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Abstract

Power and reproducibility are key to enabling refined scientific discoveries in contemporary big 

data applications with general high-dimensional nonlinear models. In this paper, we provide 

theoretical foundations on the power and robustness for the model-X knockoffs procedure 

introduced recently in Candès, Fan, Janson and Lv (2018) in high-dimensional setting when the 

covariate distribution is characterized by Gaussian graphical model. We establish that under mild 

regularity conditions, the power of the oracle knockoffs procedure with known covariate 

distribution in high-dimensional linear models is asymptotically one as sample size goes to 

infinity. When moving away from the ideal case, we suggest the modified model-X knockoffs 

method called graphical nonlin-ear knockoffs (RANK) to accommodate the unknown covariate 

distribution. We provide theoretical justifications on the robustness of our modified procedure by 

showing that the false discovery rate (FDR) is asymptotically controlled at the target level and the 

power is asymptotically one with the estimated covariate distribution. To the best of our 

knowledge, this is the first formal theoretical result on the power for the knockoffs procedure. 

Simulation results demonstrate that compared to existing approaches, our method performs 

competitively in both FDR control and power. A real data set is analyzed to further assess the 

performance of the suggested knockoffs procedure.
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1 Introduction

Feature selection with big data is of fundamental importance to many contemporary 

applications from different disciplines of social sciences, health sciences, and engineering 
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[36, 24, 8]. Over the past two decades, various feature selection methods, theory, and 

algorithms have been extensively developed and investigated for a wide spectrum of flexible 

models ranging from parametric to semiparametric and nonparametric linking a high-

dimensional covariate vector x = (X1, · · · , Xp)T of p features Xj’s to a response Y of 

interest, where the dimensionality p can be large compared to the available sample size n or 

even greatly exceed n. The success of feature selection for enhanced prediction in practice 

can be attributed to the reduction of noise accumulation associated with high-dimensional 

data through dimensionality reduction. In particular, most existing studies have focused on 

the power perspective of feature selection procedures such as the sure screening property, 

model selection consistency, oracle property, and oracle inequalities. When the model is 

correctly specified, researchers and practitioners often would like to know whether the 

estimated model involving a subset of the p covariates enjoys reproducibility in that the 

fraction of noise features in the discovered model is controlled. Yet such a practical issue of 

reproducibility is largely less well understood for the settings of general high-dimensional 

nonlinear models. Moreover, it is no longer clear whether the power of feature selection 

procedures can be retained when one intends to ensure the reproducibility.

Indeed, the issues of power and reproducibility are key to enabling refined scientific 

discoveries in big data applications utilizing general high-dimensional nonlinear models. To 

characterize the reproducibility of statistical inference, the seminal paper of [4] introduced 

an elegant concept of false discovery rate (FDR) which is defined as the expectation of the 

fraction of false discoveries among all the discoveries, and proposed a popularly used 

Benjamini–Hochberg procedure for FDR control by resorting to the p-values for large-scale 

multiple testing returned by some statistical estimation and testing procedure. There is a 

huge literature on FDR control for large-scale inference and various generalizations and 

extensions of the original FDR procedure were developed and investigated for different 

settings and applications [5, 15, 57, 58, 1, 13, 14, 20, 64, 12, 32, 27, 48, 66, 21, 44, 59]. 

Most of existing work either assumes a specific functional form such as linearity on the 

dependence structure of response Y on covariates Xj’s, or relies on the p-values for 

evaluating the significance of covariates Xj’s. Yet in high-dimensional settings, we often do 

not have such luxury since response Y could depend on covariate vector x through very 

complicated forms and even when Y and x have simple dependence structure, high 

dimensionality of covariates can render classical p-value calculation procedures no longer 

justified or simply invalid [39, 26, 60]. These intrinsic challenges can make the p-value 

based methods difficult to apply or even fail [9].

To accommodate arbitrary dependence structure of Y on x and bypass the need of 

calculating accurate p-values for covariate significance, [9] recently introduced the model-X 

knockoffs framework for FDR control in general high-dimensional nonlinear models. Their 

work was inspired by and builds upon the ingenious development of the knockoff filter in 

[2], which provides effective FDR control in the setting of Gaussian linear model with 

dimensionality p no larger than sample size n. The knockoff filter was later extended in [3] 

to high-dimensional linear model using the ideas of data splitting and feature screening. The 

salient idea of [2] is to construct the so-called “knockoff” variables which mimic the 

dependence structure of the original covariates but are independent of response Y 
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conditional on the original covariates. These knockoff variables can be used as control 

variables. By comparing the regression outcomes for original variables with those for control 

variables, the relevant set of variables can be identified more accurately and thus the FDR 

can be better controlled. The model-X knockoffs framework introduced in [9] greatly 

expands the applicability of the original knockoff filter in that the response Y and covariates 

x can have arbitrarily complicated dependence structure and the dimensionality p can be 

arbitrarily large compared to sample size n. It was theoretically justified in [9] that the 

model-X knockoffs procedure controls FDR exactly in finite samples of arbitrary 

dimensions. However, one important assumption in their theoretical development is that the 

joint distribution of covariates x should be known. Moreover, formal power analysis of the 

knockoffs framework is still lacking even for the setting of Gaussian linear model.

Despite the importance of known covariate distribution in their theoretical development, [9] 

empirically explored the scenario of unknown covariate distribution for the specific setting 

of generalized linear model (GLM) [46] with Gaussian design matrix and discovered that the 

estimation error of the covariate distribution can have negligible effect on FDR control. Yet 

there exist no formal theoretical justifications on the robustness of the model-X knockoffs 

method and it is also unclear to what extent such robustness can hold beyond the GLM 

setting. To address these fundamental challenges, our paper intends as the first attempt to 

provide theoretical foundations on the power and robustness for the model-X knockoffs 

framework. Specifically, the major innovations of the paper are twofold. First, we will 

formally investigate the power of the knockoffs framework in high-dimensional linear 

models with both known and unknown covariate distribution. Second, we will provide 

theoretical support on the robustness of the model-X knockoffs procedure with unknown 

covariate distribution in general high-dimensional nonlinear models.

More specifically, in the ideal case of known covariate distribution, we prove that the model-

X knockoffs procedure in [9] has asymptotic power one under mild regularity conditions in 

high-dimensional linear models. When moving away from the ideal scenario, to 

accommodate the difficulty caused by unknown covariate distribution we suggest the 

modified model-X knockoffs method called graphical nonlinear knockoffs (RANK). The 

modified knockoffs procedure exploits the data splitting idea, where the first half of the 

sample is used to estimate the unknown covariate distribution and reduce the model size, and 

the second half of the sample is employed to globally construct the knockoff variables and 

apply the knockoffs procedure. We establish that the modified knockoffs procedure 

asymptotically controls the FDR regardless of whether the reduced model contains the true 

model or not. Such feature makes our work intrinsically different from that in [3] requiring 

the sure screening property [23] of the reduced model; see Section 3.1 for more detailed 

discussions on the differences. In our theoretical analysis of FDR, we still allow for arbitrary 

dependence structure of response Y on covariates x and assume that the joint distribution of 

x is characterized by Gaussian graphical model with unknown precision matrix [41]. In the 

specific case of high-dimensional linear models with unknown covariate distribution, we 

also provide robustness analysis on the power of our modified procedure.

The rest of the paper is organized as follows. Section 2 reviews the model-X knockoffs 

framework and provides theoretical justifications on its power in high-dimensional linear 
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models. We introduce the modified model-X knockoffs procedure RANK and investigate its 

robustness on both FDR control and power with respect to the estimation of unknown 

covariate distribution in Section 3. Section 4 presents several simulation examples of both 

linear and nonlinear models to verify our theoretical results. We demonstrate the 

performance of our procedure on a real data set in Section 5. Section 6 discusses some 

implications and extensions of our work. The proofs of main results are relegated to the 

Appendix. Additional technical details are provided in the Supplementary Material.

2 Power analysis for oracle model-X knockoffs

Suppose we have a sample (xi, Y i)i = 1
n  of n independent and identically distributed (i.i.d.) 

observations from the population (x, Y), where dimensionality p of covariate vector x = (X1, 

· · · , Xp)T can greatly exceed available sample size n. To ensure model identifiability, it is 

common to assume that only a small fraction of p covariates Xj’s are truly relevant to 

response Y. To be more precise, [9] defined the set of irrelevant features S1 as that 

consisting of Xj’s such that Xj is independent of Y conditional on all remaining p − 1 

covariates Xk’s with k ≠ j, and thus the set of truly relevant features S0 is given naturally by 

S1
C, the complement of set S1. Features in sets S0 and S0

C = S1 are also referred to as 

important and noise features, respectively.

We aim at accurately identifying these truly relevant features in set S0 that is assumed to be 

identifiable while keeping the false discovery rate (FDR) [4] under control. The FDR for a 

feature selection procedure is defined as

FDR = E[FDP] with FDP =
S ∩ S0

C

S
, (1)

where S denotes the sparse model returned by the feature selection procedure, | · | stands for 

the cardinality of a set, and the convention 0/0 = 0 is used in the definition of the false 

discovery proportion (FDP) which is the fraction of noise features in the discovered model. 

Here feature selection procedure can be any favorite sparse modeling method by the choice 

of the user.

2.1 Review of model-X knockoffs framework

Our suggested graphical nonlinear knockoffs procedure in Section 3 falls in the general 

framework of model-X knockoffs introduced in [9], which we briefly review in this section. 

The key ingredient of model-X knockoffs framework is the construction of the so-called 

model-X knockoff variables that are defined as follows.

Definition 1 ([9]). Model-X knockoffs for the family of random variables x = (X1, · · ·, Xp)T 

is a new family of random variables x = (X1, ⋯ , Xp)T  that satisfies two properties: (1) 

(xT , xT )swap(S) =d (xT , xT ) for any subset S ⊂ 1, ⋯, p , where swap (S) means swapping 

components Xj and Xj for each j ∈ S and =d  denotes equal in distribution, and (2) x ╨ Y |x.
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We see from Definition 1 that model-X knockoff variables Xj′s mimic the probabilistic 

dependency structure among the original features Xj’s and are independent of response Y 
given Xj’s. When the covariate distribution is characterized by Gaussian graphical model 

[41], that is,

x N 0, Ω0
−1

(2)

with p×p precision matrix Ω0 encoding the graphical structure of the conditional dependency 

among the covariates Xj’s, we can construct the p-variate model-X knockoff random 

variable x characterized in Definition 1 as

x x N x − diag s Ω0x, 2diag s − diag s Ω0diag s , (3)

where s is a p-dimensional vector with nonnegative components chosen in a suitable way. In 

fact, in view of (2) and (3) it is easy to show that the original features and model-X knockoff 

variables have the following joint distribution

x
x N 0

0 ,
Σ0 Σ0 − diag s

Σ0 − diag s Σ0
(4)

with Σ0 = Ω0
−1 the covariance matrix of covariates x. Intuitively, larger components of s 

means that the constructed knockoff variables deviate further from the original features, 

resulting in higher power in distinguishing them. The p-dimensional vector s in (3) should 

be chosen in a way such that Σ0 − 2−1diag{s} is positive definite, and can be selected using 

the methods in [9]. We will treat it as a nuisance parameter throughout our theoretical 

analysis.

