

define a mSPL / PPC region of interest for each participant using data from all but the left-

out participant iteratively. By running FLAME 1 and selecting the cluster falling in the 

mSPL / PPC for each iteration, we independently defined a mSPL/ PPC ROI for the left-out 

participant. Averaging the parameter estimates from each participant’s ROI yielded a main 

effect of cue type that approached significance, F(1,22) = 4.22, p = .052, ηp
2 = .161, as well 

as a significant interaction of cue by context, F(2,44) = 4.95, p = .012, ηp
2 = .184. The main 

effect of context failed to reach statistical significance, F(2,44) = 0.31, p = .736, ηp
2 = .014 

(see Figure 4D).

Imaging Data: Model-based Analyses.

Next, we tested which brain regions may be directly responsible for learning shift-readiness 

by searching for regions whose activity scaled with the need to update shift-readiness 
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predictions, that is, with the trial-by-trial variation in the magnitude of unsigned shift PE. 

Critically, unsigned PE reflects the violation of shift expectations without regard to whether 

the participant had expected to shift or to hold attention. Unsigned shift PE scaled positively 

with activity in a set of regions spanning primarily the dorsal and ventral attention networks 

(see Figure 5A; coordinates are displayed in Table 3). In particular, we identified large 

clusters in PPC spanning the mSPL as well as bilateral IPS. Additionally, there were 

significant clusters in the left superior, middle, and inferior frontal gyri, right angular gyrus, 

the posterior cingulate cortex (PCC), and right LOC. No clusters passed the correction for 

multiple comparisons when testing for activity that scaled negatively with unsigned PE. We 

also tested whether shifting attention was still associated with an increase of activity within 

the mSPL/PPC when including unsigned PE as a regressor in the GLM. A contrast of shift 

trials > hold trials revealed significant clusters of activity within the mSPL, left FEF, and left 

superior LOC (see Figure 5B).

In addition to those regions where activity scaled with unsigned PE, it is possible that some 

brain areas only vary in response magnitude for violations of expectation for a particular cue 

outcome (hold or shift). Thus, we ran a final GLM with regressors for shift trial and hold 

trial signed PE. Unlike unsigned PE, signed PE accounts for whether a participant’s PE is 

due to incorrectly expecting to shift or to hold attention. Given the design of our model (see 

Method), shift attention trials always had positive signed PE while hold attention trials 

always had negative signed PE. As the magnitude of signed PE for shift trials increased, we 

observed an increase in brain activity in many of the same regions identified in the unsigned 

PE analysis above. In particular, we observed a positive relationship between signed PE for 

shift trials and activity within bilateral IPS, mSPL, left superior, middle, and inferior frontal 

gyri / precentral gyrus, right SPL, bilateral superior LOC, and right temporoparietal junction 

(TPJ; see Figure 5C). Similarly, as the absolute magnitude of signed PE for hold trials 

increased (more negative values), there was a corresponding increase of activity within the 

mSPL (see Figure 5D; coordinates are displayed in Table 3). A direct comparison of activity 

associated with increasing shift trial signed PE and hold trial signed PE yielded no clusters 

that passed correction for multiple comparisons.

Finally, we tested whether our RL model-derived shift predictions accounted for the fMRI 

data better than a simpler model in which trials were modelled according to whether they 

were statistically improbable or likely given the current context. This simplified model was 

identical to the unsigned PE model described above, but instead of using unsigned PE as the 

parametric modulator, we assigned every trial in which the cue was statistically improbable 

(e.g. a shift cue in a 25% shift context or a hold cue in a 75% shift context) a 1 and every 

other trial a 0. We then computed the residual sum of squared error from each model in a 

mSPL / PPC ROI and compared the model fits using Bayesian Information Criterion (BIC). 

At the group level, the RL model resulted in lower BIC than the simplified model (difference 

in BICs = −7.331, p = .025), indicating that the former model better accounted for the 

variance in the fMRI data in the ROI.

In summary, the above results document that participants adjusted their attentional flexibility 

across the different shift probability contexts and that a RL model accounted for individual 

differences in learning. Moreover, a model-based fMRI analysis indicated that several 
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regions, largely clustered throughout the fronto-parietal network and occipital regions, coded 

moment-by-moment violations of shift predictions, serving to update expectations of 

contextual shift-likelihood. We next turned to an IEM analysis to adjudicate between 

different ways in which the behavioral effects could relate to attentional prioritization of 

spatial locations in visual cortex.

