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Abstract

With the rapid development of high-throughput technologies, a growing amount of multi-omics 

data are collected, giving rise to a great demand for combining such data for biomedical discovery. 

Due to the cost and time to label the data manually, the number of labelled samples is limited. This 

motivated the need for semi-supervised learning algorithms. In this work, we applied a graph-

based semi-supervised learning (GSSL) to classify a severe chronic mental disorder, schizophrenia 

(SZ). An advantage of GSSL is that it can simultaneously analyse more than two types of data, 

while many existing models focus on pairwise data analysis. In particular, we applied GSSL to the 

analysis of single nucleotide polymorphism (SNP), functional magnetic resonance imaging (fMRI) 

and DNA methylation data, which accounts for genetics, brain imaging (endophenotypes), and 

environmental factors (epigenomics) respectively. While parameter selection has been an open 

challenge for most models, another key contribution of this work is that we explored the parameter 

space to interpret their meaning and established practical guidelines. Based on the practical 

significance of each hyper-parameter, a relatively small range of candidate values can be 

determined in a data-driven way to both optimize and speed up the parameter tuning process. We 

validated the model through both synthetic data and a real SZ dataset of 184 subjects from the 

Mental Illness and Neuroscience Discovery (MIND) Clinical Imaging Consortium. In comparison 

to several existing approaches, our algorithm achieved better performance in terms of 

classification accuracy. We also confirmed the significance of several brain regions associated with 

SZ.
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I. Introduction

With the rapid progress of advanced high-throughput technologies along with various 

bioinformatics tools, an era of precision medicine is coming. Both clinical and molecular 

profiles of individuals are available, which can lead to a better understanding of various 

diseases and developing tailored disease prevention and treatment strategies. For this reason, 

in recent years various omics studies have been boosted, including genomics, epigenomics, 

transcriptomics, proteomics, and metabolomics.

However, studies on a single type of omics can only provide limited insight on the etiology. 

Most complex diseases are caused by an elaborate interplay of genetic and environmental 

factors[1], indicating that human genome is complex and regulated at multiple levels[2]. 

Thus, there is a great desire for jointly analysing multi-omics data to represent the complex 

biological systems. In fact, there have been considerable research efforts dedicated to multi-

omics data integration to study various diseases[2–8]. In these studies, multi-omics data 

integration has been applied to achieve various tasks, including biomarker identification[3–

5], disease prediction[6, 7] and optimal treatment[2, 8].

In this work, we focus on the prediction of schizophrenia (SZ) through the integration of 

multi-omics data. As a severe chronic mental disorder, SZ affects more than 23 million 

people worldwide and devastates patients with various disabling symptoms including 

paranoid delusions, auditory hallucinations, and thought disorders. While it has been studied 

for more than 100 years, the underlying neuropathology remains unclear. Because of this, 

current treatments can only focus on eliminating the outward symptoms. Treatments include 

antipsychotic medications, psychosocial treatment, and coordinated specialty care. Thus, it 

is of great significance to predict SZ when no syndromes are present or to diagnose SZ at an 

early stage when symptoms are relatively minor. Early detection can raise vigilance and 

allow these individuals to work with doctors to develop a prevention strategy or to seek early 

treatment.

In this study, we improved the model proposed in [9], a graph-based semi-supervised 

learning algorithm (GSSL). We applied it to combine single nucleotide polymorphism 

(SNP), DNA methylation and functional magnetic resonance imaging (fMRI) for SZ 

prediction as illustrated by Fig. 1. As a transformation-based integration method, GSSL can 

preserve view-specific information and is also robust to different data measurement 

scales[10]. The algorithm shares a similar idea with network-based SVM by embedding the 

data into a network[11, 12]. However, in GSSL, the generated kernel matrices are allowed to 

be sparse without introducing local minima into the optimization process[9]. This gives 

GSSL an advantage in computational efficiency.

In GSSL, a sparse similarity matrix is extracted from one type of omics data, which can be 

depicted as an undirected graph (Fig. 1). The graph consists of two components: the nodes 

representing individuals, and the edges connecting the nodes. If the similarity between two 

subjects can be neglected, there is no edge connecting the corresponding nodes. After the 

construction of the graphs, a novel integration method is used to make predictions for the 

unlabelled subjects (nodes).
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We applied GSSL in this study to integrate multi-omics data and reached a successful SZ 

classification. While parameter selection was challenging, we proposed a data-driven way to 

determine ranges of hyper-parameters for this model, which can both optimize and speed up 

the tuning procedure. We also showed how to extend this model to multi-class classification 

settings.

The rest of the paper is organized as follows. We describe the original algorithm and 

compare it with its formulation to similar models in Section II A. We interpret the meaning 

of hyper-parameters in this model and propose a data-driven guideline in Section II B. The 

extension of this model to multi-classes version is presented in Section II C. We present in 

Section III A the simulation results on testing the robustness of GSSL against noise and 

demonstrate its advantage of extracting information with limited label information. The real 

data analysis is presented in Section III B, where we conducted the classification of SZ. In 

Section IV, we conclude our findings and discuss possible future directions for this work.