With the constructed knockoff variables x, the knockoffs inference framework proceeds as 

follows. We select important variables by resorting to the knockoff statistics W j = fj(Zj, Zj)
defined for each 1 ≤ j ≤ p, where Zj and Zj represent feature importance measures for jth 

covariate Xj and its knockoff counterpart Xj, respectively, and fj (·, ·) is an antisymmetric 

function satisfying fj = (zj, zj) = − fj(zj, zj). For example, in linear regression models, one 

can choose Zj and Zj as the Lasso [61] regression coefficients of Xj and Xj, respectively, 

and a valid knockoff statistic is W j = fj(zj, zj) = zj − zj . There are also many other options 

for defining the feature importance measures. Observe that all model-X knockoff variables 

Xj′s are just noise features by the second property in Definition 1. Thus intuitively, a large 

positive value of knockoff statistic Wj indicates that jth covariate Xj is important, while a 

small magnitude of Wj usually corresponds to noise features.

The final step of the knockoffs inference framework is to sort |Wj|’s from high to low and 

select features whose Wj’s are at or above some threshold T, which results in the discovered 

model

S = S(T ) = {1 ≤ j ≤ p:W j ≥ T} . (5)

Fan et al. Page 5

J Am Stat Assoc. Author manuscript; available in PMC 2020 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Following [2] and [9], one can choose the threshold T in the following two ways

T = min t ∈ W: j:W j ≤ − t
j:W j ⩾ t ≤ q , (6)

T+ = min t ∈ W: 1 + j:W j ≤ − t
j:W j ⩾ t ≤ q , (7)

where W = W j :1 ≤ j ≤ p / 0  is the set of unique nonzero values attained by |Wj|’s and q 

∈ (0, 1) is the desired FDR level specified by the user. The procedures using threshold T in 

(6) and threshold T+ in (7) are referred to as knockoffs and knockoffs+ methods, 

respectively. It was proved in [9] that model-X knockoffs procedure controls a modified 

FDR that replaces S  in the denominator by q−1 + S  in (1), and model-X knockoffs+ 

procedure achieves exact FDR control in finite samples regardless of dimensionality p and 

dependence structure of response Y on covariates x. The major assumption needed in [9] is 

that the distribution of covariates x is known. Throughout the paper, we implicitly use the 

threshold T+ defined in (7) for FDR control in the knockoffs inference framework but still 

write it as T for notational simplicity.

2.2 Power analysis in linear models

Although the knockoffs procedures were proved rigorously to have controlled FDR in [2, 3, 

9], their power advantages over popularly used approaches have been demonstrated only 

numerically therein. In fact, formal power analysis for the knockoffs framework is still 

lacking even in simple model settings such as linear regression. We aim to fill in this gap as 

a first attempt and provide theoretical foundations on the power analysis for model-X 

knockoffs framework. In this section, we will focus on the oracle model-X knockoffs 

procedure for the ideal case when the true precision matrix Ω0 for the covariate distribution 

in (2) is known, which is the setting assumed in [9]. The robustness analysis for the case of 

unknown precision matrix Ω0 will be undertaken in Section 3.

We would like to remark that the power analysis for the knockoffs framework is necessary 

and nontrivial. The FDR and power are two sides of the same coin, just like type I and type 

II errors in hypothesis testing. The knockoffs framework is a wrapper and can be combined 

with most model selection methods to achieve FDR control. Yet the theoretical properties of 

power after applying the knockoffs procedure are completely unknown for the case of 

correlated covariates and unknown covariate distribution. For example, when the knockoffs 

framework is combined with the Lasso, it further selects variables from the set of variables 

picked by Lasso applied with the augmented design matrix to achieve the FDR control. For 

this reason, the power of knockoffs is usually lower than that of Lasso. The main focus of 

this section is to investigate how much power loss the knockoffs framework would encounter 

when combined with Lasso.

Since the power analysis for the knockoffs framework is nontrivial and challenging, we 

content ourselves on the setting of high-dimensional linear models for the technical analysis 

on power. The linear regression model assumes that
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y = Xβ0 + ε, (8)

where y = (Y1, · · ·, Yn)T is an n-dimensional response vector, X = (x1, · · ·, xn)T is an n × p 
design matrix consisting of p covariates Xj’s, β0 = (β0,1, · · ·, β0,p)T is a p-dimensional true 

regression coefficient vector, and ε = (ε1, · · ·, εn)T is an n-dimensional error vector 

independent of X. As mentioned before, the true model S0 = supp(β0) which is the support of 

β0 is assumed to be sparse with size s = S0 , and the n rows of design matrix X are i.i.d. 

observations generated from Gaussian graphical model (2). Without loss of generality, all the 

diagonal entries of covariance matrix Σ0 are assumed to be ones.

As discussed in Section 2.1, there are many choices of the feature selection procedure up to 

the user for producing the feature importance measures Zj and Zj for covariates Xj and 

knockoff variables Xj, respectively, and there are also different ways to construct the 

knockoff statistics Wj. For the illustration purpose, we adopt the Lasso coefficient difference 

(LCD) as the knockoff statistics in our power analysis. The specific choice of LCD for 

knockoff statistics was proposed and recommended in [9], in which it was demonstrated 

empirically to outperform some other choices in terms of power. The LCD is formally 

defined as

W j = β j(λ) − β p + j(λ) , (9)

where β j(λ) and β p + j(λ) denote the jth and (p + j)th components, respectively, of the Lasso 

[61] regression coefficient vector

β (λ) = argminb ∈ ℝ2p (2n)−1 y−[X, X]b 2
2 + λ b 1 (10)

with λ ≥ 0 the regularization parameter, X = (x1, ⋯ , xn)T  an n × p matrix whose n rows are 

independent random vectors of model-X knockoff variables generated from (3), and ⋅ r
for r ≥ 0 the Lr-norm of a vector. To simplify the technical analysis, we assume that with 

asymptotic probability one, there are no ties in the magnitude of nonzero Wj’s and no ties in 

the magnitude of nonzero components of Lasso solution in (10), which is a mild condition in 

light of the continuity of the underlying distributions.

To facilitate the power analysis, we impose some basic regularity conditions.

Condition 1. The components of ε are i.i.d. with sub-Gaussian distribution.

Condition 2. It holds that min
j ∈ S0

β0, j ≥ kn (logp)/n 1/2 for some slowly diverging sequence 

κn → ∞ as n → ∞.

Condition 3. There exists some constant c ∈ (2(qs)−1, 1) such that with asymptotic 

probability one, S ≥ cs for S given in (5).
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Condition 1 can be relaxed to heavier-tailed distributions at the cost of slower convergence 

rates as long as similar concentration inequalities used in the proofs continue to hold. 

Condition 2 is assumed to ensure that the Lasso solution β (λ) does not miss a great portion 

of important features in S0. This is necessary since the knockoffs procedure under 

investigation builds upon the Lasso solution and thus its power is naturally upper bounded 

by that of Lasso. To see this, recall the well-known oracle inequality for Lasso [7, 8] that 

with asymptotic probability one, β (λ) − β0 2 = O(s1/2λ) for λ chosen in the order of {(log 

p)/n}1/2. Then Condition 2 entails that for some κn → ∞, 

O(sλ2) = β (λ) − β0 2
2 ≥ j ∈ SL

c ∩ S0
β0, j

2 ≥ n−1(logp)kn
2 SL

c ∩ S0  with SL = supp β (λ) . Thus 

the number of important features missed by Lasso SL
c ∩ S0  is upper bounded by O(skn

−2)

with asymptotic probability one. This guarantees that the power of Lasso is lowered 

bounded by 1 − O(kn
−2); that is, Lasso has asymptotic power one. However, as discussed 

previously the power of knockoffs is always upper bounded by that of Lasso. So we are 

interested in the relative power of knockoffs compared to that of Lasso. For this reason, 

Condition 2 is imposed to simplify the technical analysis of the knockoffs power by ensuring 

that the asymptotic power of Lasso is one. We will show in Theorem 1 that there is almost 

no power loss when applying model-X knockoffs procedure.

Condition 3 imposes a lower bound on the size of the sparse model selected by the 

knockoffs procedure. Recall that we assume the number of true variables s can diverge with 

sample size n. The rationale behind Condition 3 is that any method with high power should 

at least be able to select a large number of variables which are not necessarily true ones 

though. Since it is not straightforward to check, we provide a sufficient condition that is 

more intuitive in Lemma 1 below, which shows that Condition 3 can hold as long as there 

exist enough strong signals in the model. We acknowledge that Lemma 1 may not be a 

necessary condition for Condition 3.

Lemma 1. Assume that Condition 1 holds and there exists some constant c ∈ (2(qs)−1, 1) 

such that S2 ≥ cs with S2 = j: β0, j ≫ [sn−1(logp)]1/2 . Then Condition 3 holds.

We would like to mention that the conditions of Lemma 1 are not stronger than Condition 2. 

We require a few strong signals, and yet still allow for many very weak ones. In other words, 

the set of strong signals S2 is only a large enough proper subset of the set of all signals S0.

We are now ready to characterize the statistical power of the knockoffs procedure in high-

dimensional linear model (8). Formally speaking, the power of a feature selection procedure 

is defined as

Power(S) = E
S ∩ S0

S0
, (11)

where S denotes the discovered sparse model returned by the feature selection procedure.
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Theorem 1. Assume that Condition 1–3 hold, all the eigenvalues of Ω0 are bounded away 

from 0 and ∞, the smallest eigenvalue of 2diag(s) − diag(s)Ω0diag(s) is positive and 

bounded away from 0, and λ = Cλ{(log p)/n}1/2 with Cλ > 0 some constant. Then the 

oracle model-X knockoffs procedure satisfies that with probability at least 1 − c3p−c3,

S ∩ S0 / S0 ≥ 1 − Cl1Cλ(φ + 1)kn−1

and therefore,

Power(S) = E
S ∩ S0

S0
≥ 1 − Cl1Cλ(φ + 1)kn−1 − c3p−c3 + o(kn−1) 1

as n → ∞, where φ is the golden ratio and Cl1 is some positive constant.

Theorem 1 reveals that the oracle model-X knockoffs procedure in [9] knowing the true 

precision matrix Ω0 for the covariate distribution can indeed have asymptotic power one 

under some mild regularity conditions. Since parameter κn characterizes the signal strength, 

it is seen that the stronger the signal, the faster the convergence of power to one. This shows 

that for the ideal case, model-X knockoffs procedure can enjoy appealing FDR control and 

power properties simultaneously.

