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ABSTRACT

We uncover and highlight the importance of social distancing duration and intensity in lowering hospitalization demand-to-supply during
the coronavirus disease 2019 (COVID-19) epidemic in the USA. We have developed an epidemic progression model involving the sus-
ceptible–exposed–infected–recovered dynamics, the age-stratified disease transmissibility, and the possible large-scale undocumented (i.e.,
asymptomatic and/or untested) transmission of COVID-19 taking place in the USA. Our analysis utilizes COVID-19 observational data in the
USA between March 19 and 28, corresponding to the early stage of the epidemic when the impacts of social distancing on disease progression
were yet to manifest. Calibrating our model using epidemiological data from this time period enabled us to unbiasedly address the question
“How long and with what intensity does the USA need to implement social distancing intervention during the COVID-19 pandemic?” For a
short (i.e., up to two weeks) duration, we find a near-linear decrease in hospital beds demand with increasing intensity (ϕ) of social distanc-
ing. For a duration longer than two weeks, our findings highlight the diminishing marginal benefit of social distancing, characterized by a
linear decrease in medical demands against an exponentially increasing social distancing duration. Long-term implementation of strict social
distancing with ϕ > 50% could lead to the emergence of a second wave of infections due to a large residual susceptible population which high-
lights the need for contact tracing and isolation before re-opening of the economy. Finally, we investigate the scenario of intermittent social
distancing and find an optimal social-to-no-distancing duration ratio of 5:1 corresponding to a sustainable reduction in medical demands.
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Social distancing has been adopted as a non-pharmaceutical
intervention to prevent the coronavirus disease 2019 (COVID-
19) pandemic from overwhelming the medical resources across
the USA. The catastrophic socio-economic impacts of this inter-
vention could outweigh its benefits if the timing and dura-
tion of implementation are left uncontrolled and ill-strategized.
Here, we address these concerns by investigating the dynamics
of three social distancing strategies—indefinite, finite-duration,
and intermittent—on age-stratified US population and bench-
mark its effectiveness in reducing the burden on hospital beds.
We find that a wholesale, indefinite social distancing could
balance the demand-to-supply ratios of hospital beds at epi-
demic peaks provided a 70% reduction in the time-of-exposure
of the population within all age groups is achieved. We find

that finite-duration social distancing manifests itself into two
distinct regimes. For social distancing lasting less than two
weeks, a higher reduction in the time-of-exposure of the popu-
lation results in less hospitalizations. For social distancing lasting
longer than two weeks, ∼50% reduction in the time-of-exposure
of the population yields the largest reduction in hospitaliza-
tions. Greater than this threshold reduction intensity, our anal-
ysis shows a large buildup of susceptible individuals, who remain
prone to the infection at the end of the social distancing period.
Overall, we emphasize the exponentially diminishing medical
cost benefits of finite-duration social distancing—a phenomenon
characterized by a linear decrease in medical demand achieved
against an exponentially increasing social distancing duration.
We finally investigate intermittent social distancing as a strategy
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to circumvent this situation and find a critical intermittent social-
to-no-distancing duration ratio of 5:1, which facilitates up to 80%
reduction in medical demands. Exceeding this critical ratio, the
marginal benefit of social distancing wanes off significantly.

I. INTRODUCTION

In December 2019, a novel coronavirus named SARS-CoV-2
began infecting residents of Wuhan, China.1–3 SARS-CoV-2 causes
moderate to severe respiratory symptoms that can progress to severe
pneumonia (coronavirus disease 2019, COVID-19).4 Despite the
extreme disease containment measures taken in China,5 COVID-
19 has spread rapidly to numerous countries and evolved into a
global pandemic.1,3 On January 30, 2020, the World Health Organi-
zation (WHO) declared a “public health emergency of international
concern,”6 and on the following day the United States Depart-
ment of Health and Human Services declared a public health state
of emergency.7 During the week of February 23, the US Centers
for Disease Control (US-CDC) reported new confirmed cases of
COVID-19 in California, Oregon, and Washington, indicating the
onset of “community spread” across the USA.7 Until March 2, the
total number of confirmed active COVID-19 cases in the USA were
33 with new cases emerging in the states of Texas, Arizona, Wiscon-
sin, Illinois, Florida, New York, Rhode Island, and Massachusetts.8