II. Method

A. Binary classification with graphs

First, we work on binary classification tasks with a single dataset. Given n subjects, suppose 

the first l subjects are labelled and the last u subjects are not. We use {x1, y1;x2, y2;…xl, yl} 

to represent labelled ones, where yi ∈ [−1,+1] represents the phenotype, and {xl+1; xl+2; …

xl+u} to represent unlabelled ones. Denoting the data of labelled subjects as Xl and their 

label information as yl, the least absolute shrinkage and selection operator (LASSO) 

regression aims at estimating prediction coefficients ω = [ω1, ω2, …ωp]T through the 

minimization of the following objective function:

ω = arg min
ω

‖yl − Xlω‖2
2 + λ‖ω‖1 . (1)

Then the estimated ω values are applied to unlabelled data Xu to predict their labels. While 

this is a classic approach for classification tasks, it is a supervised learning that fails to make 

use of the information contained in unlabelled data. To this end, it would be more practical 

to adopt semi-supervised learning algorithms, among which graph-based learning is 

particularly useful. In LASSO, the phenotype of an individual is evaluated based on the 

value of xω. Since our main goal is to predict the phenotype, ranking the importance of each 

feature is not necessary. Motivated by this, we use a real-value score f to replace xω to 

accelerate the estimation and establish the relationship between the labelled data and the 

unlabelled ones.

Given the measurement X, an n × n symmetric similarity matrix S can be extracted from the 

measurement to represent the connections between subjects. The non-negative (i, j)th entry 

sij measures the similarity between subject i and j. It can be treated as an undirected graph: 

each subject is represented by a vertex and sij represents the strength of linkage between 

node i and j. Then we define an n-dimensional realvalued score vector f = (f1, f2, …, fn)T for 

all nodes. Among these n nodes, the first l ones are labelled as either yi = +1 or −1 based on 

their phenotypes, and the remaining nodes are unlabelled. To derive the function for f, we 
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require that the scores of adjacent nodes are similar and the scores of labelled nodes should 

be consistent with the given labels. This leads to the following optimization problem on f:

f = arg min
f

1
2 ∑

i, j = 1

n
sij fi − fj

2

s . t . fi = yi for i = 1 ∼ l .
(2)

The right side of Equation (2) is a quadratic energy function investigated in [13]. However, 

because the scores of labelled subjects are strictly fixed, we find the data fitting with 

Equation (2) is too restrictive which can easily lead to over-fitting problems. In addition, 

Equation (2) fails to consider scenarios where mislabelled data in the training group exist. 

This will jeopardize the estimation of the scores of unlabelled nodes. To address this issue, 

the following optimization problem is proposed:

f = arg min
f

∑
i = 1

l
fi − yi

2 + μ ∑
i = l + 1

n
fi

2

+ c ∑
i, j = 1

n
sij fi − fj

2,
(3)

where the first term is the loss function characterizing the data fitting on labelled subjects; 

the second term is a regularization term to keep the scores of unlabelled subjects within a 

reasonable range; the third term is a smoothness term c to constrain the difference in scores 

of adjacent nodes. Both μ and c are trade-off parameters.

In this study, we focus on the special case μ = 1, which allows for a quick closed solution[9]

[14]. By defining an ndimensional label vector y = y1; y2; …; yl; 0; 0; …; 0 ⊂ ℝn × 1, and 

calculating the graph Laplacian matrix L = D−S, where D = diag di , di = ∑jsij, Equation (3) 

can be transformed to solve the following optimization problem:

f = arg min
f

(f − y)T(f − y) + cfTLf . (4)

Note that, this can also be regarded as a manifold regularized learning problem:

ω = arg min
ω

1
2‖y − Xω‖2

2 + λ‖ω‖1 + c(Xω)TL(Xω), (5)

where ω is defined in the same way as in LASSO: ω = [ω1, ω2, …ωp]T. Parameters λ and c 
are trade-off hyper-parameters that control the importance of each penalty term.

With the similarity matrix S being diagonally symmetric, the graph Laplacian matrix L is 

diagonally symmetric. Hence, the solution to the minimization problem Equation (4) can be 

obtained explicitly as:
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f = (I + cL)−1y, (6)

where I is an n × n identity matrix.

Note that, Equation (4) can also be rewritten in the following constrained form:

f = arg min
f, η

(f − y)T(f − y) + cη,

s . t . fT Lf ≤ η .
(7)

For multiple types of data, namely N views of data in total, the k-th view of data is denoted 

as X(k). Then N graphs can be constructed and reflected by the corresponding Laplacian 

matrices L1, L2, …,LN. The information contained in each graph can be integrated by 

extending the optimization problem (7) to the following minimization problem with multiple 

constraints:

f = arg min
f, η

(f − y)T(f − y) + cη,

s . t . fT Lkf ≤ η, k = 1, 2, …, N .
(8)

This optimization problem has been discussed and solved in [7, 9]. Its solution is given as 

follows:

f = (I + ∑
k = 1

N
βkLk)−1y, (9)

where βk ≥ 0. Denoting β = [β1, …βk, …βN], it can be obtained by solving the following 

minimization problem:

β = min
β

yT (I + ∑
k = 1

N
βkLk)−1y,

s . t . ∑
k = 1

N
βk ≤ c .

(10)

Comparing the solution to the optimization problem of a single graph (Equation (6)) and that 

to multiple graphs (Equation (9)), they have similar formulations, where ∑k = 1
N βkLk in the 

latter replaces cL. Furthermore, due to the constraints that weight of the graph represented 

byP Lk and thus can serve as βk ≥ 0 and ∑kβk ≤ c, βk can be seen as the combination weight 

of the graph represented by Lk and thus can serve as the evaluation of the importance of a 

particular graph in terms of data fitting. Therefore, the proposed method can be called as 

multi-view integration with optimized weights.