3 Robustness of graphical nonlinear knockoffs

When moving away from the ideal scenario considered in Section 2, a natural question is 

whether both properties of FDR control and power can continue to hold with no access to 

the knowledge of true covariate distribution. To gain insights into such a question, we now 

turn to investigating the robustness of model-X knockoffs framework. Hereafter we assume 

that the true precision matrix Ω0 for the covariate distribution in (2) is unknown. We will 

begin with the FDR analysis and then move on to the power analysis.

3.1 Modified model-X knockoffs

We would like to emphasize that the linear model assumption is no longer needed here and 

arbitrary dependence structure of response y on covariates x is allowed. As mentioned in 

Introduction, to overcome the difficulty caused by unknown precision matrix Ω0 we modify 

the model-X knockoffs procedure described in Section 2.1 and suggest the method of 

graphical nonlinear knockoffs (RANK).

To ease the presentation, we first introduce some notation. For each given p × p symmetric 

positive definite matrix Ω, denote by CΩ = Ip − diag{s}Ω and BΩ = (2diag{s} – 

diag{s}Ωdiag{s})1/2 the square root matrix. We defined n × p matrix XΩ = x1
Ω, ⋯ , xn

Ω T
 by 

independently generating Xi
Ω from the conditional distribution

Fan et al. Page 9

J Am Stat Assoc. Author manuscript; available in PMC 2020 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



xi
Ω xi N CΩxi, BΩ 2 , (12)

where X = (x1, · · ·, xn)T is the original n × p design matrix generated from Gaussian 

graphical model (2). It is easy to show that the (2p)-variate random vectors xiT , xi
Ω T T

 are 

i.i.d. with Gaussian distribution of mean 0 and covariance matrix given by cov(xi) =Σ0, 

cov xi, xi
Ω = Σ0CΩ, and cov xi

Ω = BΩ 2 + CΩΣ0 CΩ T
.

Our modified knockoffs method RANK exploits the idea of data splitting, in which one half 

of the sample is used to estimate unknown precision matrix Ω0 and reduce the model 

dimensionality, and the other half of the sample is employed to construct the knockoff 

variables and implement the knockoffs inference procedure, with the steps detailed below.

• Step 1. Randomly split the data (X, y) into two folds (X(k), y(k)) with 1 ≤ k ≤ 2 

each of sample size n/2.

• Step 2. Use the first fold of data (X(1), y(1)) to obtain an estimate Ω of the 

precision matrix and a reduced model with support S.

• Step 3. With estimated precision matrix Ω from Step 2, construct an (n/2) × p 

knockoffs matrix X using X(2) with rows independently generated from (12); that 

is, X = X(2)(CΩ)
T

+ ZBΩ with Z an (n/2) × p matrix with i.i.d. N(0; 1) 

components.

• Step 4. Construct knockoff statistics Wj’s using only data on support S, that is, 

W j = W j(y(2), XS
(2), XS) for j ∈ S and Wj = 0 for j ∈ Sc. Then apply knockoffs 

inference procedure to Wj’s to obtain final set of features S.

Here for any matrix A and subset S ⊂ (1, ⋯ , p), the compact notation AS stands for the 

submatrix of A consisting of columns in set S.

As discussed in Section 2.1, the model-X knockoffs framework utilizes sparse regression 

procedures such as the Lasso. For this reason, even in the original model-X knockoffs 

procedure the knockoff statistics Wj’s (see, e.g., (9)) take nonzero values only over a much 

smaller model than the full model. This observation motivates us to estimate such a smaller 

model using the first half of the sample in Step 2 of our modified procedure. When 

implementing this modified procedure, we limit ourselves to sparse models S with size 

bounded by some positive integer Kn that diverges with n; see, for example, [30, 45] for 

detailed discussions and justifications on similar consideration of sparse models. In addition 

to sparse regression procedures, feature screening methods such as [23, 17] can also be used 

to obtain the reduced model S.

The above modified knockoffs method differs from the original model-X knockoffs 

procedure [9] in that we use an independent sample to obtain the estimated precision matrix 

Ω and reduced model S. In particular, the independence between estimates (Ω, S) and data 
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(X(2), y(2)) plays an important role in our theoretical analysis for the robustness of the 

knockoffs procedure. In fact, the idea of data splitting has been popularly used in the 

literature for various purposes [25, 19, 55, 3]. Although the work of [3] has the closest 

connection to ours, there are several key differences between these two methods. 

Specifically, [3] considered high-dimensional linear model with fixed design, where the data 

is split into two portions with the first portion used for feature screening and the second 

portion employed for applying the original knockoff filter in [2] on the reduced model. To 

ensure FDR control, it was required in [3] that the feature screening method should enjoy the 

sure screening property [23], that is, the reduced model after the screening step contains the 

true model S0 with asymptotic probability one. In contrast, one major advantage of our 

method is that the asymptotic FDR control can be achieved without requiring the sure 

screening property; see Theorem 2 in Section 3.2 for more details. Such major distinction is 

rooted on the difference in constructing knockoff variables; that is, we construct model-X 

knockoff variables globally in Step 3 above, whereas [3] constructed knockoff variables 

locally on the reduced model. Another major difference is that our method works with 

random design and does not need any assumption on how response y depends upon 

covariates x, while the method in [3] requires the linear model assumption and cannot be 

extended to nonlinear models.

3.2 Robustness of FDR control for graphical nonlinear knockoffs

We begin with investigating the robustness of FDR control for the modified model-X 

knockoffs procedure RANK. To simplify the notation, we rewrite (X(2), y(2)) as (X, y) with 

sample size n whenever there is no confusion, where n now represents half of the original 

sample size. For each given p × p symmetric positive definite matrix Ω, an n × p knockoffs 

matrix XΩ = x1
Ω, ⋯ , xn

Ω T
 can be constructed with n rows independently generated 

according to (12) and the modified knockoffs procedure proceeds with a given reduced 

model S. Then the FDP and FDR functions in (1) can be rewritten as

FDRn(Ω, S) = E FDPn y, XS, XS
Ω , (13)

where the subscript n is used to emphasize the dependence of FDP and FDR functions on 

sample size. It is easy to check that the knockoffs procedure based on (y, XS, XS
Ω0) satisfies 

all the conditions in [9] for FDR control for any reduced model S that is independent of X 

and XΩ0, which ensures that FDRn(Ω0, S) can be controlled at the target level q. To study the 

robustness of our modified knockoffs procedure, we will make a connection between 

functions FDRn(Ω, S) and FDRn(Ω0, S).

To ease the presentation, denote by X0 = XΩ0 the oracle knockoffs matrix with Ω =Ω0, 

C0 = CΩ0, and B0 = BΩ0. The following proposition establishes a formal characterization of 

the FDR as a function of the precision matrix Ω used in generating the knockoff variables 

and the reduced model S.
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Proposition 1. For any given symmetric positive definite Ω ∈ ℝp × p and S ⊂ 1, ⋯ , p , it 

holds that

FDRn(Ω, S) = E gn Xaug
S HΩ , (14)

where Xaug
S = [X, X0, S] ∈ ℝn × p + S , function gn(·) is some conditional expectation of the 

FDP function whose functional form is free of Ω and S, and

HΩ =
Ip CS

Ω − C0, S B0, S
T B0, S

−1/2
BS

Ω T 1/2

0 B0, S
T B0, S

−1/2
BS

Ω T
BS

Ω 1/2 .

We see from Proposition 1 that when Ω=Ω0, it holds that HΩ0 = Ip + S  and thus the value of 

the FDR function at point Ω0 reduces to

FDRn(Ω0, S) = E gn XaugS ,

which can be shown to be bounded from above by the target FDR level q using the results 

proved in [9]. Since the dependence of FDR function on Ω is completely through matrix HΩ, 

we can reparameterize the FDR function as FDRn(HΩ, S). In view of (14), FDRn(HΩ, S) is the 

expectation of some measurable function with respect to the probability law of Xaug
S  which 

has matrix normal distribution with independent rows, and thus is expected to be a smooth 

function of entries of HΩ by measure theory. Motivated by such an observation, we make the 

following Lipschitz continuity assumption.

Condition 4. There exists some constant L > 0 such that for all S ≤ Kn and 

Ω − Ω0 2 ≤ C2an with some constant C2 > 0 an → 0, 

FDRn(HΩ, S) − FDRn(HΩ0, S) ≤ L HΩ − HΩ0 F , where ⋅ 2 and ⋅ F  denote the matrix 

spectral norm and matrix Frobenius norm, respectively

Condition 5. Assume that the estimated precision matrix Ω satisfies Ω − Ω0 2 ≤ C2an with 

probability 1 − O(p−c1) for some constants C2, c1 > 0 and an → 0, and that S ≤ Kn.

The error rate of precision matrix estimation assumed in Condition 5 is quite flexible. We 

would like to emphasize that no sparsity assumption has been made on the true precision 

matrix Ω0. Bounding the size of sparse models is also important for ensuring model 

identifiability and stability; see, for instance, [30, 45] for more detailed discussions.

Theorem 2. Assume that all the eigenvalues of Ω0 are bounded away from 0 and ∞ and the 

smallest eigenvalue of 2diag(s) − diag(s)Ω0diag(s) is bounded from below by some positive 

constant. Then under Condition 4, it holds that
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sup
S ≤ Kn, Ω − Ω0 2 ≤ C2an

FDRn(HΩ, S) − FDR(HΩ0, S) ≤ O Kn
1/2an . (15)

Moreover, under Conditions 4–5 with Kn
1/2an 0, the FDR of RANK is bounded from 

above by q + O Kn
1/2an + O p−c1 , where q ∈ (0, 1) is the target FDR level.

Theorem 2 establishes the robustness of the FDR with respect to the precision matrix Ω; see 

the uniform bound in (15). As a consequence, it shows that our modified model-X knockoffs 

procedure RANK can indeed have FDR asymptotically controlled at the target level q. We 

remark that the term Kn
1/2 in Theorem 2 is because Condition 4 is imposed through the 

matrix Frobenius norm, which is motivated from results on the smoothness of integral 

function from calculus. If one is willing to impose assumption through matrix spectral norm 

instead of Frobenius norm, then the extra term Kn
1/2 can be dropped and the set S can be 

taken as the full model {1, · · ·, p}.

We would like to stress that Theorem 2 allows for arbitrarily complicated dependence 

structure of response y on covariates x and for any valid construction of knockoff statistics 

Wj’s. This is different from the conditions needed for power analysis in Section 2.2 (that is, 

the linear model setting and LCD knockoff statistics). Moreover, the asymptotic FDR 

control in Theorem 2 does not need the sure screening property of ℙ S ⊃ S0 1 as n → 

∞.

3.3 Robustness of power in linear models

We are now curious about the other side of the coin; that is, the robustness theory for the 

power of our modified knockoffs procedure RANK. As argued at the beginning of Section 

2.2, to ease the presentation and simplify the technical derivations we come back to high-

dimensional linear models (8) and use the LCD in (9) as the knockoff statistics. The 

difference with the setting in Section 2.2 is that we no longer assume that the true precision 

matrix Ω0 is known and use the modified knockoffs procedure introduced in Section 3.1 to 

achieve asymptotic FDR control.