Spatial Encoding Model

From the above results alone, it is unclear whether varying shift-readiness carried any 

preparatory consequences on attentional selection. More specifically, it is possible that 

attentional selection broadens to include the to-be-attended location prior to the onset of a 

shift cue in cases when the participant expects to shift attention. Alternatively, predicted 

shifts may not change pre-cue attentional selection but instead, the behavioral effects 

reported here might stem from changes in the execution of the shift of attention itself (i.e., 

an accelerated shift in high shift-likelihood context). Furthermore, although we interpreted 

the above results as an indicator of a change in the readiness to shift attention according to 

contextual probabilities, it is possible that our task was not demanding enough to require an 

actual shift of attention. If participants were able to attend to both RSVP streams 

simultaneously, our results would not speak to the ways in which learning influences 

attentional control, but rather would more specifically apply to the sub-selection of stimuli 

within a broader focus of attention.

It is difficult (perhaps impossible) to adjudicate between these different mechanistic 

accounts of our findings based on behavioral data alone. Therefore, we used an inverted 

encoding model (IEM) analysis of data from regions V1, V2, V3, and hV4 (see Method for 

ROI definition; Figure 6A–B) to reconstruct the spatial deployment of attention across the 

three probability contexts. To start, we trained the encoding model on an independent set of 

data that was collected while participants viewed flickering checkerboard stimuli at locations 

throughout a central portion of the visual field that encompassed the stimulus locations from 

the attentional flexibility task. As a check of the accuracy of training, we iteratively trained 

the encoding model on the visual cortex data for each participant on all but one run of data 

and tested the model on the left out dataset. By spatially shifting the resulting 

reconstructions to undo the spatial jittering that was present during training (see Materials 

Methods), we were able to average across trials to assess the degree to which we could 

accurately reconstruct stimulus selection at each of the 37 grid locations. As illustrated in 

Figure 6C, we were able to accurately reconstruct the stimulus location based on brain 

activity. Moreover, when we applied this trained encoding model to the independent data 

from the attention shifting task, we were again able to successfully reconstruct the focus of 

attention. Figure 6D shows reconstructions of attention for hold attention trials only. Note 

that we have not spatially rotated these reconstructions, as we did in the main analysis, so 

that the original stimulus locations are apparent.

Next, we used the IEM to reconstruct the spatial deployment of attention throughout the 

visual field during the pretrial epoch (an average of volumes acquired 2 seconds prior to cue 

onset and at the time of cue onset) of the attentional flexibility task. If shift-readiness 

influences the preparatory allocation of attention prior to the onset of the cue, we would 
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expect to see differences in selection across the three probability contexts. Importantly, we 

spatially rotated all reconstructions so that the left location along the horizontal meridian 

was always the location where the cue would appear (and thus where attention should be 

directed prior to cue onset) and the right location along the horizontal meridian was the 

ignored RSVP stream at the time of cue onset (see Figure 6D). As illustrated in Figure 6E, 

pretrial attentional selection was confined to the to-be-attended location and did not differ 

according to the contextual probability manipulation. To quantify this result, we defined 1.4° 

× 1.4° squares centered at the locations of the two RSVP streams and averaged the 

amplitude of the response across all pixels in each square. A 2 × 3 repeated measures 

ANOVA with factors of attention (attended vs. unattended) and probability context (25% 

shift, 50% shift, 75% shift) yielded a significant main effect of attention, F(1,21) = 50.40, p 
< .001, ηp

2 = .706. However, the main effect of probability context, F(2,42) = 2.15, p = .129, 

ηp
2 = .093, failed to reach statistical significance. The assumption of sphericity was violated 

for the interaction (Mauchly’s W = .674, p = .019) and we therefore applied the Geisser-

Greenhouse correction. The interaction, F(2,42) = 1.49, p = .240 ηp
2 = .066, failed to reach 

statistical significance. These results suggest that participants primarily restricted attentional 

selection to the target location where they anticipated the cue onset and that the strength of 

this preparatory selection did not vary according to the likelihood of an upcoming shift.