Upon calculating the score vector f, by comparing its every element fi to the threshold zero, 

if fi is greater than zero, the label of node i is predicted as +1; otherwise, it is predicted as 1. 
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The training error is defined as the ratio between the number of misclassified subjects and 

that of all training groups. The testing error is defined accordingly on the testing group.

B. Parameter selection and interpretation

1) Gaussian kernel bandwidth selection—The Gaussian kernel has been widely 

used to construct similarity matrices, and in this research we also focus on graphs 

constructed through Gaussian kernel. Given a view X = x1, x2, …, xn ∈ ℝn × D, an n × n 

symmetric similarity matrix W can be computed. The (i,j)th entry of W, denoted by wij, 

represents the strength of the edge connecting node i and node j in the graph, which is given 

by the following equation:

wij = exp(− ‖xi − xj‖2

σ2 ) xi ∼ xj,

0 otherwise.
(11)

If xi is not in xj’s k-nearest neighbourhood or vice versa, the connection between these two 

nodes can be neglected and wij is set as zero.

An important parameter to determine when using the Gaussian kernel is the value of σ. In 

practice, we need to ensure that the graph is fully connected so that the geometrical structure 

of the data is captured. The connectivity of the graph is merely controlled by the value of σ. 

Silimar to σ, the bandwidth of Gaussian kernel is defined as ϵ = σ2. It is obvious that: if ||xi 

− xj||2 < ϵ, a high similarity is suggested between the node i and node j; Otherwise, if ||xi − 

xj||2 ≫ ϵ, the similarity between this pair is negligible and no connection is assumed in the 

graph. To ensure that every node in the graph is connected to at least one other node[15] so 

that the graph is connected, the bandwidth ϵconnected should satisfy the following criterion:

ϵconnected > max
i

[min
j

‖xi − xj‖2] . (12)

While the kernel bandwidth ϵ has to satisfy this requirement, it should also be sufficiently 

small so that only the most important connection is captured and kept. In [16], a more 

specific selection criterion on the bandwidth was proposed:

ϵconnected = K ⋅ max
i

[min
j

‖xi − xj‖2], (13)

where K is empirically set within the range of 2∼3 to guarantee that the graph is connected 

while sparse and each node is connected to several other nodes[16].

However, since our task is to predict the labels for the unlabelled nodes, there is no need to 

enforce the above-mentioned restraint. In other words, we do not require a connected graph. 

However, in order to classify the unlabelled subjects, there has to be a connection between 

every unlabelled node and at least one labelled node, and the connection does not 

necessarily need to be direct. As a result, instead of generating a fully connected graph, we 

allow the graph to be disconnected, while each connected sub-graph containing unlabelled 
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nodes has to have at least one labelled node. To find the optimal bandwidth that fits this 

condition, we calculate the following values as the candidates:

ϵj = min
i

‖xi − xj‖2,
where xi ∈ XL and xj ∈ XU .

(14)

Then there are at most u different candidate values to choose from and we denote the set of 

candidate values as Λ. The lower boundary of Λ is ϵlb0 = min
j

[min
i

‖xi − xj‖2]; this ensures 

that every unlabelled node is directly connected to at least one labelled node. The upper 

bound of Λ is ϵub0 = min
j

[min
i

‖xi − xj‖2]; it generates a graph that only one unlabelled node is 

directly connected to a labelled node. To select the optimal ϵ∗ that satisfies our requirement, 

we propose Algorithm 1.

Algorithm 1

Bandwidth selection

Require:

 Node set N consisting of labelled nodes set ℒ and unlabelled nodes set U;

 Bandwidth candidate values set Λ

Ensure:

  1: Find the median value ϵmedian, lower bound ϵlb and upper bound ϵub of set Λ

  2: Calculate similarity matrix W using the median bandwidth value ϵmedian;

  3: Initialize a node set T = ℒ;

  4: Update the node set T by adding nodes i to it if wij > 0 for every node j that belongs to node set T till node set T
stops growing

  5: If T = N then update Λ = [ϵlb,…ϵmedian], otherwise update Λ = [ϵmedian,…ϵub] go to Step 1 till there is only one 
element in updated Λ, which is denoted as ϵ∗

  6: return ϵ∗

2) Hyperparameter c selection—To determine the parameter c in the optimization 

objective function (3), we need to understand its impact and to interpret its significance. Let 

us revisit our original optimization function (3) with μ = 1. For simplicity, we define δ = 1/c, 

and then by setting the derivative of f with respect to fi to zero,for a single node i in the 

graph, we have:

fi = 1
δ + di

∑
j ∼ i

wijfj + δ
δ + di

yi

i = 1, 2, …, l + u .
(15)

The first part of the solution corresponds to the smooth term in energy function (3), and the 

second part corresponds to the loss function in function (3).
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To interpret this, we imagine a particle walking along the constructed graph starting from a 

random node i. In the graph, there are paths from node i to node j if wij is positive, and the 

probability of visiting node j from node i in one step is Pij = 1
δ + di

wij. However, there is also 

a ‘mirror’ node to node i that it might visit. The connection of node i to its mirror node has 

the strength of wii* = 1 and the score of the mirror node is yi. This mirror node represents the 

prior knowledge (its label) we have for individual i and if yi = 0, it means we do not have 

any prior knowledge. This is also used as the baseline for adjusting the score of the node. 