Recall that for the RANK procedure, the reduced model S is first obtained from an 

independent subsample and then the knockoffs procedure is applied on the second fold of 

data to further select features from S. Clearly if S does not have the sure screening property 

of ℙ S ⊃ S0 1 as n → ∞, then the Lasso solution based on [XS
(2), XS

(2)] as given in (18) is 

no longer a consistent estimate of β0 even when the true precision matrix Ω0 is used to 

generate the knockoff variables. In addition, the final power of our modified knockoffs 

procedure will always be upper bounded by s−1 S ∩ S0 . Nevertheless, the results in this 

section are still useful in the sense that model (8) can be viewed as the projected model on 

support S. Thus our power analysis here is relative power analysis with respect to the 

reduced model S. In other words, we will focus on how much power loss would occur after 
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we apply the model-X knockoffs procedure to (XS
(2)

, XS
Ω, y(2)) when compared to the power 

of s−1 S ∩ S0 . Since our focus is relative power loss, without loss of generality we will 

condition on the event

S ⊃ S0 . (16)

We would like to point out that all conditions and results in this section can be adapted 

correspondingly when we view model (8) as the projected model if S ⊄ S0. Similarly as in 

FDR analysis, we restrict ourselves to sparse models with size bounded by Kn that diverges 

as n → ∞, that is, S ≤ Kn.

With Ω taken as the estimated precision matrix Ω, we can generate the knockoff variables 

from (12). Then the Lasso procedure can be applied to the augmented data (X(2), X, y(2)) 

with X constructed in Step 3 of our modified knockoffs procedure and the LCD can be 

defined as

W j = W j
Ω, S = β j(λ; Ω, S) − β p + j(λ; Ω, S) , (17)

where β j(λ; Ω, S) and β p + j(λ; Ω, S) are the jth and (j + p)th components, respectively, of the 

Lasso estimator

β (λ; Ω, S) = argminbS1 = 0 n−1 y(2) − X(2), X b 2
2 + λ b 1 (18)

with λ ≥ 0 the regularization parameter and S1 = 1 ≤ j ≤ 2p: j ∉ S and j − p ∉ S .

Unlike the FDR analysis in Section 3.2, we now need sparsity assumption on the true 

precision matrix Ω0.

Condition 6. Assume that Ω0 is Lp-sparse with each row having at most Lp nonzeros for 

some diverging Lp and all the eigenvalues of Ω0 are bounded away from 0 and ∞.

For each given precision matrix Ω and reduced model S, we define W j
Ω, S similarly as in 

(17) except that Ω is used to generate the knockoff variables and set S is used in (18) to 

calculate the Lasso solution. Denote by SΩ = j:W j
Ω, S ≥ T ⊂ S the final set of selected 

features using the LCD W j
Ω, S in the knockoffs inference framework. We further define a 

class of precision matrices Ω ∈ ℝp × p

A = Ω:Ω is Lp′‐sparse and Ω − Ω0 2 ≤ C2an , (19)

where C2 and an are the same as in Theorem 2 and Lp′  is some positive integer that diverges 

with n. Similarly as in Section 2.2, in the technical analysis we assume implicitly that with 

asymptotic probability one, for all valid constructions of the knockoff variables there are no 
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ties in the magnitude of nonzero knockoff statistics and no ties in the magnitude of nonzero 

components of Lasso solution uniformly over all Ω ∈ A and S ≤ Kn.

Condition 7. It holds that ℙ Ω ∈ A ≥ 1 − c2p−c2 for some constant c2 > 0.

The assumption on the estimated precision matrix Ω made in Condition 7 is mild and 

flexible. A similar class of precision matrices was considered in [29] with detailed 

discussions on the choices of the estimation procedures. See, for example, [31, 10, 52] for 

some more recent developments on large precision matrix estimation and inference. In 

parallel to Theorem 1, we have the following results on the power of our modified knockoffs 

procedure with the estimated precision matrix Ω.

Theorem 3. Assume that Conditions 1–2 and 6–7 hold, the smallest eigenvalue of 2diag(s)

−diag(s)Ω0diag(s) is positive and bounded away from 0, j: β0, j ≫ [sn−1(logp)]1/2 ≥ cs, 

and λ = Cλ{(log p)/n}1/2 with c ∈ ((qs)−1, 1) and Cλ > 0 some constants. Then if 

Lp + Lp′
1/2 + Kn

1/2 an = o(1) and s an + Kn + Lp′ n−1(logp) 1/2 = o(1), RANK with 

estimated precision matrix Ω and reduced model S has power satisfying

Power(Ω, S) = E
SΩ ∩ S0

S0
≥ 1 − Cl1Cλ(φ + 1)kn−1 − c2p−c2 − c3p−c3 + o kn−1

= 1 − o(1),

where φ is the golden ratio and Cl1 is some positive constant.

Theorem 3 establishes the robustness of the power for the RANK method. In view of 

Theorems 2–3, we see that our modified knockoffs procedure RANK can enjoy appealing 

properties of FDR control and power simultaneously when the true covariate distribution is 

unknown and needs to be estimated in high dimensions.

4 Simulation studies

So far we have seen that our suggested RANK method admits appealing theoretical 

properties for large-scale inference in high-dimensional nonlinear models. We now examine 

the finite-sample performance of RANK through four simulation examples.

4.1 Model setups and simulation settings

Recall that the original knockoff filter (KF) in [2] was designed for linear regression model 

with dimensionality p not exceeding sample size n, while the high-dimensional knockoff 

filter (HKF) in [3] considers linear model with p possibly larger than n. To compare RANK 

with the HKF procedure in high-dimensional setting, our first simulation example adopts the 

linear regression model
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y = Xβ + ε, (20)

where y is an n-dimensional response vector, X is an n × p design matrix, β = (β1, · · ·, βp)T 

is a p-dimensional regression coefficient vector, and ε is an n-dimensional error vector. Non-

linear models provide useful and flexible alternatives to linear models and are widely used in 

real applications. Our second through fourth simulation examples are devoted to three 

popular nonlinear model settings: the partially linear model, the single-index model, and the 

additive model, respectively. As a natural extension of linear model (20), the partially linear 

model assumes that

y = Xβ + g(U) + ε, (21)

where g(U) = (g(U1), · · ·, g(Un))T is an n-dimensional vector-valued function with covariate 

vector U = (U1, · · ·, Un)T, g(·) is some unknown smooth nonparametric function, and the 

rest of notation is the same as in model (20). In particular, the partially linear model is a 

semiparametric regression model that has been commonly used in many areas such as 

economics, finance, medicine, epidemiology, and environmental science [16, 33].

The third and fourth simulation examples drop the linear component. As a popular tool for 

dimension reduction, the single-index model assumes that

y = g(Xβ) + ε, (22)

where g(Xβ) = g x1
Tβ , ⋯ , g xnTβ T

 with X = (x1, · · ·, xn)T, g(·) is an unknown link function, 

and the remaining notation is the same as in model (20). In particular, the single-index 

model provides a flexible extension of the GLM by relaxing the parametric form of the link 

function [40, 56, 34, 42, 37]. To bring more flexibility while alleviating the curse of 

dimensionality, the additive model assumes that

y =
j = 1

p
gj(Xj) + ε, (23)

where gj(θ) = (gj(θ1), · · ·, gj(θn))T for θ = (θ1, · · ·, θn)T, Xj represents the jth covariate 

vector with X = (X1, · · ·, Xp), gj (·)’s are some unknown smooth functions, and the rest of 

notation is the same as in model (20). The additive model has been widely employed for 

nonparametric modeling of high-dimensional data [35, 51, 47, 11].

For the linear model (20) in simulation example 1, the rows of the n × p design matrix X are 

generated as i.i.d. copies of N(0, Σ) with precision matrix Σ–1 = (ρ|j–k|)1≤j,k≤p for ρ = 0 and 

0.5. We set the true regression coefficient vector β0 ∈ ℝp as a sparse vector with s = 30 

nonzero components, where the signal locations are chosen randomly and each nonzero 

coefficient is selected randomly from {±A} with A = 1.5 and 3.5. The error vector ε is 

assumed to be N (0, σ2In) with σ = 1. We set sample size n = 400 and consider the high-

dimensional scenario with dimensionality p = 200, 400, 600, 800, and 1000. For the partially 

linear model (21) in simulation example 2, we choose the true function as g(U) = sin(2πU ), 
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generate U = (U1, · · ·, Un)T with i.i.d. Ui from uniform distribution on [0, 1], and set A = 1.5 

with the remaining setting the same as in simulation example 1.

Since the single-index model and additive model are more complex than the linear model 

and partially linear model, we reduce the true model size s while keeping sample size n = 

400 in both simulation examples 3 and 4. For the single-index model (22) in simulation 

example 3, we consider the true link function g(x) = x3/2 and set p = 200, 400, 600, 800, and 

1000. The true p-dimensional regression coefficient vector β0 is generated similarly with s = 

10 and A = 1.5. For the additive model (23) in simulation example 4, we assume that s = 10 

of the functions gj(·)’s are nonzero with j’s chosen randomly from {1, · · ·, p} and the 

remaining p − 10 functions gj(·)’s vanish. Specifically, each nonzero function gj (·) is taken 

to be a polynomial of degree 3 and all coefficients under the polynomial basis functions are 

generated independently as N (0, 102) as in [11]. The dimensionality p is allowed to vary 

with values 200, 400, 600, 800, and 1000. For each simulation example, we set the number 

of repetitions as 100.

4.2 Estimation procedures

To implement RANK procedure described in Section 3.1, we need to construct a precision 

matrix estimator Ω and obtain the reduced model S using the first fold of data (X(1), y(1)). 

Among all available estimators in the literature, we employ the ISEE method in [31] for 

precision matrix estimation due to its scalability, simple tuning, and nice theoretical 

properties. For simplicity, we choose sj = 1/Λmax(Ω) for all 1 ≤ j ≤ p, where Ω denotes the 

ISEE estimator for the true precision matrix Ω0 and Λmax standards for the largest 

eigenvalue of a matrix. Then we can obtain an (n/2) × (2p) augmented design matrix [X(2), 

X], where X represents an (n/2) × p knockoffs matrix constructed in Step 3 of our modified 

knockoffs procedure in Section 3.1. To construct the reduced model S using the first fold of 

data (X(1), y(1)), we borrow the strengths from the recent literature on feature selection 

methods. After S is obtained, we employ the reduced data Xaug
S , y(2)  with Xaug

S = [XS
(2), XS]

to fit a model and construct the knockoff statistics. In what follows, we will discuss feature 

selection methods for obtaining S for the linear model (20), partially linear model (21), 

single-index model (22), and additive model (23) in simulation examples 1–4, respectively. 

We will also discuss the construction of knockoff statistics in each model setting.