It is possible that trial-by-trial variation of shift expectations might covary with the strength 

of attentional selection. The RL model-derived shift predictions allowed us to pursue a data-

driven approach to infer moment-by-moment changes in behavioral flexibility. We therefore 

took the pretrial reconstructions and, for each participant, ran a linear regression to predict 

the strength of selection at the attended location minus the strength of selection at the 

unatteded location according to the trial-by-trial integrated shift predictions produced by the 

RL model. The regression coefficients (M = −.02, SD = .10) did not significantly differ from 

0, t(21) = −1.14, p = .266. Thus, it appears that model-derived measures of trial-by-trial shift 

readiness were not associated with changes in the magnitude of attentional selection at the 

to-be-attended location during the pretrial window.

Finally, we examined evoked activity for shift and hold trials separately, by reconstructing 

the deployment of spatial attention for volumes acquired 2–8 seconds after the onset of the 

cue to determine whether participants shifted attention in accordance to the cues and 

whether post-cue selection varied according to the context probabilities. We divided this 

analysis according to whether data were taken in an early post cue temporal window (2 

seconds and 4 seconds post cue) or in a late post cue temporal window (6 seconds and 8 

seconds post cue). As in the above analysis, we quantified these reconstructions by 

averaging the amplitudes of pixels falling at the two target locations and running a 2 × 3 × 2 

ANOVA with factors of attention (attended vs. unattended), probability context (25% shift, 

50% shift, 75% shift), and cue type (shift trials vs. hold trials). Importantly, unlike the 

pretrial analysis, the classification of “attended” and “unattended” varied according to the 

cue type. Given the alignment of all reconstructions described above, the right target square 

in Figure 6 marked the attended location for shift attention trials, while the left target square 

continued to mark the attended location for hold attention trials. For the early postcue 

temporal window, there was a significant cue type by attention interaction, F(1,21) = 82.21, 

p < .001, ηp
2 = .797, such that the reconstruction strength was greatest at the unattended 
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location for shift trials, but greatest at the attended location for hold trials (see Figure 7). 

This pattern was likely due to sluggish nature of the hemodynamic response such that there 

was not yet a detectable shift of attention to the cued location. No other main effects or 

interactions reached statistical significance, ps > .056.

More interestingly, we next examined the volumes collected 6–8 seconds after the cue onset. 

These volumes indicated that participants shifted and held attention according to the cues, 

preferentially selecting one stimulus over the other instead of attending to both stimuli in the 

post-cue period (see Figure 8). There was a significant main effect of attention, F(1,21) = 

38.27, p < .001, ηp
2 = .646, such that selection amplitudes were generally larger in the 

attended visual field than in the unattended field. Furthermore, there was a significant cue 

type by attention interaction, F(1,21) = 24.71, p < .001 ηp
2 = .541, as the difference in 

amplitude between attended and unattended locations was greater for hold trials than it was 

for shift trials. Finally, the three-way interaction reached significance, F(2,42) = 3.47, p 
= .040, ηp

2 = .142, such that the difference between attended and unattended locations was 

greatest for unexpected cue outcomes. The remaining main effects and interactions of the 

three-way ANOVA failed to reach statistical significance, ps > .118.

Discussion

In the current study, we examined the neural bases of attentional flexibility learning. As in 

earlier behavioral studies (Sali et al., 2015), participants adjusted their readiness to execute a 

covert shift of spatial attention according to context-based task regularities such that shift 

costs were the smallest when shifts were most likely and the largest when shifts were least 

likely. By fitting the behavioral RT data with a reinforcement learning model, we computed 

trial-by-trial measures of unsigned and signed shift PE, quantifying the degree to which a 

participant’s shift expectations were violated on each trial. Entering unsigned shift PE as a 

regressor in a model of BOLD activity revealed that components of the dorsal and ventral 

attentional control networks, such as the mSPL, IPS, inferior frontal cortex, PCC, and right 

angular gyrus were implicated in coding moment-by-moment violations of shift expectations 

such that activity increased with the magnitude of unsigned shift PE. Interestingly, the PCC 

has previously been implicated in ongoing fluctuations in attentional flexibility such that 

activity is highest when participants are in an attentionally stable state (Sali et al., 2016). In 

the current study, the more unexpected a cue was, the larger the response we observed within 

the PCC. This PCC activity may therefore be instrumental in adjusting an individual’s 

flexibility as they adapt to trial outcomes. Separate analysis of signed PE for shift trials 

revealed a similar relationship in many of the same brain regions, suggesting that the 

unsigned PE results may be driven by violations of expectations for shift trials. We also 

observed an increase of activity within the mSPL as signed PE for hold attention trials 

increased. Importantly, there were no clusters that passed the correction for multiple 

comparisons when directly contrasting regions associated with shift trial signed PE and hold 

trial signed PE, suggesting that similar neural mechanisms may compute violations of 

attentional control expectations in both cases. Taken together, our results show, for the first 

time, that the neural mechanisms that have been widely implicated in executing covert shifts 

of attention (Corbetta, Patel, & Shulman, 2008; Corbetta & Shulman, 2002; Yantis et al., 