The probability of visiting this mirror node in one step is Pii = δ
δ + di

wii* = δ
δ + di

. Then 

function (15) calculates the expectation of the score of the node that it will reach in one step:

fi = ∑
j ∼ i

Pijfj + Piiyi . (16)

As di = ∑jwij, it is clear that the larger di is, the node i is closer to other nodes in general. 

Thus, the labels/scores of its neighbour nodes can better reflect what this node’s label/score 

should be. In this case, we have more confidence on the smoothness term to modify the 

scores after data fitting. On the other hand, the smaller di is, the more isolated node i is in the 

graph. For such a lonely node, the labels/scores of its ‘neighbour’ nodes do not provide a lot 

reference to its score, so the loss function should have a larger weight. In other words, if the 

particle starts walking from an isolated node, it is more likely to visit the mirror node within 

one step because the starting point is too far away from any other nodes.

If di ≫ δ, the score of node i can be written as fi = 1
di

(∑j ∼ iwijfj + yi). In this case, Pii = δ
di

is very close to zero, which means the mirror node does not have much effect on the value of 

fi. The value of fi is largely adjusted from the value yi based on the scores of its adjacent 

nodes. In this case, if individual i is labelled, then its score is adjusted based on its (strong) 

similarity to other nodes to infer the degree of its type. Meanwhile, if individual i is 

unlabelled, based on its strong connection to other nodes, we have enough information to 

infer its type and its score is calculated from the scores of its adjacent individuals.

On the other hand, if δ ≫ di, the node i can be considered as an isolated node, then Pii is 

very close to one, and the score of node i is almost yi. In this case, the nodes in node i’s 

‘nearest neighborhood’ are not actually near. Thus the value of fi is merely decided based on 

our prior knowledge: if individual i is labelled, the score of fi stays at the value yi; if 

individual i is not labelled, then we don’t have enough information to classify it and the 

score of node i stays close to zero.

Given a type of data, matrix D can be calculated and then c (or δ) can be chosen based on 

the distribution of di. With multiple datasets, we combine all the candidate values of 

parameter c calculated for each single dataset as the selecting pool.
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C. The extension to multi-class classification problem

Furthermore, this algorithm can be easily extended to multi-class classification setting. For 

this model, the most direct solution is to use different values to represent different groups. 

However, it is challenging to decide and justify the value for each class and the thresholds to 

distinguish the groups. In addition, from Equation (3), the second term encourages scores of 

unlabelled nodes to stay relatively close to zero. As a result, it is not applicable to extend 

GSSL in this way, since we intend to stay focused on the special case where μ is 1 to allow 

for an explicit and quick solution.

A task of classifying N different groups can be divided into several binary classification 

tasks through conducting one-vs-all or all-vs-all classification. Inspired by this, we propose 

to use a matrix Y l ∈ ℝl × k to represent the classes of labelled subjects, where:

Y ij
l = 1 if xi belongs to the jtℎ group,

0 otherwise.
(17)

That is, each labelled subject belongs to only one particular group, and the corresponding 

entry in label matrix Y is one. Similarly, we also re-define a score matrix F ∈ ℝn × k, where 

the entry Fij represents the relative possibility of subject i belonging to the j-th group.

Then the optimization problem can be re-formulated as follows:

E(F ) = ∑
i = 1

l
‖F i − Y i‖2

2 + μ ∑
i = l + 1

n
‖F i‖2

2

+ c ∑
i, j = 1

n
wij‖F i − F j‖2

2,
(18)

where Fi and Yi are the ith row vector of F and of Yl respectively. By setting μ = 1 and 

extending class matrix Y∗ to Y = [Yl;Yu] where Y u = 0 ∈ ℝu × k, the solution of F can be 

found by solving:

arg min
F

‖F − Y ‖F
2 + cTr F TLF

= arg min
F

Tr(F − Y )(F − Y )T + cTr F TLF ,
(19)

where Tr is the trace of the matrix. By calculating the derivation of this equation in terms of 

F and setting it to zero, the solution is obtained as follows:

F = (I + cL)−1Y . (20)

After calculating F, and by locating the largest value of Fi, the ith subject is then classified 

into the corresponding group. For multiview setting (N views), the integration problem can 

be formulated in a similar way:
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arg min
F , η

Tr(F − Y )(F − Y )T + cη,

s . t . Tr F TLkF ≤ η, k = 1, 2, …, N .
(21)

The solution can be obtained as:

F = (I + c ∑
k = 1

N
βkLk)−1Y ,

min
β

Y T(I + c ∑
k = 1

N
βkLk)−1Y ,

s . t . ∑
k

βk ≤ c

(22)

To validate the effectiveness of the proposed multi-class classification model, we did a 

simple test on Iris dataset1. We used 60% of the data as training. Overall, the testing error is 

10.00% and the training error is 5.56%. The total accuracy is 92.67%.

III. Results

In this section, we present experimental results of the proposed method on both synthetic 

and real data. Since omics data are commonly high-dimensional, containing many redundant 

features and noise, we used the Student’s test to perform a preliminary feature reduction if 

not stated otherwise. The Gaussian kernel is applied to construct the similarity matrix/graph 

throughout the study. By performing classification experiments and comparing the 

performance with other commonly used methods, we evaluate the proposed method from 

different aspects. The details are described below.