For the linear model (20) in simulation example 1, we obtain the reduced model S by first 

applying the Lasso procedure

β (1) = argminb ∈ ℝp n−1 y(1) − X(1)b 2
2 + λ b 1 (24)

with λ ≥ 0 the regulation parameter and then taking the support S = supp(β (1)). Then with 

the estimated Ω and S, we construct the knockoff statistics as the LCD (17), where the 

estimated regression coefficient vector is obtained by applying the Lasso procedure on the 

reduced model as described in (18). The regularization parameter λ in Lasso is tuned using 

the K-fold cross-validation (CV).
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For the partially linear model (21) in simulation example 2, we employ the profiling method 

in semiparametric regression based on the first fold of data (X(1), U(1), y(1)) by observing 

that model (21) becomes a linear model when conditioning on the covariate vector U(1). 

Consequently we need to estimate both the profiled response E(y(1) |U(1)) and the profiled 

covariates E(X(1) |U(1)). To this end, we adopt the local linear smoothing estimators [18] 

E(y(1) |U(1)) and E(X(1) |U(1)) of E(y(1) |U(1)) and E(X(1) |U(1)) using the Epanechnikov kernel 

K(u) = 0.75(1 − u2)+ with the optimal bandwidth selected by the generalized cross-

validation (GCV). Then we define the Lasso estimator β (1) for the p-dimensional regression 

coefficient vector similarly as in (24) with y(1) and X(1) replaced by y(1) − E(y(1) |U(1)) and 

X(1) − E(X(1) |U(1)), respectively. The reduced model is then taken as S = supp(β (1)). For 

knockoff statistics W j, we set W j = 0 for all j ∉ S. On the support S, we construct 

W j = β j − β p + j  with β j and β p + j the Lasso coefficients obtained by applying the model 

fitting procedure described above to the reduced data (Xaug
S , US

(2)
, y(2)) in the second 

subsample with Xaug
S = [XS

(2), XS].

To fit the single-index model (22) in simulation example 3, we employ the Lasso-SIR 

method in [43]. The Lasso-SIR first divides the sample of m = n/2 observations in the first 

subsample (X(1), y(1)) into H slices of equal length c, and constructs the matrix 

ΛH = 1
mc (X(1))TMMTX(1), where M = IH ⊗ 1c is an m × H matrix that is the Kronecker 

product of the identity matrix IH and the constant vector 1c of ones. Then the Lasso-SIR 

estimates the p-dimensional regression coefficient vector β (1) using the Lasso procedure 

similarly as in (18) with the original response vector y(1) replaced by a new response vector 

y(1) = (cλ1)−1MMTX(1)η1, where λ1 denotes the largest eigenvalue of matrix ΛH and η1 is 

the corresponding eigenvector. We set the number of slices H = 5. Then the reduced model is 

taken as S = supp(β (1)). We then apply the fitting procedure Lasso-SIR discussed above to 

the reduced data Xaug
S , y(2)  with Xaug

S = [XS
(2), XS] and construct knockoff statistics in a 

similar way as in partially linear model.

To fit the additive model (23) in simulation example 4, we apply the GAMSEL procedure in 

[11] for sparse additive regression. In particular, we choose 6 basis functions each with 6 

degrees of freedom for the smoothing splines using orthogonal polynomials for each 

additive component and set the penalty mixing parameter γ = 0.9 in GAMSEL to obtain 

estimators of the true functions gj(·)’s. The GAMSEL procedure is first applied to the first 

subsample (X(1), y(1)) to obtain the reduced model S, and then applied to the reduced data 

Xaug
S , y(2)  with Xaug

S = [XS
(2), XS] to obtain estimates gj and gp + j for the additive functions 

corresponding to the jth covariate and its knockoff counterpart with j ∈ S, respectively. The 

knockoff statistics are then constructed as
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W j = gj n/2
2 − gp + j n/2

2 for j ∈ S (25)

and W j = 0 for j ∉ S, where gj n/2 represents the empirical norm of the estimated function 

gj( ⋅ ) evaluated at its observed points and n/2 stands for the size of the second subsample.

It is seen that in all four examples above, intuitively large positive values of knockoff 

statistics W j provide strong evidence against the jth null hypothesis H0,j: βj = 0 or H0,j: gj = 

0. For all simulation examples, we set the target FDR level at q = 0.2.

4.3 Simulation results

To gain some insights into the effect of data splitting, we also implemented our procedure 

without the data splitting step. To differentiate, we use RANKs to denote the procedure with 

data splitting and RANK to denote the procedure without data splitting. To examine the 

feature selection performance, we look at both measures of FDR and power. The empirical 

versions of FDR and power based on 100 replications are reported in Tables 1–2 for 

simulation example 1 and Tables 3–5 for simulation examples 2–4, respectively. In 

particular, Table 1 compares the performance of RANK and RANK+ with that of RANKs 

and RANKs+, where the subscript + stands for the corresponding method when the modified 

knockoff threshold T+ is used. We see from Table 1 that RANK and RANK+ mimic closely 

RANKs and RANKs+, respectively, suggesting that data splitting is more of a technical 

assumption. In addition, the FDR is approximately controlled at the target level of q = 0.2 

with high power, which is in line with our theory. Table 2 summarizes the comparison of 

RANKs with HKF procedure for high-dimensional linear regression model. Despite that 

both methods are based on data splitting, their practical performance is very different. It is 

seen that although controlling the FDR below the target level, HKF suffers from a loss of 

power due to the use of the screening step and the power deteriorates as dimensionality p 
increases. In contrast, the performance of RANKs is robust across different correlation levels 

ρ and dimensionality p. It is worth mentioning that HKF procedure with data recycling 

performed generally better than that with data splitting alone. Thus only the results for the 

former version are reported in Table 2 for simplicity.

For high-dimensional nonlinear settings of partially linear model, single-index model, and 

additive model in simulation examples 2–4, we see from Tables 3–5 that RANKs and 

RANKs+ performed well and similarly as RANK and RANK+ in terms of both FDR control 

and power across different scenarios. These results demonstrate the model-X feature of our 

procedure for large-scale inference in nonlinear models.

5 Real data analysis

In addition to simulation examples presented in Section 4, we also demonstrate the practical 

utility of our RANK procedure on a gene expression data set, which is based on Affymetrix 

GeneChip microarrays for the plant Arabidopsis thaliana in [63]. It is well known that 

isoprenoids play a key role in plant and animal physiological processes, such as 

photosynthesis, respiration, regulation of growth, and defense against pathogens in plant 
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physiological processes. In particular, [38] found that many of the genes expressed 

preferentially in mature leaves are readily recognizable as genes involved in photosynthesis, 

including rubisco activase (AT2G39730), fructose bisphosphate aldolase (AT4G38970), and 

two glycine hydroxymethyl-transferase genes (AT4G37930 and AT5G26780). Thus 

isoprenoids have become important ingredients in various drugs (e.g., against cancer and 

malaria), fragrances (e.g., menthol), and food colorants (e.g., carotenoids). See, for instance, 

[63, 53, 49] on studying the mechasnism of isoprenoid synthesis in a wide range of 

applications.

The aforementioned data set in [63] consists of 118 gene expression patterns under various 

experimental conditions for 39 isoprenoid genes, 15 of which are assigned to the regulatory 

pathway, 19 to the plastidal pathway, and the remaining 5 isoprenoid genes encode protein 

located in the mitochondrion. Moreover, 795 additional genes from 56 metabolic pathways 

are incorporated into the isoprenoid genetic network. Thus the combined data set is 

comprised of a sample of n = 118 gene expression patterns for 834 genes. This data set was 

studied in [65] for identifying genes that exhibit significant association with the specific 

isoprenoid gene GGPPS11 (AGI code AT4G36810). Motivated by [65], we choose the 

expression level of isoprenoid gene GGPPS11 as the response and treat the remaining p = 

833 genes from 58 different metabolic pathways as the covariates, in which the 

dimensionality p is much larger than sample size n. All the variables are logarithmically 

transformed. To identify important genes associated with isoprenoid gene GGPPS11, we 

employ the RANK method using the Lasso procedure with target FDR level q = 0.2. The 

implementation of RANK is the same as that in Section 4 for the linear model. Since the 

sample size of this data set is relatively low, we choose to implement RANK without sample 

splitting, which has been demonstrated in Section 4 to be capable of controlling the FDR at 

the desired level.

Table 6 lists the selected genes by RANK, RANK+, and Lasso along with their associated 

pathways. We see from Table 6 that RANK, RANK+, and Lasso selected 9 genes, 7 genes, 

and 17 genes, respectively. The common set of four genes, AT4G38970, AT2G27820, 

AT2G01880, and AT5G19220, was selected by all three methods. The values of the adjusted 

R2 for these three selected models are equal to 0.7523, 0.7515, and 0.7843, respectively, 

showing similar level of goodness of fit. In particular, among the top 20 genes selected using 

the Elem-OLS method with entrywise transformed Gram matrix in [65], we found that five 

genes (AT1G57770, AT1G78670, AT3G56960, AT2G27820, and AT4G13700) selected by 

RANK are included in such a list of top 20 genes, and three genes (AT1G57770, 

AT1G78670, and AT2G27820) picked by RANK+ are contained in the same list.

To gain some scientific insights into the selected genes, we conducted Gene Ontology (GO) 

enrichment analysis to interpret, from the biological point of view, the influence of selected 

genes on isoprenoid gene GGPPS11, which is known as a precursor to chloroplast, 

carotenoids, tocopherols, and abscisic acids. Specifically, in the enrichment test of GO 

biological process, gene AT1G57770 is involved in carotenoid biosynthetic process. In the 

GO cellular component enrichment test, genes AT4G38970 and AT5G19220 are located in 

chloroplast, chloroplast envelope, and chloroplast stroma; gene AT1G57770 is located in 

chloroplast and mitochondrion; and gene AT2G27820 is located in chloroplast, chloroplast 
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stroma, and cytosol. The GO molecular function enrichment test shows that gene 

AT4G38970 has fructose-bisphosphate aldolase activity and gene AT1G57770 has 

carotenoid isomerase activity and oxidoreductase activity. These scientific insights in terms 

of biological process, cellular component, and molecular function suggest that the selected 

genes may have meaningful biological relationship with the target isoprenoid gene 

GGPPS11. See, for example, [38, 50, 62] for more discussions on these genes.

6 Discussions

Our analysis in this paper reveals that the suggested RANK method exploiting the general 

framework of model-X knockoffs introduced in [9] can asymptotically control the FDR in 

general high-dimensional nonlinear models with unknown covariate distribution. The 

robustness of the FDR control under estimated covariate distribution is enabled by imposing 

the Gaussian graphical structure on the covariates. Such a structural assumption has been 

widely employed to model the association networks among the covariates and extensively 

studied in the literature. Our method and theoretical results are powered by scalable large 

precision matrix estimation with statistical efficiency. It would be interesting to extend the 

robustness theory of the FDR control beyond Gaussian designs as well as for heavy-tailed 

data and dependent observations.