2002) as well as the PCC, which has recently been implicated in fluctuations of attentional 
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control states (e.g. Esterman, Noonan, Rosenberg & DeGutis, 2013; Kucyi, Esterman, Riley, 

& Valera, 2016; Sali et al., 2016) may also play a role in continually adjusting the flexibility 

of the attentional control system by computing the degree to which real outcomes violate 

shift expectations.

An important aspect of cognitive control is the ability to adjust flexibility according to 

learned expectations about the demands of the environment. In addition to learned changes 

in attentional flexibility with respect to shifts of spatial attention (Sali et al., 2015), 

individuals are able to adjust their readiness to switch tasks (Chiu & Egner, 2017; Crump & 

Logan, 2010; Waskom et al., 2017), and resolve stimulus conflict (King, Korb, & Egner, 

2012) in response to the statistical regularities of their task environment. This ability to 

adjust one’s level of flexibility in line with changing demands, known as meta-flexibility, is 

an important component of adaptive behavior that allows an individual to stably maintain a 

particular control set (such as attending to one’s reading material in a noisy room) and yet 

moments later have the ability to rapidly switch task-sets and the deployment of attention as 

behavioral goals and demands change. The current study thus importantly adds to this body 

of work by investigating the neural mechanisms involved in these learned modulations for 

the domain of attentional control.

Our results are consistent with earlier work in the domain of stimulus-driven attentional 

orienting, showing that activity within the right TPJ, the IPS, inferior frontal gyrus, basal 

ganglia, and FEF was larger for unexpected shifts of attention than for expected shifts 

(Shulman et al., 2009). Critically, our experimental design differed from this earlier study in 

that participants executed volitional shifts of attention in response to endogenous cues rather 

than reoriented attention according to the abrupt onset of a salient target. To our knowledge, 

our study is the first to test the neural mechanisms responsible for updating experientially 

learned predictions of goal-oriented attentional orienting. Nevertheless, the finding that 

activity levels in components of the dorsal and ventral attentional control networks vary 

according to attention shift readiness is shared across both studies, suggesting that the 

computations involved in learned adjustments of attentional flexibility for both goal-directed 

and stimulus-driven attentional orienting may rely on at least partially overlapping neural 

mechanisms.

A growing literature has used model-based analysis of behavior and brain activity to study 

cognitive control learning (Chiu et al., 2017; Jiang et al., 2015; Waskom et al., 2017; Jiang, 

et al., 2018). As in the current study, violations of context-based expectations regarding a to-

be-executed task scale with brain activity in frontoparietal control regions (Waskom et al., 

2017). However, the results of the current study diverge from those regarding control 

learning in the domain of conflict resolution. By varying the likelihood that participants 

would receive conflict-inducing stimuli in a Stroop task, Jiang, Beck, Heller, and Egner 

(2015) found that the anterior insula tracks the volatility of control demands, while the 

caudate nucleus signals the prediction of upcoming demand. Relatedly, stimulus-control 

learning prediction errors in the domain of conflict resolution are also coded in the caudate 

nucleus (Chiu et al., 2017). In the present study, investigating learned shifts in spatial 

attention, we did not observe PE based activity within subcortical structures. An interesting 

topic of future study therefore remains the degree to which control learning for conflict 
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resolution and the deployment of attention, both among task sets held in memory and in 

visual cognition, rely on divergent neural mechanisms.