A. Results on synthetic data

Before testing on real datasets, we validated the algorithm on simulated toy datasets. We first 

generated single-view toy datasets following the two-spiral pattern (also known as two-moon 

pattern). Each dataset contained a number of 200 subjects with binary phenotypes and two-

dimensional measurements (as shown in Fig. S1 in supplementary document). The algorithm 

to generate the measurement and phenotype is described in Algorithm 2.

For each simulation, the degree of each spiral was set as 540°, and the noise level was 

increased gradually so that the intertwining spirals became closer. We imported the datasets 

into our algorithm and also into SVM with radius basis kernel function(RBF) for a 

comparison.

During this simulation test, for the purpose of simplicity, we adopted the kernel bandwidth 

based on Equation (13) and set K = 1. This setting makes the similarity matrix irrelevant to 

the partition of the data: no matter which subjects are used as training data, the similarity 

1https://archive.ics.uci.edu/ml/datasets/iris
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matrix can remain the same and is only relevant to the local structure of the whole data. The 

calculated similarity matrices are also presented in Fig. S1.

Algorithm 2

Two-spiral pattern toy dataset simulation

Require:

 The number of subjects of each phenotype N

 The radian of each spiral R

 The noise level L;

Ensure:

 Simulate a two-dimensional measurement that follows two-spiral pattern

  1: n = R ∗ rand(N, 1)
  2: X(1:N, 1) = − cos(n) ∗ n + rand(N, 1) ∗ L;
  3: X(1:N, 2) = sin(n) ∗ n + rand(N, 1) ∗ L;
  4: n = R ∗ rand(N, 1)
  5: X((N + 1):2N, 1) = cos(n) ∗ n + rand(N, 1) ∗ L;
  6: X((N + 1):2N, 2) = − sin(n) ∗ n + rand(N, 1) ∗ L;
  7: Y = [zeros(N, 1); ones(N, 1)];
  8: return X and Y

We first tested the classification performance using 80% ~ 90% of the whole data as training 

data. Both GSSL and SVM achieved classification accuracy of over 95% when the noise 

level L ≤ 1, and over 90% when L ≤ 3. There was no significant difference in terms of 

classification accuracy between the two algorithms (p value < 0.05) in these circumstances.

However, in real applications, labelling the data is labour-intensive so massive amount of 

data is unlabelled. Considering this situation, we continued to test the algorithm 

performance with lower ratio between training data and testing data. The result is presented 

in Fig. 2. Note that, compared with using 90% of the data as training group, the test error of 

GSSL actually dropped at all noise levels.

Based on the classification accuracy with limited labelled training data, GSSL outperformed 

SVM at all noise levels. As the noise level rose, the classification accuracy dropped for both 

GSSL and SVM. Another important conclusion that can be drawn from Fig. 2 is that the 

classification accuracy of GSSL was not as sensitive to the ratio between training and testing 

data as SVM was.

To further validate the algorithm, we also tested on high dimensional synthetic data with 

multiple views. We simulated three high-dimensional data. We began with generating 

explanatory variables α1, α2, α3 ⊂ ℝ1000, where the first 400 components of each variable 

were drawn from Gaussian distribution, while the rest components were set to zeros. 

Continuous labels were generated from these explanatory variables and then transformed to 

z-scores. We kept the subjects whose scores were at the two ends (5% on each side) and 

ended up with n = 120 subjects. Binary labels were assigned to them based on the scores. In 
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addition, we generated extra components to serve as cross-correlated variables so as to 

mimic the assumed links among real data. First, we generated three components 

θ12, θ13, θ23 ⊂ ℝ150 from Gaussian distribution as ‘pair-correlated’ variables and another 

component θ ⊂ ℝ50 as ‘all-correlated’ variables. The synthetic data were then made of three 

views for 120 subjects, and each view was represented by a 120×1200 matrix. Second, we 

added Gaussian noise to the data to test the robustness against disturbances.

The results are shown in Fig. 3. It is clear that the integration of three views of data can 

better predict unlabelled points than using a single one at different noise levels. Also, it is 

more robust against noise compared to single dataset, due to the fact that noise in different 

views is unlikely to share the same patterns; in other words, by extracting common 

information carried in various views, the noise is to some extent reduced.

B. Schizophrenia classification

1) Data acquisition and pre-processing—For real data analysis, we tested the 

algorithm using SNP, fMRI and DNA methylation data collected by the Mental Illness and 

Neuroscience Discovery Clinical Imaging Consortium (MCIC)[17] with the task of 

classifying SZ patients.

The fMRI data used in this study were collected when participants were performing the 

auditory oddball (AOD) task. As one of the most popular fMRI paradigms, AOD task has 

been proven to be successful in capturing the abnormalities in brain activations presented in 

SZ patients [18, 19]. It required participants to detect and respond to the random infrequent 

target sound stimuli by pressing a button. The detailed experiment setting for the fMRI AOD 

paradigm can be found in [17, 20]. The preprocessing of fMRI data was achieved by the 

SPM software2. After a successive processing including realignment, spatial normalization 

and smoothing, data were analysed by multiple regression considering factors including the 

audio stimulus. As a result, a 53 × 63 × 46 stimulus- on versus stimulus-off contrast image 

was then extracted for each participant. After excluding voxels with missing measurements, 

each image consists of 41236 voxels in total, which can be divided into 116 ROIs based on 

the Automated Anatomical Labeling (AAL) template.