Our work also provides a first attempt to the power analysis for the model-X knockoffs 

framework. The nontrivial technical analysis establishes that RANK can have asymptotic 

power one in high-dimensional linear model setting when the Lasso is used for sparse 

regression. It would be interesting to extend the power analysis for RANK with a wide class 

of sparse regression and feature screening methods including SCAD, SIS, and many other 

concave regularization methods [22, 23, 17, 30]. Though more challenging, it is also 

important to investigate the power property for RANK beyond linear models. The power 

analysis in general high-dimensional nonlinear models is highly challenging for several 

reasons. First, the minimum signal strength needs to be characterized precisely in the power 

analysis. Yet unlike the beta-min measure in the linear model, there lacks a popularly 

accepted measure with explicit formula on the minimum signal strength in general high-

dimensional nonlinear models. Second, the estimation error associated with each covariate 

plays an important role in the power analysis. However, in general nonlinear models it is 

unclear how to disentangle the individual estimation error corresponding to each covariate. 

Third, the knockoffs procedure builds on some underlying variable selection method, which 

itself is highly challenging both empirically and theoretically in general high-dimensional 

nonlinear models.

Our RANK procedure utilizes the idea of data splitting, which plays an important role in our 

technical analysis. Our numerical examples, however, suggest that data splitting is more of a 

technical assumption than a practical necessity. It would be interesting to develop theoretical 

guarantees for RANK without data splitting. These extensions are interesting topics for 

future research.
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A: Proofs of main results

We provide the proofs of Theorems 1–3, Propositions 1–2, and Lemmas 1–2 in this 

appendix. Additional technical details for the proofs of Lemmas 3–8 are included in the 

Supplementary Material. To ease the technical presentation, we first introduce some 

notation. Let Λmin(·) and Λmax(·) be the smallest and largest eigenvalues of a symmetric 

matrix. For any matrix A = (aij), denote by A 1 = maxj i aij , A max = maxi, j aij , 

A 2 = Λmax
1/2 (ATA), and A F = [tr(ATA)]1/2

 the matrix ℓ1-norm, entrywise maximum norm, 

spectral norm, and Frobenius norm, respectively. For any set S ⊂ 1, ⋯ , p , we use AS to 

represent the submatrix of A formed by columns in set S and AS, S to denote the principal 

submatrix formed by columns and rows in set S.

A.1 Proofs of Lemma 1 and Theorem 1

Observe that the choice of S = 1, ⋯ p  certainly satisfies the sure screening property. We 

see that Lemma 1 and Theorem 1 are specific cases of Lemma 6 in Section B.4 of 

Supplementary Material and Theorem 3, respectively. Thus we only prove the latter ones.

A.2 Proof of Proposition 1

In this proof, we will consider Ω and S as deterministic parameters and focus only on the 

second half of sample (X(2), y(2)) used in FDR control. Thus, we will drop the superscripts 

in (X(2), y(2)) whenever there is no confusion. For a given precision matrix Ω, the matrix of 

knockoff variables

XΩ = [x1
Ω, ⋯ , xnΩ]

T

can be generated using (12) with Ω0 replaced by Ω. Here, we use the superscript Ω to 

emphasize the dependence of knockoffs matrix on Ω. Recall that for a given set S with 

k = S , we calculate the knockoff statistics Wj’s using (y, XS, XS
Ω). Thus, the FDR function 

can be written as

FDRn(Ω, S) = E FDPn(y, XS, XS
Ω) = E g1, n(X, XS

Ω) , (26)
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where g1, n(X, XS
Ω) = E FDPn(y, XS, XS

Ω) |X, XS
Ω . It is seen that the function gn is the 

conditional FDP when knockoff variables xi
Ω, 1 ≤ i ≤ n, are simulated using Ω and only 

variables in set S are used to construct knockoff statistics Wj. We want to emphasize that 

since given X the response y is independent of XS
Ω, the functional form of g1,n is free of the 

matrix Ω used to generate knockoff variables.

Using the technical arguments in [9], we can show that FDRn(Ω0, S) ≤ q for any sample size 

n and all subsets S ⊂ 1, ⋯ , p  that are independent of the original data (X(2), y(2)) used in 

the knockoffs procedure. Observe that the only difference between FDRn(Ω, S) and 

FDRn(Ω0, S) is that different precision matrices are used to generate knockoff variables. We 

restrict ourselves to the following data generating scheme

xiΩ = (CΩ)Txi + BΩzi, i = 1, ⋯ , n,

where CΩ = Ip − Ωdiag{s}, zi N 0, Ip ∈ ℝp are i.i.d. normal random vectors that are 

independent of xi’s, and BΩ = (2diag{s}–diag{s}Ωdiag{s})1/2. For simplicity, write 

xi
(0) = xi

Ω0, B0 = BΩ0 and C0 = CΩ0, i.e., the matrices corresponding to the oracle case. Then 

restricted to set S,

xi, S
Ω = CS

Ω T
xi + BS

Ω Tzi, xi, S
(0) = C0, Sxi

T + (B0, S)Tzi,

where the subscript S means the submatrix (subvector) formed by columns (components) in 

set S. We want to make connections between xi, S
Ω  and xi, S

(0) . To this end, construct

x⌣i, S
Ω = (CS

Ω)Txi + BTB0, S
T zi, (27)

where B = B0, S
T B0, S

−1/2 (BS
Ω)TBS

Ω 1/2
. Then it is seen that (xi, xi, S

Ω ) and (xi, x⌣i, S
Ω ) have 

identical joint distribution. Although x⌣i, S
Ω  cannot be calculated in practice for a given Ω due 

to its dependency on Ω0, the random vector x⌣i, S
Ω  acts as a proxy of xi, S

Ω  in studying the FDR 

function. In fact, by construction (26) can be further written as

FDRn(Ω, S) = E g1, n(X, XS
Ω) = E g1, n(X, X⌣S

Ω) , (28)

where X⌣S
Ω = [ x⌣1, S

Ω , ⋯ , x⌣n, S
Ω ]

T
.

Observe that the randomness in both XS
(0)

 and X⌣S
Ω

 is fully determined by the same random 

matrices X and ZB0, S, which are independent of each other and whose rows are i.i.d. copies 
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from N (0, Σ0) and N(0, B0, S
T , B0, S), respectively. For this reason, we can rewrite the FDR 

function in (28) as

FDRn(Ω, S) = E g1, n(XaugS HΩ) ,

where Xaug
S = [X, X0, S] = [X, XC0, S + ZB0, S] ∈ ℝn × (p + k) is the augmented matrix 

collecting columns of X and X0, S, and

HΩ = Ip CS
Ω − C0, SB

0 B
,

which completes the proof of Proposition 1.

A.3 Lemma 2 and its proof

Lemma 2. Assume that Ω − Ω0 2 = O(an) with an → 0 some deterministic sequence and all 

the notation the same as in Proposition 1. If Λmin{2diag(s) − diag(s)Ω0diag(s)} ≥ c0 and 

Λmax(Σ0) ≤ c0
−1 for some constant c0 > 0, then it holds that

B − Ik 2 ≤ c1 Ω − Ω0 2 = O(an),

where B is given in (27) and c1 > 0 is some uniform constant independent of set S.

Proof. We use C to denote some generic positive constant whose value may change from line 

to line. First note that

BS
Ω TBS

Ω − B0, S
T B0, S = − diag(s)(Ω − Ω0)diag(s) S, S . (29)

Further, since Σ0 – 2–1diag(s) is positive it follows that s ∞ ≤ 2Λmax(Σ0) ≤ 2c0
−1. Thus it 

holds that

(BS
Ω)

T
BS

Ω − B0, S
T B0, S 2 ≤ C (Ω − Ω0)S, S 2 ≤ C (Ω − Ω0) 2 = O(an) .

For n large enough, by the triangle inequality we have

Λmin( BS
Ω T

BS
Ω) ≥ Λmin(B0, S

T B0, S) + Λmin( BS
Ω T

BS
Ω − B0, S

T B0, S)

≥ Λmin(B0
TB0) − O(an)

= Λmin 2diag(s) − diag(s)Ω0diag(s) − O(an)
≥ c0/2 .
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In addition, Λmin((B0, S)TB0, S) ≥ Λmin((B0)TB0) = Λmin 2diag(s) − diag(s)Ω0diag(s) ≥ c0/2. 

The above two inequalities together with Lemma 2.2 in [54] entail that

((BS
Ω)TBS

Ω)
1/2

− ((B0, S)TB0, S)1/2
2 ≤ c0/2 + c0/2 −1 (BS

Ω)TBS
Ω − (B0, S)TB0, SB0, S 2

≤ C Ω − Ω0 2 = O(an
),

(30)

where the last step is because of (29). Thus it follows that

B − Ik 2 ≤ ( BS
Ω TBS

Ω)
1/2

− ((B0, S)TB0, S)1/2
2 ((B0, S)TB0, S)−1/2

2
≤ C Ω − Ω0 2Λmin

−1/2( B0
TB0) ≤ C Ω − Ω0 2,

(31)

where the last step comes from assumption 

Λmin(B0
TB0) = Λmin(2diag(s) − diag(s)Ω0diag(s)) ≥ c0. This concludes the proof of Lemma 2.

A.4 Proof of Theorem 2

We now proceed to prove Theorem 2 with the aid of Lemma 2 in Section A.3. We use the 

same notation as in the proof of Proposition 1 and use C > 0 to denote a generic constant 

whose value may change from line to line.

We start with proving (15). By Condition 4, we have

FDR(HΩ, S) − FDR(HΩ0, S) ≤ L HΩ − HΩ0 F , (32)

where the constant L is uniform over all Ω − Ω0 ≤ C2an and S ≤ Kn. Denote by k = S . 

By the definition of HΩ, it holds that

HΩ − HΩ0 = HΩ − Ip + k =
0 CS

Ω − C0, SB

0 B − Ik
.

By the definition and matrix norm inequality, we deduce

HΩ − HΩ0 F = CS
Ω − C0, SB F + B − Ik F

≤ k CS
Ω − C0, SB 2 + k B − Ik 2

≤ Kn CS
Ω − C0, S 2 + C0, S(B − Ik) 2 + B − Ik 2

≤ Kn 1 + C0, S 2 B − Ik 2 + CΩ − C0 2 .

Since Σ0 – 2–1diag(s) is positive definite, it follows that sj ≤ 2Λmax(Σ0) ≤ 2/Λmin(Ω0) ≤ C. 

Thus C0, S 2 ≤ C0 2 = I − Ω0diag(s) 2 ≤ + 1 Ω0 2 diag(s) 2 ≤ C. This along with 

CΩ − C0 2 = (Ω − Ω0)diag(s) 2 ≤ Can and Lemma 2 entails that HΩ − HΩ0 F  can be 

further bounded as
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HΩ − HΩ0 F ≤ C Knan .

Combining the above result with (32) leads to

sup
S ≤ Kn, Ω − Ω0 ≤ Can

FDR(HΩ, S) − FDR(HΩ0, S) ≤ O( Knan), (33)

which completes the proof of (15).