In the following two weeks, this number rapidly increased from 527
confirmed cases on March 9 to 4216 cases on March 16.8 The states
of California and New York declared a state emergency on March 4
and 7, respectively.9,10 The White House declared a national emer-
gency on March 1311 foreseeing the inevitability of a major epidemic
outbreak across the USA. As of May 14, the total number of con-
firmed cases in the USA has exceeded 1.4 × 106.8 Based on past
estimates of seasonality, immunity, and cross-immunity for beta-
coronaviruses OC43 and HKU1, it is highly likely that recurrent
wintertime outbreaks of SARS-CoV-2 will occur after the initial,
most serve pandemic wave in the USA.12

To prevent the rapid disease spread and alleviate the
medical demands, social distancing has been adopted as a
non-pharmaceutical measure across the country. Such a non-
pharmaceutical intervention aims to slow down epidemic progres-
sion and ultimately prevents the country’s medical system from
collapsing due to overburdening of COVID-19 patients. It has also
been suggested that prolonged or intermittent social distancing
along with expanded critical care may be necessary until 2022.12

However, effectiveness and marginal benefits of social distancing as
a function of implementation duration, timing, and strategy, espe-
cially in the context of COVID-19 epidemic, remain uncertain and
is a critical knowledge gap.

Here, we address this gap by comprehensively investigating
the effectiveness of social distancing as a function of implemen-
tation duration and intensity in reducing the peak number of
hospitalizations13 across the USA. We do so by calibrating an epi-
demic dynamic model with COVID-19 observational data from the
USA for the period March 19–28. This period was characterized by a
rapid surge in COVID-19 cases due to a ramp up in testing services
and the onset of strict social distancing in most US states. More

importantly, the benefits of social distancing in reducing the hospi-
tal bed demand-to-supply were yet to manifest during this period,
which facilitated us to unbiasedly address the research questions
posed as part of this study.

II. EPIDEMIC DYNAMIC MODEL AND CALIBRATION

PERIOD

Our metapopulation epidemiological model involves the sus-
ceptible, exposed, infected, and recovered (SEIR) dynamics,1,2,14–16

the age-stratified disease transmissibility,16–18 and the possible large-
scale undocumented transmission16,19 taking place in the 50 US
states, Washington DC, and Puerto Rico (hereafter, they are gener-
ically denoted as states). For each state n, the local population was
classified into four categories—susceptible, exposed, infected, and
recovered—with the fraction of population within each category
denoted as sn, en, jn and rn, respectively.20 The infected category was
further divided into two sub-classes: the infected-and-documented
(j r

n) and the infected-and-undocumented (jun), i.e., jn = j r
n + jun. This

treatment accounts for the substantial influence of the asymptomatic
(or mildly symptomatic) COVID-19 carriers on accelerating the
epidemic spread.19 Furthermore, the population within each cat-
egory of sn, en, j r

n, jun, and rn were divided into nine age-stratified
compartments (hereafter age groups), in light of the strong age-
dependent hospitalization rate of COVID-19 patients.13 Specifi-
cally, age group i (with 1 ≤ i ≤ 8) comprised of individuals aged
between 10 × (i − 1) and 10 × i − 1 years, while the 9th age group
included everyone aged 80 years and above. This age-stratification
can be expressed as xn =

∑

i xn,i (here, x is used to generically
denote s, e, jr, ju, and r). Finally, the interstate exchange of indi-
vidual within the sn, en, jun, and rn category was captured using a
mobility matrix of Pm,n quantifying the probability that an individ-
ual leaving state n ends up in m.20–22 The governing equations of our
model can therefore be expressed as a set of first-order differential
equations with respect to time (t),

∂
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rn,i = fn, i − en,i − jrn,i − jun,i − sn,i. (1)

Here, R0,n,i is an age-specific reproduction ratio representing
the efficiency by which COVID-19 (within state n) is transmitted
to the local population in age group i. The values of R0,n,i were
mapped from a state-wise reproduction ratio (R0,n) per the assump-
tion that the disease transmissibility between age groups i and k is
directly proportional to the average daily time-of-exposure (Ti,k)
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among their members: R0,n,i = R0,n