Individual differences in control learning strategies pose an additional important topic for 

future research. In the current study, the model that best accounted for the behavioral data 

included a binary prediction reset parameter such that for some participants, temporal 

integration shift predictions reset to a neutral state with each change of location context or 

start of a new run of trials. For the remaining participants, temporal integration spanned 

across each context and run. Participants likely began our study with differing beliefs 

regarding the task structure that may have influenced their learning strategy. For example, 

some participants may have expected that shift likelihood reset at the beginning of each 

block of trials. Although we found no significant differences in the behavioral learning effect 

or in the context-independent and context-dependent best-fit learning rate parameters 

according to the reset parameter fit, our goal in the current study was not to explore 

individual differences in learning. Rather, our analysis was meant to account for the group’s 

performance as a whole. Critically, this means that the winning model from the Bayesian 

model comparison might not best capture any individual subject’s learning strategies. 

Furthermore, while the winning RL model included context-independent and context-

dependent predictions, for only 4 participants was there a positive association between both 

forms of prediction and trial-by-trial RT. An important topic for future inquiry is thus to 

explore these individual differences in factors such as the weighting of temporal integration 

and context-dependent predictions and the degree to which individuals reset shift predictions 

across changes in context.

An alternative approach to modeling attentional flexibility learning would be to use the 

model-derived shift predictions as a parametric modulator instead of prediction error. Here, 

we focused on prediction error, as these signals are most likely to reflect the learning process 

of interest (e.g. Sutton & Barto, 1998). Moreover, the current IEM analyses allowed us 

probe whether activity within visual regions of the brain varied according to contextual 

predictions. Nonetheless, the degree to which context-based shift predictions influence 

activity outside of visual cortex remains an interesting question for future inquiry.

The current study used an IEM model to reconstruct maps of spatial attentional selection 

(Sprague et al., 2014; Sprague et al., 2016; Sprague et al., 2015; Sprague & Serences, 2013), 

allowing us to track whether the deployment of spatial attention varied according to shift-

readiness. Since all visual factors were held constant across contexts and spatial positions, 

any difference in reconstruction amplitude could be attributed to attention. States of high 

shift-readiness might be associated with a broadening of spatial attentional selection, 

including a weakening of attentional selection at a currently attended location and/or a 

strengthening of attentional selection at the location where attention will be deployed in the 

future (Jefferies et al., 2014). While we found robust evidence that participants maintained 

attention at the currently to-be-attended location, we found no evidence that suggested a 

relationship between attentional flexibility and pre-cue spatial selection. In particular, our 

data do not suggest that participants engaged in anticipatory shifts of attention prior to the 

onset of the cue. Relatedly, we did not find a significant relationship between model-derived 

Sali et al. Page 22

J Cogn Neurosci. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shift predictions and the strength of selection at the to-be-attended location in the pretrial 

epoch.

One possible interpretation of our results is that modulations of attentional flexibility are 

most strongly associated with a speeding of the shift process itself rather than in any change 

in the spatial selection of stimuli. In particular, our shift PE results suggest that the 

frontoparietal mechanisms involved in executing goal-oriented shifts of attention do respond 

differentially based on shift expectations. Interpretation of this analysis requires some 

caution given the lack of temporal precision available with fMRI data. In particular, although 

the difference did not reach statistical significance, selection strength was numerically 

greater following hold attention trials than following shift attention trials. Given the lag of 

the hemodynamic response it is possible that the preparatory differences we detected are at 

least in part a reflection of activity from the previous trial. Accordingly, due to the temporal 

structure of our task, we have restricted the window of analysis for the IEM to range from 2 

seconds prior to cue onset to 8 seconds after the cue onset. Future research is thus needed to 

disambiguate the ways in which learned modulations of flexibility carry consequences for 

stimulus representation in visual cortex. Taken together, our results suggest that moment-by-

moment changes in attentional flexibility may be associated with the execution of the shift 

process itself instead of large preparatory changes in attentional selection.

The study of attentional flexibility learning holds implications for understanding both 

healthy adaptive behavior as well as neuropsychiatric disorders. All individuals vary over 

time in their readiness to perform cognitive switches such as a shift of task set or of spatial 

attention. By understanding the neural mechanisms associated with both intrinsically-

generated spontaneous fluctuations in flexibility, as well those involved in learned 

modulations of control states, we can account for variations in performance both within a 

single individual as well as understand individual differences in flexibility. Many 

neuropsychiatric disorders are associated with either abnormally elevated levels of flexibility 

(e.g. attention deficit hyperactivity disorder and substance abuse; Barkley, 1997; Berridge, 

2012; Keiflin & Janak, 2015; Vaurio, Simmonds, & Mostofsky, 2009) or deficient levels of 

flexibility (e.g. schizophrenia and autism; Koster-Hale & Saxe, 2013; Moore, Dickinson, & 