We next establish the FDR control for RANK. By Condition 7, the event 

ℰ0 = Ω − Ω0 2 ≤ C2an  occurs with probability at least 1 − O(p−c1). Since Ω and S are 

estimates from independent subsample (X(1), y(1)), it follows from (15) that

E[FDPn(XS
(2), XS) ℰ0] − E[FDPn(XS

(2), X0, S) ℰ0]
≤ sup

S ≤ Kn, Ω − Ω0 ≤ C2an
E[FDPn(XS

(2), XS
Ω) ℰ0] − E[FDPn(XS

(2), X0, S) ℰ0]

= sup
S ≤ Kn, Ω − Ω0 ≤ C2an

E[FDPn(XS
(2), XS

Ω)] − E[FDPn(XS
(2), X0, S)]

= sup
S ≤ Kn, Ω − Ω0 ≤ C2an

FDR(HΩ, S) − FDR(HΩ0, S)

≤ O( Knan) .

(34)

Now note that by the property of conditional expectation, we have

FDRn(Ω, S) − FDRn(Ω0, S)

= E[FDRn(XS
(2), XS) ℰ0

c] − E[FDRn(XS
(2), X0, S) ℰ0

c] ℙ(ℰ0)

+ E[FDRn(XS
(2), XS) ℰ0

c] − E[FDRn(XS
(2), X0, S) ℰ0

c] ℙ(ℰ0
c)

≡ I1 + I2 .

Let us first consider term I1. By (34), it holds that

I1 ≤ E[FDPn(XS
(2), XS) ℰ0] − E[FDPn(XS

(2), X0, S) ℰ0] ≤ O( Knan) .

We next consider term I2. Since FDP is always bounded between 0 and 1, we have

I2 ≤ 2ℙ(ℰ0
c) ≤ O(p−c1) .

Combining the above two results yields

FDRn(Ω, S) − FDRn(Ω0, S) ≤ O( Knan) + O(p−c1) .
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This together with the result of FDRn(Ω0, S) ≤ q mentioned in the proof of Proposition 1 in 

Section A.2 completes the proof of Theorem 2.

A.5 Proof of Theorem 3

In this proof, we will drop the superscripts in (X(2), y(2)) whenever there is no confusion. By 

the definition of power, for any given precision matrix Ω and reduced model S the power can 

be written as

Power(Ω, S) = E[f(XS, XS
Ω, y)],

where f is some function describing how the empirical power depends on the data. Note that 

f(XS, XS
Ω, y) is a stochastic process indexed by Ω, and we care about the mean of this 

process. Our main idea is to construct another stochastic process indexed by Ω which has the 

same mean but possibly different distribution. Then by studying the mean of this new 

stochastic process, we can prove the desired result.

We next provide more technical details of the proof. The proxy process is defined as

X⌣S
Ω = XCS

Ω + ZB0, S(B0, S
T B0, S)−1/2 BS

Ω TBS
1/2

, (35)

where CS
Ω is the submatrix of CΩ = Ip − Ωdiag{s}, BS

Ω is the submatrix of BΩ =(diag(s) – 

diag(s)Ωdiag(s))1/2
, and B0 = BΩ0. It is easy to see that X⌣S

Ω
 and XS

Ω defined using (12) have 

the same distribution. Since Z is independent of (X, y), we can further conclude that 

(XS, XS
Ω, y) and (XS, X⌣S

Ω, y) have the same joint distribution for each given Ω and S. Thus the 

power function can be further written as

Power(Ω, S) = E[f(XS, XS
Ω, y)] = E[f(XS, X⌣S

Ω, y)] .

Therefore, we only need to study the power of the knockoffs procedure based on the pseudo 

data (XS, X⌣S
Ω, y).

To simplify the technical presentation, we will slightly abuse the notation and still use 

β = β (λ) = β (λ; Ω, S) to represent the Lasso solution based on pseudo data (XS, X⌣S
Ω, y). We 

will use c and C to denote some generic positive constants whose values may change from 

line to line. Define

G = 1
nXKO

T XKO ∈ ℝ(2p) × (2p) and ρ = 1
nXKO

T y ∈ ℝ2p
(36)

with XKO = [X, X⌣Ω] ∈ ℝn × (2p) the augmented design matrix. For any given set 

S ⊂ 1, ⋯ , p  with k = S , (2p) × (2p) matrix A, and (2p)-vector a, we will abuse the 
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notation and denote by AS, S ∈ ℝ(2k) × (2k) the principal submatrix formed by columns and 

rows in set {j: j ∈ S or j − p ∈ S} and aS ∈ ℝ2k the subvector formed by components in set 

{j: j ∈ S or j − p ∈ S}. For any p × p matrix B (or p-vector), we define BS (or bS)in the 

same way meaning that columns (or components) in set S will be taken to form the 

submatrix (or subvector).

With the above notation, note that the Lasso solution β = (β1, ⋯ β2p)T = β (λ; Ω, S) restricted 

to variables in S can be obtained by setting β j = 0 for j ∈ {1 ≤ j ≤ 2p : j ∉ S and j − p ∉ S} 

and minimizing the following objective function

βS = argminb ∈ ℝ2k 1
2bTGS, Sb − ρS

T b + λ b 1 . (37)

By Proposition 2 in Section A.6, it holds that with probability at least 1 − c3p−c3,

sup
Ω ∈ A, S ≤ Kn

β (λ; Ω, S) − βT 1 ≤ Cl1sλ, (38)

where λ=Cλ{(log p)/n}1/2 with Cλ > 0 some constant and Cl1 is some positive constant. By 

Condition 2 and the assumption λ=Cλ{(log p)/n}1/2, we have

min
j ∈ S0

β0, j ≥ knλ
Cλ

. (39)

Denote by W j
Ω, S the LCD based on the above β (λ; Ω, S). Recall that by assumption, there 

are no ties in the magnitude of nonzero W j
Ω, S′s and no ties in the nonzero components of 

the Lasso solution with asymptotic probability one. Let W (1)
Ω, S ≥ ⋯ ≥ W (p)

Ω, S  be the 

ordered knockoff statistics according to magnitude. Denote by j* the index such that 

W (j∗)
Ω, S = T . Then by the definition of T, it holds that −T < W (j∗ + 1)

Ω, S ≤ 0. We next analyze 

the two cases of W (j∗ + 1)
Ω, S = 0 and −T < W (j∗ + 1)

Ω, S < 0 separately.

Case 1. For the case of W (j∗ + 1)
Ω, S = 0, SΩ = j:W j

Ω, S < 0 , and 

j:W j
Ω, S < − T = j:W j

Ω, S < 0 . Let qn = φCl1Cλkn
−1 with φ the positive solution to 

equation φ2 – φ – 1 = 0 which is known as the golden ratio. If j:W j
Ω, S < 0 > qns, then we 

can prove that T ≤ knλ/(Cλφ) using the same arguments as in equation (44) since 

j:W j
Ω, S < − T = j:W j

Ω, S < 0 . Thus it reduces to Case 2 below and the arguments 

therein follow.

On the contrary, if j:W j
Ω, S < 0 > qns then we have
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SΩ ∩ S0 = supp(WΩ, S) ∩ S0 − j:W j
Ω, S < 0 ∩ S0

≥ supp(WΩ, S) ∩ S0 − qns
(40)

since SΩ^ = supp(WΩ, S)\ j:W j
Ω, S < 0 . Let us now focus on supp(WΩ, S) ∩ S0 . We 

observed that

supp(WΩ, S) ⊃ 1, ⋯ , p \S1
Ω, (41)

where S1
Ω = 1 ≤ j ≤ p:β j(λ; Ω, S) = 0 . Meanwhile, note that in view of (38) we have with 

probability at least 1 − c3p−c3,

Cl1sλ ≥ sup
Ω ∈ A, S ≤ Kn

β (λ; Ω, S) − β0 1 ≥ sup
Ω ∈ A, S ≤ Knj ∈ S1

Ω ∩ S0
βj(λ; Ω, S) − β0, j

=
j ∈ S1

Ω ∩ S0
β0, j ≥ S1

Ω ∩ S0 min
j ∈ S0

β0, j .

By (39), we can further deduce from the above inequality that

S1
Ω ∩ S0 ≥ Cl1Cλkn−1s,

which together with S0 = s entails that

1, ⋯ , p \S1
Ω ∩ S0 ≥ (1 − Cl1Cλkn−1)s .

Combining this result with (41) yields

supp(WΩ, S) ∩ S0 ≥ 1, ⋯ , p \S1
Ω ∩ S0 ≥ (1 − Cl1Cλkn

−1)s . (42)

Thus in view of inequalities (40) and (42), with probability at least 1 − c3p−c3 it holds 

uniformly over all Ω ∈ A and S ≤ Kn that

SΩ ∩ S0
s ≥ 1 − Cl1Cλ(φ + 1)kn−1 .

Case 2. We next consider the case of −T < W (j∗ + 1)
Ω, S < 0. By the definitions of T and j*, we 

have
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j:W j
Ω, S ≤ − T + 2

j:W j
Ω, S ≤ T

> q (43)

since otherwise we would reduce T to W (j∗ + 1)
Ω, S

 to get the new smaller threshold with the 

criterion still satisfied. We next bound T using the results in Lemma 6 in Section B.4 of 

Supplementary Material. Observe that (43) and Lemma 6 lead to 

j:W j
Ω, S ⩽ − T > q j:W j

Ω, S ⩾ T − 2 ≥ qcs − 2 with asymptotic probability one. 

Moreover, when W j
Ω, S ≤ − T  we have β j(λ; Ω, S) − β j + p(λ; Ω, S) ≤ − T  and thus 

β j + p(λ; Ω, S) ≥ T . Using (38), we obtain

Cl1sλ ≥ β (λ; Ω, S) − βT 1 ≥
j:W j

Ω, S ⩽ − T
β j + p(λ; Ω, S)

≥ T j:W j
Ω, S ⩽ − T .

(44)

Combining these results leads to Cl1sλ ≥ T (qcs − 2) and thus it holds that

T ≤
Cl1sλ

(qcs − 2) ≤ knλ
Cλφ (45)

for large enough n since κn → ∞ as n → ∞ and Cλ is some positive constant.

We now proceed to prove the theorem by showing that Type II error is small. In light of (38), 

we derive

Cl1sλ ≥ β (λ; Ω, S) − βT 1 =
j = 1

p
β j(λ; Ω, S) − β0, j + β j + p(λ; Ω, S)

≥

j ∈ S0 ∩ (SΩ)
c

β j(λ; Ω, S) − β0, j + β j + p(λ; Ω, S)

≥

j ∈ S0 ∩ (SΩ)
c

β j(λ; Ω, S) − β0, j + β j(λ; Ω, S) − T

since β j + p(λ; Ω, S) + β j(λ; Ω, S) − T  when j ∈ SΩ c
. Using the triangle inequality and 

nothing that β0, j ≥ Cλ
−1λkn for j ∈ S0, we can conclude that

Cl1sλ ≥

j ∈ S0 ∩ (SΩ)
c

β0, j − T ≥ Cλ
−1λkn − T (SΩ)

c
∩ S0 .