The DNA was extracted from blood samples obtained from participants at the Harvard 

Partners Center for Genetics and Genomics. Genotyping was then performed at the Mind 

Research Network using the Illumina Infinium HumanOmni1Quad BeadChip. Details can 

be found in [17]. After quality control using PLINK software package3, the final dataset 

contained information of 722,177 SNP loci for each subject. Each SNP was categorized into 

three clusters based on their genotype and was represented by discrete numbers: 0 for BB(no 

minor allele), 1 for AB (one minor allele) and 2 for AA (two minor alleles).

The DNA methylation data were also extracted from the blood samples. After excluding 

intensity outliers, data were normalized using the R package wateRmelon [21]. After further 

2https://www.fil.ion.ucl.ac.uk/spm/software/
3http://pngu.mgh.harvard.edu/purcell/plink
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quality control and normalization [22], the data contained information on 27,508 CpG sites. 

Each entry was between 0 ~ 1, representing the degree of methylation of each CpG island.

The total number of subjects included in this study was 184, including 104 healthy controls 

(HCs) (32.37±11.06 years old, 66 males and 38 females) and 80 SZ patients (33.75 ± 10.55 

years old, 60 males and 20 females), and all three types of data were available for each 

subject. The SZ patients were assessed based on the 4th edition of Diagnostic and Statistical 

Manual of Mental Disorders (DSM-IV) diagnostic criteria and most patients were in early 

stages of illness and anti-psychotic drug naive. The requirement for HCs was that they were 

free of psychiatric illness including substance abuse or dependence.

To further verify if gender or age can be excluded from our analysis, we conducted a one-

way analysis of variance (ANOVA). The null hypothesis for gender was that the probability 

of a male participants being diagnosed as a SZ patient was equal to that of a female 

participant. The p value calculated was 0.0959, which was higher than 0.05. Thus, the null 

hypothesis was not rejected and gender was not considered as a contributive factor in terms 

of SZ. Similarly, we tested on the age influence, and the p value was calculated as 0.2972, 

which was also higher than 0.05. As a result, we didn’t consider age to be an influence factor 

either. The same conclusion can be drawn if we conducted a Student’s t-test.

More details about data collection and preprocessing can be found in [23, 24].

2) Result data analysis—We first applied Gaussian kernels to the entire data set (SNP: 

184×722177, fMRI: 184×41236 and DNA methylation: 184×27508 ) to construct the 

similarity matrix. Two types of kernel bandwidth ϵconnected and ϵ∗ were calculated using 

Equation (13) and Algorithm 1 respectively, and were applied to construct similarity 

matrices. After obtaining the similarity matrices of each view of data, we calculated matrix 

D to find a proper range for parameter c. By plotting the histogram of the matrix D 
calculated from the weight matrix (Fig. S2), it is clear that most subjects/nodes are very 

close to others while few subjects/nodes are rather isolated from others. Based on this, if the 

dataset satisfies our cluster assumption, we know that for these isolated subjects, we have 

less confidence on their label prediction. Through the test on a single view, denoting the 

minimum value in D as Dlb and maximum value as Dub, we performed cross-validation to 

select the parameter 1/c (which is δ) from the range of 0.1Dlb to 5Dub. We found that the 

best value of 1/c always lies within 0.5Dlb ~ 0.5(Dlb + Dub). Thus, in further experiments 

carried out, we selected from this small range during cross-validation.

We first applied GSSL to single omics data and the classification accuracy is presented in 

Fig. 4. For GSSL, we used two types of graphs: the fully connected graphs using kernel 

bandwidth ϵconnected (Equation (13) and denoted as ‘Con’) and the disconnected graphs 

where each subgraph has at least one labelled node using ϵ∗ (Algorithm 1 and denoted as 

‘Dsc’). We also compared with the results of another semi-supervised learning algorithm: 

the harmonic algorithm proposed in [13] (denoted as ‘Harmonic’) using disconnected graphs 

(with kernel bandwidth ϵ∗). There was no significant difference in the performance of three 

methods applied to DNA methylation data. When predicting SZ using SNP data, GSSL with 

disconnected graphs gave a significantly better accuracy than the other two methods (p < 
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0.05). Both GSSL and Harmonic algorithm with disconnected graphs outperformed GSSL 

with fully connected graphs when applied to fMRI data. Another observation was made 

during these experiments: while ϵ∗ takes longer time to compute than ϵconnected, 

disconnected graphs can accelerate classification process due to its higher sparsity than that 

of fully connected graphs.

Overall, in graph-based analysis on single omics data, SNP delivered the best accuracy of 

diagnosing SZ, followed next by fMRI, and DNA methylation gave the lowest accuracy.

Next we tested the performance of pairwise combination of omics data using GSSL with 

optimized weights and the results are presented in Fig. 5. We tested the performance of 

graphs constructed using ϵconnected (‘Con’) and using ϵ∗ (‘Dsc’). With the same type of 

graphs, the combination of fMRI and SNP data gave the best classification accuracy, 

followed by the combination of SNP and DNA methylation data, and then the combination 

of fMRI and DNA methylation data. These pairwise combinations all outperformed the 

corresponding single omics data analysis (with the same type of graphs). This validates the 

ability of GSSL to extract complementary information from multiple views of data. While 

for the combination of fMRI and SNP data, there was no significant difference between 

fully-connected graphs and disconnected graphs, integration with disconnected graphs 

significantly outperformed fully-connected graphs for the two other combinations (p < 0.05). 

The results also confirm that the better each graph at prediction, the higher accuracy is 

generated by the integration using optimized GSSL.