∑

k Ti,k/q, where q is a propor-
tionality factor taking values of the largest eigenvalue of the Ti,k

matrix.17,18,23 DE and DI, respectively, represent the mean incubation
period and mean infectious period of COVID-19;1,2,24 ηn represents
local documentation ratio of the infected individuals; ε is a constant
factor denoting the mean elongation of infectious period for those
undocumented COVID-19 carriers;19 fn,i is the fraction of local pop-
ulation within age group i, φ is the daily passenger flux of the entire
traffic network; and � represents the total US population.20,25 The
ratio fn,iφ/� can be regarded as an interstate mobility parameter for
members of age group i.

Our model was initialized on March 19 (t0) with the doc-
umented active COVID-19 cases j r

n(t0) acquired from a web-
based dashboard for real-time epidemic tracking published by
Johns Hopkins University.8 Next, we estimated the initial num-
ber of undocumented cases, per jun(t0) = (1/ηn − 1) ∗ j r

n(t0), and the
exposed cases, per en(t0) = (1/ζn) ∗ j r

n(t0) . (Here, ζn is the unknown
documented-to-exposed ratio and ηn is the unknown documenta-
tion ratio for state n. The acquisition of ζn and ηn is detailed below.)
Finally, the age-stratified compartments were initialized according
to the state-wise demographic composition, i.e., xn,i(t0) = fn,ixn(t0).
The mobility matrices Pm,n and passenger flux φ were calculated
using the latest monthly resolved aviation data (between Septem-
ber 2018 and August 2019) released by the United States Bureau
of Transportation Statistics26 (refer to supplementary material for
details). It was assumed in our model that the interstate exchange of
passengers is predominately via air traffic since volume of ground-
based exchange is negligible (see the supplementary material). We
further assumed that the long-term international importation of
individuals infected with COVID-19 is minimal under a wholesale
travel restriction enforced on international passengers that arrive
from countries and regions where COVID-19 is widespread.27–29

The state-wise demographic composition fn,i was acquired from the
database of the United States Census Bureau.30 The matrix of Ti,k was
acquired from the work by Zagheni et al.17 wherein the age-specific
time-of-exposure was calculated using American Time Use Survey
data (supplementary material).

The epidemiological parameters DE, DI and ε of COVID-19
were assumed to be 5.2 days, 2.3 days,31 and 1.82,2 respectively,
per the values reported in the latest modeling study conducted
on COVID-19 epidemics in China.2,31 For simplicity, we assumed
here that the country-wise variability in the incubation and infec-
tious periods of coronavirus is insignificant. The unknown state-
wise parameters R0,n, ηn, and ζn were inferred in a trial-and-error
manner by fitting the model predicted j r

n(t) to the observa-
tional data within a calibration period. Specifically, the inference
algorithm operates by iteratively guessing values of R0,n, ηn and ζn

for each state n. The ranges for parameters—R0,n ∈ [0, 10], ηn

∈ [0, 0.4] and ζn ∈ [0, 1]—were chosen based on values deemed real-
istic before widespread testing of COVID-19 was conducted.2,19,32

This iteration process is repeated until attaining the optimal
R0, η, and ζ arrays that minimize the root-mean-squared-error
(RMSE) between the model predicted j r

n(t) and the ground
truth.

The calibration period was set to the ten-day period between
March 19 and 28, a period characterized by a rapid surge in epidemic
size with a basic reproduction ratio R0 ≈ 4.87 (state-wise median

FIG. 1. Evolution of epidemic size in the USA between March 10 and April 7.
A distinct inflection point can be observed on March 28, characterized with a
transition from a social distancing latency period regime to a social distancing
benefits manifest regime.

value) and the onset of social distancing in most US states in con-
junction with ramp up in testing services. However, the benefits
of social distancing in reducing the hospital bed demand-to-supply
only started to manifest after March 28. Therefore, we term the
period March 19–28 as the “latency period” (see the shaded area in
Fig. 1), and the period thereafter as “benefits manifestation period.”
Calibrating our model using baseline epidemiological data corre-
sponding to the “latency period” enabled us to unbiasedly probe
and address the question: How long and with what intensity does the
US need to implement social distancing as a sustainable public policy
during the COVID-19 pandemic?