Fletcher, 2011; Murray, Corlett, & Fletcher, 2010). However, the degree to which these 

impairments may be associated with deficient associative learning remain unknown. In one 

recent study, children with attention deficit hyperactivity disorder (ADHD) failed to form 

associations between stimuli and monetary rewards, as measured by the degree to which 

they later captured attention, to the same extent as their typically developing peers (Sali, 

Anderson, Yantis, Mostofsky, & Rosch, 2018). An interesting topic of future research thus 

remains the degree to which disorders such as ADHD are associated with impairments in 

meta-flexibility, or the ability to adjust cognitive flexibility according to changing 

environmental demands.

In sum, the current study employed a model-based analysis of behavioral and fMRI data to 

examine the neural mechanisms responsible for learned adjustments in attentional flexibility, 

or shift-readiness. Activity within components of the dorsal and ventral attentional control 

networks positively scaled with a trial-by-trial measure of updating shift predictions. 

Furthermore, an IEM failed to find statistically reliable pretrial context-based differences in 
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spatial selection, suggesting that attentional control learning might speed the shift process 

itself rather than influencing the breadth of attentional deployments. Together, our results 

suggest that a frontoparietal brain network is responsible for dynamically updating shift 

readiness in line with changing environmental demands.
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Figure 1. 
Task Protocols. (A) Attentional flexibility learning paradigm. Participants covertly shifted 

spatial attention among continuous streams of alphanumeric characters in response to 

embedded visual cues and made behavioral responses regarding the parity of target stimuli 

(B) Three location contexts predicted the likelihood of shifting attention. The location-

probability mappings were counterbalanced across participants. (c) Model training task. 

Participants viewed flickering checkerboard stimuli and made behavioral responses to 

indicate rare trials in which the checkerboard’s luminance dimmed.
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Figure 2. 
Behavioral Results. (A) Response time and (B) performance accuracy as a function of 

attention shift probability and cue type for the attentional flexibility task. Error bars denote 1 

between-subjects SEM.
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Figure 3. 
(A) Protected exceedance probabilities for the 6 candidate models. (B) Model-fit context-

independent learning rates. (C) Model-fit context-dependent learning rates. (D) Prediction 

reset factors. Each circle denotes one participant. There were no significant differences in 

(E) context-independent learning rates, or (F) context-dependent learning rates according to 

the best-fit reset parameter. (G) There was a trending positive relationship between context-

independent and context-dependent learning rates. (H) Mean response time on the 

attentional flexibility learning paradigm as a function of the quintile of model-derived 

unsigned PE. Error bars denote 1 between-subjects SEM.
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Figure 4. 
(A) Shifting attention, relative to holding attention, was associated with greater activity 

within the PPC and FEFs. (B) Holding attention, relative to shifting attention, was associated 

with greater activity within the ventromedial prefrontal cortex. (C) The interaction of cue 

type (shift vs. hold) and context (25% shift vs. 75% shift) revealed that shift and hold cues 

appearing in statistically rare contexts (e.g. a shift cue in the 25% shift context) were 

associated with activity spanning bilateral PPC, left frontal cortex, left occipital cortex, right 

middle temporal gyrus, and right angular gyrus. (D) We independently defined a mSPL ROI 

for each participant using a leave one subject out approach. Extracted parameter estimates 

for each condition revealed that BOLD activity was greater for unexpected cues than for 

expected cues. Error bars denote 1 between-subjects SEM.
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Figure 5. 
Regions for which brain activity positively scaled with trial-by-trial (A) unsigned prediction 

errors. (B) When contrasting shift > hold trials with the PE regressor in the GLM, we found 

significant activity within mSPL, left FEF, and left superior lateral occipital cortex. Regions 

for which brain activity positively scaled with (C) signed shift trial prediction errors and (D) 

signed hold trial prediction errors.
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Figure 6. 
(A) Visual cortex ROI spanning V1, V2, V3, and hV4. (B) The encoding model consisted of 