Then we integrated all three types of omics data using GSSL and compared with other 

integration methods, and the results are presented in Fig. 6. Other integration methods we 

tested include: 1. majority vote which is based on GSSL on single omics data with fully 

connected graphs (calculate the average of the scores from single GSSL and then apply 

thresholds); 2. majority-neighbourh mean fusion (MMN) [23]; 3. Similarity-network-fusion-

based SVM (SSVM) [25].

Based on the classification accuracy, GSSL gave higher accuracy in classifying SZ than 

other integration methods. Besides, integration of three types of data with optimized-weight 

GSSL gave a higher accuracy than GSSL with any single omics data or pairwise 

combination. On the other hand, the classification accuracy of majority vote with three types 

of data was even lower than that of any single omics data. This further validates the 

superiority of GSSL method in data integration than other methods.

To validate the necessity of calculating optimized weights for graphs integration (Equation 

(10)), we tested integration performance using GSSL with fixed weights which is defined as 

following:

f = (I + ∑
k = 1

N
βfixedLk)−1y,

wℎere βfixed = c/N,
(23)

where c is a hyper parameter that constrains the sum of all weights, and N is the number of 

views of data (in this experiment, it is 3).
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The results are present in Fig. 6. It is evident that optimized-weight GSSL gave a 

significantly higher accuracy than fixed-weight GSSL (p < 0.05). This confirms the 

advantage of integration with optimized weights and proves that the proposed model can 

optimally combine multiple types of omics data.

While the classification accuracy with GSSL is satisfactory, many researches on SZ using 

fMRI alone have shown good results, which motivated us to do more investigation on fMRI 

data. For GSSL, the choice of features used for similarity matrices construction is crucial. 

Based on findings in [18] and [20], we selected 40 regions (regions defined by automated 

anatomical labeling (AAL) template) to further investigate their significance. The selected 

regions of interests (ROIs) are listed in Table S1 in supplementary document. During this 

part of experiment, no t-test is involved to select features. As disconnected graphs yield 

better classification accuracy than fully connected graphs when using fMRI alone, we only 

investigate this type of graphs.

One hundred subjects (50 SZ patients and 50 HCs) were selected as training group. We 

conducted 10 fold cross validation on the training group and the accuracy of these nodes is 

shown in Fig. S3. The classification accuracy indicates that the following regions have better 

performance: left superior frontal gyrus, left inferior parietal lobule, bilateral posterior 

cingulate gyrus, right thalamus, cerebellum, bilateral superior temporal gyrus, left middle 

and inferior temporal gyrus, and right putamen. These ROIs are visualized in Fig. 7.

The association between these regions and schizophrenia has been validated by other 

independent research. For example, numerous studies have found abnormality in the 

thalamus in SZ patients including neuronal loss and volume reduction [26–28]. It is 

associated with cognitive functions of SZ patients including declarative memory [29] and 

attentional sub-process [30, 31]. Meanwhile, the cerebellum is among the most affected 

brain regions in SZ patients [32]. Besides motor coordination, cerrebellum is also involved 

in cognitive function such as attention, working memory, verbal learning, and sensory 

discrimination [33]. The superior frontal gyrus is associated with self-awareness [34]; the 

posterior cingulate gyrus forms a central node in the default mode network(DMN) and is a 

central hub for information exchange in the brain [35]. Thus they can be linked with the 

distortions of self-experience of SZ patients. Inferior parietal lobule is involved with the 

perception of emotions and interpretation of sensory information [36], related to the the 

reduced social engagement and emotional expression of SZ patients. Volumetric 

abnormalities have been found in the superior, middle and inferior temporal gyrus of SZ 

patients [37, 38]. The superior temporal gyrus is related to the production of hallucinations 

[39], developmental mechanisms of brain lateralization and the pathogenesis of language-

related SZ symptoms [40]. The main functions of middle and inferior temporal gyrus 

include language and semantic memory processing, and visual perception[41]. Research 

works have pointed out their association with the auditory verbal hallucinations of SZ 

patients [42, 43]. Volumetric abnormality has been observed in the putamen in SZ patients, 

and the putamen infarct is suggested to cause psychotic symptoms in SZ patients [44, 45].

After identifying these regions, we integrated them with optimized weights using GSSL. We 

tested on the testing group (the remaining 84 subjects) with 10 fold cross validation. The 
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average classification accuracy reached 72.5%. This is higher than using the whole fMRI 

data, confirming the association of these ROIs with SZ. Testing the performance of single 

nodes can also be regarded as a feature selection process and these 14 nodes are considered 

as important regions for SZ classification.

We then integrated the fMRI data of these 14 ROIs with SNP and DNA methylation data 

using the optimized GSSL model. With a 10-fold cross validation, the averaged 

classification accuracy reached 86.11%. This is higher than integrating the whole fMRI data 

with (epi)genetics data, indicating that proper feature selection process can enhance the 

classification performance of a single graph and that of its integration with other graphs.

IV. Discussion and Conclusions

This study focuses on the GSSL algorithm. This method can be applied to both single omics 

analysis and integration of multiple omics data. Each view of data is transformed into a 

graph to measure the similarity between subjects. The phenotypes of unlabelled subjects are 

predicted based on the graphs. Unlike network-based SVM, these graphs are allowed to be 

sparse. Given a large amount of samples, this can reduce computational burden. Through 

testing the classification performance with graphs of different connectivity degrees, it is 

proved that the sparsity of the graphs can also improve the accuracy. This indicates that the 

sparse graphs contain the most important information, which also makes GSSL robust to 

noise. This is validated through simulation experiments, too.