III. RESULTS

A. Model calibration

Figures 2(a) and 2(b) show the iterative inference results of
COVID-19 epidemiological parameters. Figure 2(a) compares the
j r
n(t) predicted by the best-fit model (line) with the observed epi-
demic trends in New York, California, Texas, and Washington DC
(refer to supplementary material for the complete inference results
for all 52 locations). Figure 2(b) shows the combination of ηn and ζn

that gives rise to the minimum RMSE under a fixed R0,n [taking
values outlined in the respective subpanels in (a)]. Figures 2(c)
and 2(d) show the distribution of R0,n, ηn, and ζn for all 52 loca-
tions. The nationwide median value of R0 is found to be about 4.87
with the 25th and 75th percentile taking values of 4.27 and 5.76,
respectively. These values are consistently larger than that reported
in the other modeling studies conducted on the COVID-19 epi-
demics in China.33 This greater infectiousness could be due to the
absence of public awareness and effective intervention in the US
at the early stage of an epidemic outbreak. The nationwide median
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FIG. 2. Model calibration between March 19 and 28. (a) Daily observation of documented active COVID-19 cases (circle) is compared with the best-fit model (line). The
parameter combination leading to the best fit is outlined in each subpanel. (b) Root-mean-square-error (RMSE) between observation and model prediction is plotted as a
function of documentation ratio (η) and initial exposure ratio (ζ ) for each corresponding state. The basic reproduction ratio (R0) is held constant here, taking the values
outlined in the respective subpanels in (a). (c) Distribution of R0 across the 52 locations. (d) Distribution of η and ζ across the 52 locations. In (c) and (d), center of the box
represents state-wise median values. Edges of the box represent the 25th and 75th percentile. Whiskers extend to the extreme data points not considered outliers, and
outliers are represented by a circle symbol.
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values of η and ζ are found to be about 0.24 and 0.04, respectively.
The η ≈ 0.24 is in good agreement with the WHO situation report
No. 3431 which identifies that about 80% of all infected cases are
undocumented.

B. Indefinite-time social distancing

We estimate the demand on medical systems across the coun-
try by assuming that no effective containment intervention will take
place and the epidemic will progress following the trend observed
between March 19 and 28. In the context of this work, we interpret
the burden on the medical resource using the local demand-to-
supply ratio for hospital beds (yH,n) at an epidemic peak,

yH,n = Nn

∑

i
j∗n,iPH,i/XH,n. (2)

Here, j∗n,i is the peak value of jn,i(t); Nn is the total population of
state n30; and PH,i denotes the age-specific rate at which COVID-19
patients require hospitalization (data tabulated in the supplemen-
tary material of Ref. 13); XH,n denotes the state-wise numbers of
available hospital beds (data tabulated in the supplementary mate-
rial of Ref. 34). One should note that the yH,n can be overestimated
because the undocumented cases are constituted in part by asymp-
tomatic and/or untested COVID-19 carriers, who might not require
hospitalization. Figures 3(a) and 3(b) color each US state according
to its corresponding yH,n value. If the epidemic progression remains
unhalted, then the state-wise hospital beds could be overwhelmed by
up to 12 times. Similar trends were also observed in the evolution of

the demand-to-supply ratio of intensive care unit (ICU) beds, which
can be found in the supplementary material of this work.

Figures 3(c) and 3(d) evaluate the effectiveness of various social
distancing practices in balancing the medical demands and supply.
Herein, the decreases in the peak yH are plotted as functions of
the social distancing intensity (ϕ)—defined as the percent reduc-
tion in time-of-exposure Ti,k of the targeted age-group members.
For example, school closure reduces the values of Ti,k elements that
are associated with individuals aged 1–19 years; and business closure
and distancing the elder reduce Ti,k for those aged 20–59 years and
those aged 60-year-and-above, respectively. Formally, this treatment
is described with the following time-of-exposure matrix (Ti,k,intv)

modified per the type of social distancing practice,

Ti,k,intv = ϕTi,k











for i ≤ 2 or k ≤ 2, school closure
for i ∈ [3, 6] or k ∈ [3, 6], business closure

for i ≥ 7 or k ≥ 7, distancing elder
∀i, ∀k, all practices in effect

.