37 basis functions that were organized in a hexagonal grid that was centered in the visual 

display. The diameter of each black circle is equal to the FWHM of one function. The inner 

red circle marks the 1.4° by 1.4° region of the RSVP stimuli that we averaged. (C) Leave-

one-run-out cross validation of training data. Each reconstruction represents one of the 37 

grid locations used in the model training task. (D) In order to average across participants, we 

spatially rotated the IEM basis functions such that the to-be-attended location prior to cue 

onset was located at the left target location falling along the horizontal meridian. Displayed 

are un-rotated reconstructions for hold attention trials based on BOLD volumes acquired 6 

seconds and 8 seconds after the cue onset. After rotating the basis functions for each trial, 

we averaged reconstructions across trials, and then for each participant, computed an 

average of pixels falling within two target squares positioned at the left and right locations 

along the horizontal meridian (marked in yellow above). For the analysis of pretrial signal, 

the left square marks the attended location, while the right square marks the unattended 

location. For post-cue analyses, the designation of attended and unattended varied according 

to cue type such that the right square was attended on shift attention trials and the left square 

was attended on hold attention trials. (E) Rotated average pretrial spatial reconstructions as a 

function of probability context across all participants. (F) Average pretrial reconstruction 

amplitudes at attended and unattended stimulus locations. Spatial selection was greater at the 

attended location than at the unattended location, but did not vary based on probability 

context prior to the onset of the attention cue. Error bars denote 1 between-subjects SEM.
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Figure 7. 
(A) Spatial reconstructions from 2–4 seconds after the cue onset as a function of probability 

context and cue type. (B) Average amplitudes at the attended and unattended locations for 

shift trials, and (C) for hold trials. Attended refers to the right target square for shift trials 

and the left target square for hold trials. Error bars denote 1 between-subjects SEM.
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Figure 8. 
(A) Spatial reconstructions from 6–8 seconds after the cue onset as a function of probability 

context and cue type. (B) Average amplitudes at the cued and non-cued locations for shift 

trials, and (C) for hold trials. Attended refers to the right target square for shift trials and the 

left target square for hold trials. Error bars denote 1 between-subjects SEM.
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Table 1.

Candidate RL Models

Context-Independent Learning Context-Dependent Learning Reset Factor

Model 1 yes no no

Model 2 yes no yes
(partial reset allowed)

Model 3 no yes no

Model 4 yes yes no

Model 5 yes yes yes
(partial reset allowed)

Model 6 yes yes yes
(all-or-none reset required)
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Table 2.

Clusters showing significant activity in the conventional univariate analyses.

Region Cluster Size (voxels) Z-statistic Maximum

x y z

Shift > Hold

mSPL / PPC 646 4 −66 54

right FEF 126 30 −4 54

left FEF 112 −28 −8 62

Hold > Shift

vmPFC 130 2 52 −12

Unexpected > Expected

mSPL / bilateral PPC / bilateral IPS / left angular gyrus 3316 −26 −66 62

right angular gyrus 273 54 −44 36

left superior / middle frontal gyrus 221 −34 −4 50

left LOC 158 −54 −68 4

left middle frontal / inferior frontal / precentral gyrus 143 −46 2 30

right middle temporal gyrus 138 62 −50 4

left anterior frontal cortex 136 −28 46 22

Note. Cluster sizes and MNI coordinates are displayed for regions surviving cluster correction at a family-wise error rate of p < .05.
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Table 3.

Clusters showing significant activity in the model-based analyses.

Region Cluster Size (voxels) Z-statistic Maximum

x y z

Unsigned PE

mSPL / bilateral PPC / bilateral IPS 4081 42 −72 30

left SFG / left MFG 559 −26 2 62

left MFG / left IFG 378 −48 6 40

right angular gyrus 258 62 −58 28

PCC 186 0 −36 26

right LOC 109 52 −70 −4

Shift > Hold

mSPL / PPC 760 4 −64 56

left FEF 133 −26 −10 52

left superior LOC 117 −36 −88 22

Signed PE Shift Trials

mSPL / left IPS / left superior LOC 1188 −28 −78 26

right IPS 339 34 −74 26

right SPL / superior LOC 286 44 −50 48

left SFG / left MFG 248 −30 −10 64

left MFG / left IFG / left precentral gyrus 141 −42 4 32

right TPJ 125 54 −54 24

Signed PE Hold Trials

mSPL 131 4 −68 50

Note. Cluster sizes and MNI coordinates are displayed for regions surviving cluster correction at a family-wise error rate of p < .05. SFG = superior 
frontal gyrus; MFG = middle frontal gyrus; IFG = inferior frontal gyrus.
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