In many real-world problems, labelling the data is manually expensive. There is an 

unbalanced ratio between labelled data and labelled data. In one of our simulation 

experiments, we tested the classification performance of GSSL and SVM when different 

proportion of the data were labelled. While there was no significant difference when over 

80% of the data were labelled, the advantage of GSSL over SVM was evident when labelled 

subjects were not more than 25%. This confirms that GSSL can cope with the unbalanced 

ratio between labelled and unlabelled data as a semi-supervised algorithm.

For real data analysis, we applied GSSL to SZ classification using MCIC data. We adopted 

SNP, DNA methylation and fMRI data, which accounts for genetics, epigenetics and brain 

imaging respectively. In single omics analysis, SNP and fMRI data gave better results than 

DNA methylation data, validating the genetic heritability of SZ and the important role 

played by potential endophenotype fMRI. As for combining three types of data, GSSL gave 

a higher accuracy than using single omics data. This validates the ability of GSSL to extract 

complementary information from multiple views of data. Also, optimized-weight GSSL 

gave a significantly higher accuracy for diagnosing SZ compared with other popular 

integration methods and also fixed-weight GSSL. This further confirms the classification 

ability of optimized-weight GSSL.

While GSSL aimed at classification, during single omics analysis, we confirmed 14 

important brain regions associated with SZ by testing each ROI’s performance. The 

combination of these 14 regions yielded higher accuracy than using the whole fMRI data. 
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This indicates that GSSL can also be applied to confirm important biomarkers and such prior 

feature selection can improve classification accuracy.

A major contribution of this work is on the choice of hyper-parameters, which has been an 

open and challenging problem in many models. By interpreting the significance of each 

parameter, we proposed a practical strategy to determine the weight c for smoothness term 

and the kernel bandwidth ϵ for graph construction. We validated the advantage of the 

strategy in both simulation test and real data analysis. With this guideline, an optimal value 

of kernel bandwidth and a suitable range for hyper-parameter c can be determined based on 

the data. We also offered a way to extend the model to multi-class setting, which can be 

applied to various practical problems. This is one of our future directions.

While we selected Gaussian kernel to construct the graph, we are aware that classification 

performance can vary if the similarity matrix is constructed in other ways. For example, 

subspace clustering can also be used to construct similarity matrices for high-dimensional 

data[46–48]. The choice of similarity metrics construction method is dependent on the 

dataset. Gaussian kernel is generally a good fit to most datasets especially with prior feature 

selection[24, 49]. Besides, aided by the proposed guideline for kernel bandwidth selection, 

Gaussian kernel was proved efficient for SZ classification with MCIC data.

However, this study has only focused on exploring the case when the weight for the 

regularization term in Equation (3) μ = 1. While this renders the solution easier to find, we 

can investigate more general cases in the future.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Graph construction from views of data: when performing a binary classification task on a 

group of people, no matter labelled or not, similarity matrices can be extracted from various 

types of data (e.g., fMRI, SNP or DNA methylation data). All entries of the similarity 

matrices are non-negative and the (i,j)th entry of one particular similarity matrix measures 

the strength of the connection between subject i and subject j in the corresponding view. 

Then each matrix can be depicted as an undirected graph that consists of two parts: nodes 

that represent individuals, and edges connecting the nodes. Nodes corresponding to labelled 

subjects are labelled as either ‘+1’ or ‘−1’ based on their phenotype. Unlabelled nodes are 

marked with’?’ and the goal is to predict their class using the graph. Edges connecting the 

nodes measure the pairwise similarity. If there is no edge connecting two nodes, the 

similarity between these two is neglectable. To combine the information from different data 

is equivalent to integrating the extracted graphs.
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Fig. 2: 
Classification performance using (a) GSSL algorithm and (b) SVM with RBF kernel. Group 

1 to 3 correspond to using 10%, 20% and 25% of the whole data as training group. The y-

axis represents test error, and the x-axis represents the noise level L.
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Fig. 3: 
The classification performance using high dimensional synthetic data with multiviews. With 

growing signal-to-noise ratio, the testing error is reduced. In general, the method is robust to 

noise within a reasonable range.
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Fig. 4: 
A comparison of SZ classification accuracy (100% minus testing error) using single type of 

omics data with different graph-based method. From left to right: 1. ‘Con’: GSSL with fully 

connected graphs; 2. ‘Dsc’: GSSL with disconnected graphs where each subgraph has at 

least one labelled node;3. ‘Harmonic’: harmonic function proposed in [13] with 

disconnected graphs where each subgraph has at least one labelled node.
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Fig. 5: 
SZ classification accuracy (100% minus testing error) with pair-wise combination of omics 

data. From left to right: optimized combination : 1. fMRI and DNA methylation data; 2. 

fMRI and SNP data; 3. DNA methylation and SNP data. Blue and orange bars correspond to 

fully-connected graphs and disconnected graphs, respectively.
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Fig. 6: 
SZ classification accuracy (100% minus testing error) with integration of SNP, DNA 

methylation and fMRI data with different methods. From left to right: 1. GSSL with 

optimized weights; 2. GSSL with fixed weight; 3. GSSL with majority vote; 4. majority-

neighborhood-based classification by mean fusion (MMN); 5. similarity-network-fusion-

based SVM (SSVM).
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Fig. 7: 
Visualization of 14 important brain regions confirmed by our analysis.
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