(3)

The modification of the time-of-exposure matrix lasts for the
duration of the epidemic. The side-by-side comparison in Fig. 3
shows that business closure is the most effective practice, possibly
because it targets at the majority of the population. At a fixed ϕ

level, elder distancing achieves a better outcome than school closure.
However, none of these practices could curb COVID-19 adequately
if they are implemented separately. Instead, a wholesale social dis-
tancing with all practices in effect must be taken, and it takes at least
an intervention intensity ϕ = 70% to reduce the medical demands

FIG. 3. Effectiveness of various social distancing interventions in reducing hospital demand-to-supply. (a) Shows the estimated demand-to-supply ratio of hospital beds (yH)
at state-wise epidemic peaks. (b) Demand-to-supply ratio of hospital bed yH is plotted as a function of intervention intensity (ϕ)—defined as the percent reduction in the
exposure time of individuals targeted by the intervention. The center of the box represents state-wise median values of yH and yICU . Edges of the box represent the 25th and
75th percentile. Whiskers extend to the extreme data points not considered outliers that are represented by dot symbols.
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FIG. 4. Interplay of intensity ϕ and implementation timing of finite-time social distancing. (a) Nationwide hospital bed demand-to-supply ratio (yH) is plotted as a function of
implementation timing for various social distancing intensities with a duration of 1 week. For social distancing lasting 1 week, stronger social distancing could lead to decreased
medical demand if social distancing is implemented at the optimal time. (b) Nationwide hospital bed demand-to-supply ratio (yH) is plotted as a function of implementation
timing for various social distancing intensities for a duration of ten weeks. For social distancing lasting ten weeks, stronger social distancing does not necessarily lead to
decreased medical demand, even if social distancing is implemented at the optimal time (tI).

to a balanced level under the premise that the social distancing can
last for indefinitely long time.

C. Finite-time social distancing

A prolonged period of social distancing could have devastat-
ing socio-economic implications that outweighs its benefits.35,36 If
society can only afford a finite-time social distancing, it is of utmost
importance to understand when and for how long the interven-
tion should be put into effect, so as to maximize the net benefit.
Figures 4(a) and 4(b) plot the effectiveness of finite-time social dis-
tancing as functions of intervention duration and implementation
timing for various ϕ. (Here, the nationwide demand-to-supply ratio
of medical resources: yH =

∑

n yH,nXH,n/
∑

n XH,n are used to bench-
mark intervention effectiveness.) The trends in Figs. 4(a) and 4(b)
show that unless the intervention could last indefinitely, a prema-
ture implementation could be counterproductive. It is also evident
that the duration of social distancing greatly affects the optimal value
of ϕ. Figure 4(a) shows that for social distancing lasting for one
week, increased ϕ leads to decreased medical demands. However,
Fig. 4(b) shows that for social distancing lasting for ten weeks, there
is an optimal value of ϕ ≈ 70% which corresponds to the maximum
achievable reduction in medical demands. Increasing ϕ beyond this
point decreases the effectiveness of the intervention. The minimum
“valley” points corresponding to each curve denote the optimal tI as
well as the corresponding maximum achievable reduction in yH.

In Fig. 5, we highlight the diminishing marginal benefits of
social distancing by plotting the maximum achievable reduction in
yH as a function of social distancing duration (weeks). The figure
clearly exhibits an emergence of two regimes. The first regime
corresponds to social distancing duration <2 weeks (hereafter short-
term social distancing). Within this regime, increased ϕ leads to a
proportionate reduction in medical demands. The second regime
corresponds to social distancing with duration ≥2 weeks (hereafter
long-term social distancing). Within this regime, a linear decrease
in medical demands is achieved at the cost of an exponentially
increasing social distancing duration. Increasing ϕ >70% yields a
significantly lower than expected reduction in medical demands.
This decreased effectiveness of increasing intensity and duration of
social distancing could be best described by the law of diminishing
returns, where the benefits of the intervention dwindle with more
units invested. It should be noted that if the social distancing dura-
tion were to be further increased, then the results would converge to
those discussed in Sec. III B.

We attempt to provide an explanation behind the phenomenon
of reduced medical benefits for ϕ >70% observed during the long-
term social distancing period. In Fig. 6, we explain the origin
of this occurrence by elucidating the epidemic curves that evolve
under a long-term social distancing period of 10 weeks for vari-
ous ϕ. When ϕ ≥ 70%, there exists a large buildup of susceptible
individuals, who remain prone to the infection at the end of the
social distancing period. The possibility of this residual suscep-
tible population to emerge as infectious with time remains very
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FIG. 5. Exponentially diminishing benefits of social distancing. Semi-log plot
for the relationship between social distancing duration and the corresponding
maximum attainable decrease in medical demands for social distancing of var-
ious intensities. The emergence of two regimes becomes clear, separated into
short-term (duration<2 weeks) and long-term (duration≥ 2 weeks, gray shaded
region). For short-term social distancing, stronger social distancing (denoted by
increasing intensity ϕ) leads to a monotonous decrease in medical demands. For
long-term social distancing, the largest reduction in medical demands is achieved
when ϕ ≈70%, beyond which the benefits of social distancing diminish.

high. Thus, one cannot rule out the possibility of a second wave
of infections in the USA after the initial wave of pandemic dies
out.12 This non-linear dynamics of intensity and duration indi-
cates that if social distancing cannot be maintained indefinitely, its
intensity, implementation time, and duration must be considered
carefully in order to maximize its benefits. Another implication of
our findings is that a premature removal of strict social distanc-
ing measures could lead to a large second wave of infections. The
non-linear behavior of finite-time social distancing warrants the
aggressive co-implementation of other interventions such as con-
tact tracing. Before re-opening of normal social-economic activities,
efforts need to be taken on identifying the potential COVID-19 car-
riers and physically isolating them from the large susceptible pop-
ulation, which will ultimately prevent the onset of second wave of
infection.37

D. Intermittent social distancing

We next evaluate the effectiveness of intermittent social dis-
tancing strategy—an arrangement comprising of alternating phases
of social distancing and no-distancing that last for variable dura-
tions—as a sustainable solution.38 Figure 7 plots the hospital bed
demand-to-supply ratio as a function of social distancing phase
duration τD, no-distancing (or normalcy) phase duration τN, and
intervention intensity ϕ. A comparison among each subpanel of
Fig. 7 indicates that the effectiveness of intermittent social distanc-
ing is positively correlated with ϕ. Furthermore, when ϕ is fixed,
the effectiveness of intermittent social distancing is determined by
τD/τN—the characteristic intermittent distancing-to-no-distancing
ratio. For instance, in Fig. 7(d), the intermittent arrangements

FIG. 6. Epidemic dynamics of ten-week social distancing with varying intensities ϕ. Epidemic dynamics for ten weeks social distancing initiated at tI with ϕ = 30% (a),
ϕ = 70% (b), and ϕ = 90% (c). Shaded regions denote the period where social distancing is in effect. The magnitude of the second peaks seen in panels (b) and (c) are
controlled by the percentage of susceptible individuals (S) within the population when social distancing ends. If the susceptible population is very large when social distancing
ends, a second wave of infections will spread throughout the population.
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FIG. 7. Effectiveness of intermittent social distancing. Nationwide hospital bed
demand-to-supply ratio (yH) is plotted as a function of social distancing phase
duration (τD) and normalcy phase duration (τN). Each subpanel (a)–(e) shows
the yH distribution under a fixed intervention intensity ϕ. In panel (d), the inter-
mittent arrangements with τD/τN = 1, 2, and 3 are marked with the dashed line,
the dashed-dotted line, and the dotted line, respectively, so as to highlight the
determining role of the intermittent ratio τD/τN under a fixed ϕ.

FIG. 8. Intermittent distancing to no-distancing duration ratio (τD/τN) and reduc-
tion in medical demands. At any intervention intensity ϕ, for 1≤ τD/τN ≤ 5, the
effectiveness of social distancing—measured by the percent reduction in hospi-
tal bed demand—increases rapidly with an increasing τD/τN . The effectiveness
wanes off around τD/τN ≈ 5.

corresponding to τD/τN = 1, 2, and 3 are marked with lines of vari-
ous styles. One could observe that the arrangements with the same
τD/τN result in the same demand-to-supply ratio outcome.

The determining role of the characteristic τD/τN ratio is fur-
ther elucidated in Fig. 8, wherein the percent reduction in hospital
bed demand is plotted as a function of τD/τN and ϕ. These observed
universal trends again imply that the marginal benefits of social dis-
tancing would diminish over a prolonged time. For 1 ≤ τD/τN ≤ 5,
the effectiveness of social distancing—measured by the percent
reduction in medical demands—increases rapidly with an increasing
τD/τN. Beyond the critical point of τD/τN ≈ 5, the increase in effec-
tiveness due to a further increase in τD/τN becomes negligible. Such
an observation holds valid regardless of ϕ. Take intermittent social
distancing with ϕ = 70% as an example: an effective intermittent
social distancing strategy would allow people to behave as normal
for one day, followed by five days of social distancing, and then
repeat. This strategy could alleviate medical burden up to 70% and
could avoid some of the burdens of long-term social distancing. This
behavior is also well described by the law of diminishing returns;
there is an optimal distancing-to-no-distancing ratio, beyond which
the time invested becomes greater than the benefits gained.

IV. CONCLUSION

In this work, we provide a comprehensive systematic analysis
of the effectiveness of three social distancing methods in alleviat-
ing the burden of the COVID-19 pandemic on nationwide medical
resources. Our baseline scenario represents a continuation of the
epidemic dynamics observed between March 19 and 28, during
which a rapid surge of COVID-19 cases is observed in the United
States and the effect of social distancing is yet to manifest. Our find-
ings suggest that under such a baseline condition, the state-wise
hospital could be overwhelmed by up to 12 times. Indefinite-time
social distancing is found to balance the medical demand-to-supply
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at epidemic peak provided a 70% reduction in the time-of-exposure
of the population within all age groups is achieved. Finite-time
social distancing is found to follow two regimes; short-term (dura-
tion <2 weeks) and long-term (duration ≥2 weeks). Short-term
social distancing is characterized by a proportionate reduction in
medical demands for increased social distancing intensity (ϕ). Long-
term social distancing is characterized by an optimal ϕ (∼70%),
which yields the largest reduction in medical demands. Long-term
social distancing is also characterized by a linear decrease in medi-
cal demands for exponentially increasing social distancing duration.
The non-linear dynamics between ϕ and hospitalization demand
emphasize that precautions need to be taken when lifting strict social
distancing measures abruptly, so as to prevent the onset of a second
wave of infection. Secondary interventions such as contact tracing
are necessary for identifying and isolating the COVID-19 carriers
from a potential large susceptible pool of the population. Intermit-
tent social distancing is found to rapidly reduce medical demands, as
long as the characteristic distancing-to-no-distancing ratio (τD/τN)

does not exceed 5. If τD/τN is increased beyond 5, the benefits begin
to wane significantly. Finite-time social distancing and intermittent
social distancing are both found to be effective social distancing
strategies in mitigating medical demands related to the COVID-19
pandemic. However, the implementation of these strategies must be
carefully considered, as their benefits are found to be well described
by the law of diminishing returns. Findings from this study may
also apply to other regions of Europe, as well as Asia, where social
distancing measures have been in effect to slow the epidemic spread.

SUPPLEMENTARY MATERIAL

See the supplementary material for the following datasets:

• Time-of-exposure matrix: The daily average time-of-exposure of
the age-stratified American population. Units: minutes per day.

• Interstate mobility matrix: Monthly resolved datasets quantifying
the interstate mobility pattern in the USA. The matrix elements
represent the probability that a passenger leaving a departure state
(row) ends up in a destination state (column). Units: dimension-
less.

• Model calibration results: The state-wise epidemiological param-
eters that lead to the best fit between model prediction and
observed epidemic trend. Units: Basic reproduction ratio, docu-
mentation ratio, exposed ratio: dimensionless; RMSE: number of
people.

• Hospitalization and critical condition rate: The age-specific prob-
ability by which an infected individual requires hospitalization,
and the age-specific probability by which a hospitalized COVID-
19 patient develops into critical condition. Units: dimensionless.

• State-wise population: State-wise population and demographic
composition. Units: Population: number of people; fraction of
population within each age group: dimensionless.

• State-wise medical resources: State-wise number of available
hospital beds and ICU beds. Units: number of beds.
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