Thus it follows that
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SΩ ∩ S0
s = 1 −

(SΩ)
c

∩ S0
s ≥ 1 −

Cl1λ

Cλ
−1λkn − T

= 1 − Cl1Cλ
φ

φ − 1kn−1

uniformly over all Ω ∈ A and S ≤ Kn since T ≤ κnλ/(Cλφ).

Combining the above two scenarios, we have shown that with asymptotic probability one, 

uniformly over all Ω ∈ A and S ≤ Kn it holds that with probability at least 1 − c3p−c3,

SΩ ∩ S0
s ≥ 1 − Cl1Cλ(φ + 1)kn

−1 (46)

since φ + 1 = φ/(φ − 1) by the definition of φ. This along with the assumption 

ℙ Ω ∈ A ≥ 1 − c2p−c2 in Condition 7 gives

Power Ω, S = E
SΩ ∩ S0

s ≥ E
SΩ ∩ S0

s Ω ∈ A ℙ Ω ∈ A

≥ 1 − Cl1Cλ φ + 1 κn−1 1 − c3p−c3 1 − c2p−c2

= 1 − Cl1Cλ φ + 1 κn−1 − c2p−c2 − c3p−c3 + o κn−1
= 1 − o 1 ,

which concludes the proof of Theorem 3.

A.6 Proposition 2 and its proof

Proposition 2. Assume that Conditions 1 and 6 hold, the smallest eigenvalue of 2diag(s) – 

diag(s)Ω0diag(s) is positive and bounded away from 0, and λ=Cλ{(log p)/n}1/2 with Cλ > 0 

some constant. Let βT = β0
T , 0, ⋯, 0 T ∈ ℝ2p be the expanded vector of true regression 

coefficient vector. If Lp + Lp′
1/2 + Kn

1/2 an = o 1  and 

s an + Lp′ logp /n 1/2 + Kn logp /n 1/2 = o 1 , then with probability at least 1 − c3p−c3,

sup
Ω ∈ A, S ≤ Kn

β λ; Ω, S − βT 1 = Cl1sλ and sup
Ω ∈ A, S ≤ Kn

β λ; Ω, S − βT 2 = Cl2s1/2λ,

where β λ; Ω, S  is defined in the proof of Theorem 3 in Section A.5 and c3, c4, Cl1, and Cl2
are all positive constants.

Proof. We adopt the same notation as used in the proof of Theorem 3 in Section A.5. Let us 

introduce some key events which will be used in the technical analysis. Define
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ε3 = sup
Ω − Ω0 ≤ C2an, S ≤ Kn

ρS − GS, SβT , S ∞ ≤ λ0 , (47)

ε4 = sup
Ω − Ω0 2 ≤ C2an, S ≤ Kn

GS, S − GS, S max ≤ C5a2, n , (48)

where λ0 = C4 logp /n and a2, n = an + Lp′ + Kn logp /n with C4, C5 > 0 some constants. 

Then by Lemmas 4 and 7 in Sections B.2 and B.5 of Supplementary Material,

ℙ ε3 ∩ ε4 = 1 − c3p−c3 (49)

for some constant c3 > 0. Hereafter we will condition on the event ε3 ∩ ε4.

Since βS is the minimizer of the objective function in (37), we have

1
2βS

T GS, SβS − ρS
T βS + λ βS 1 ≤ 1

2βT , S
T GS, SβT , S − ρS

T βT , S + λ βT , S 1 .

Some routine calculations lead to

1
2 βS − βT , S

TGS, S βS − βT , S + λ βS 1

≤ − βT , S
T GS, SβS + βT , S

T GS, SβT , S + ρS
T βS − βT , S + λ βT , S 1

= ρS − GS, SβT , S
T βS − βT , S + λ βT , S

≤ βS − βT , S 1 ρS − GS, SβT , S ∞ + λ βT , S 1 .

(50)

Let δ = β − βT . Then we can simplify (50) as

1
2δS

T GS, SδS + λ βS 1 ≤ δS 1 ρS − GS, SβT , S ∞ + λ βT , S 1
≤ λ0 δS 1 + λ βT , S 1 .

(51)

Observe that βS 1 = βS0 1 + βS\S0 1 and βT , S 1 = βT , S0 1 + βT , S\S0 1 = βT , S0 1
with S0 the support of true regression coefficient vector. Then it follows from 

βS0 − βT , S0 1 ≥ βT , S0 1 − βS0 1 that

1
2δS

T GS, SδS + λ βS\S0 1 ≤ λ0 δS 1 + λ βS0 − βT , S0 1 .

Denote by δS0 1 = βS0 − βT , S0 1 and δS\S0 1 = βS\S0 − βT , S\S0 1 = βS\S0 1 . Then 

we can further deduce
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1
2δS

T GS, SδS + λ δS\S0 1 ≤ λ0 δS 1 + λ δS0 1 = λ0 δS0 1 + λ0 δS\S0 1 + λ δS0 1;

that is,

1
2δS

T GS, SδS + λ − λ0 δS\S0 1 ≤ λ + λ0 δS0 1 . (52)

When λ ≥ 2λ0, it holds that

1
2δS

T GS, SδS + λ
2 δS\S0 1 ≤ 3λ

2 δS0 1 . (53)

Since δS
T GS, SδS ≥ 0, we obtain the basic inequality

δS\S0 1 ≤ 3 δS0 1 (54)

on event ε3. It follows from (53) that

δS
T GS, SδS ≤ 3λ δS0 1 + δS

T GS, S − GS, S δS (55)

with

G =
Σ0 Σ0 − diag s

Σ0 − diag s Σ0
.

With some matrix calculations, we can show that

Λmin G ≥ Λmin Σ0 Λmin 2diag s − diag s Ω0diag s ≥ C,

since both Σ0 and 2diag(s)−diag(s)Ω0diag(s) have eigenvalues bounded away from 0. Thus 

the left hand side of (55) can be bounded from below by c0C δS 2
2.

It remains to bound the right hand side of (55). For the first term, it follows from the 

Cauchy–Schwarz inequality that

3λ δS0 1 ≤ 3λ s δS0 2 ≤ 3λ s δS 2 . (56)

For the last term δS
T GS, S − GS, S δS on the right hand of (55), by conditioning on event ε4

and using the Cauchy–Schwarz inequality, the triangle inequality, and the basic inequality 

(54) we can obtain
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δS
T GS, S − GS, S δS ≤ GS, S − GS, S max δS 1

2

≤ GS, S − GS, S max δS0 1 + δS\S0 1
2

≤ 16 GS, S − GS, S max δS0 1
2

≤ 16s GS, S − GS, S max δS0 2
2

≤ 16s GS, S − GS, S max δS 2
2

≤ 16C5sa2, n δS 2
2 .

Combining the above results, we can reduce inequality (55) to

C δS 2
2 ≤ 3λ s δS 2 + 16C5sa2, n δS 2

2 .

Since sa2,n → 0, there exists a positive constant Cl2 such that it holds for n large enough that

δS 2 = βS − βT , S 2 = Cl2 sλ .

Further, by (56) we have

βS − βT , S 1 = Cl1sλ

for some constant Cl1 and for large enough n. Note that by definition, βSc = 0 and βT , Sc = 0. 

Therefore, summarizing the above results completes the proof of Proposition 2.

References

[1]. Abramovich F, Benjamini Y, Donoho DL, and Johnstone IM (2006). Adapting to unknown sparsity 
by controlling the false discovery rate. Ann. Statist 34, 584–653.

[2]. Barber RF and Candès EJ (2015). Controlling the false discovery rate via knockoffs. The Annals 
of Statistics 43, 2055–2085.

[3]. Barber RF and Candès EJ (2016). A knockoff filter for high-dimensional selective inference 
arXiv:1602.03574.

[4]. Benjamini Y and Hochberg Y (1995). Controlling the false discovery rate: A practical and 
powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57, 289–
300.

[5]. Benjamini Y and Yekutieli D (2001). The control of the false discovery rate in multiple testing 
under dependency. Ann. Statist 29, 1165–1188.

[6]. Bickel PJ and Levina E (2008). Regularized estimation of large covariance matrices. The Annals 
of Statistics 36, 199–227.

[7]. Bickel PJ, Ritov Y, and Tsybakov AB (2009). Simultaneous analysis of lasso and dantzig selector. 
The Annals of Statistics 37, 1705–1732.

[8]. Bühlmann P and van de Geer S (2011). Statistics for High-Dimensional Data: Methods, Theory 
and Applications Springer.

[9]. Candès EJ, Fan Y, Janson L, and Lv J (2018). Panning for gold: ‘model-X’ knockoffs for high 
dimensional controlled variable selection. Journal of the Royal Statistical Society Series B 80, 
551–577.

Fan et al. Page 34

J Am Stat Assoc. Author manuscript; available in PMC 2020 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[10]. Chen M, Ren Z, Zhao H, and Zhou HH (2016). Asymptotically normal and efficient estimation of 
covariate-adjusted Gaussian graphical model. Journal of the American Statistical Association 
111, 394–406. [PubMed: 27499564] 

[11]. Chouldechova A and Hastie T (2015). Generalized additive model selection arXiv:1506.03850.

[12]. Clarke S and Hall P (2009). Robustness of multiple testing procedures against dependence. Ann. 
Statist 37, 332–358.

[13]. Efron B (2007a). Correlation and large-scale simultaneous significance testing. J. Amer. Statist. 
Assoc 102, 93–103.

[14]. Efron B (2007b). Size, power and false discovery rates. Ann. Statist 35, 1351–1377.

[15]. Efron B and Tibshirani R (2002). Empirical bayes methods and false discovery rates for 
microarrays. Genetic Epidemiology 23, 70–86. [PubMed: 12112249] 

[16]. Engle R, Granger C, Rice J, and Weiss A (1986). Semiparametric estimates of the relation 
between weather and electricity sales. Journal of the American Statistical Association 81, 310–
320.

[17]. Fan J and Fan Y (2008). High-dimensional classification using features annealed independence 
rules. The Annals of Statistics 36, 2605–2637. [PubMed: 19169416] 

[18]. Fan J and Gijbels I (1996). Local Polynomial Modelling and Its Applications London: Chapman 
& Hall/CRC.

[19]. Fan J, Guo S, and Hao N (2012). Variance estimation using refitted cross-validation in ultrahigh 
dimensional regression. J. Roy. Statist. Soc. Ser. B 74, 37–65.

[20]. Fan J, Hall P, and Yao Q (2007). To how many simultaneous hypothesis tests can normal, 
student’s t or bootstrap calibration be applied? Journal of the American Statistical Association 
102, 1282–1288.

[21]. Fan J, Han X, and Gu W (2012). Control of the false discovery rate under arbitrary covariance 
dependence (with discussion). Journal of American Statistical Association 107, 1019–1045.

[22]. Fan J and Li R (2001). Variable selection via nonconcave penalized likelihood and its oracle 
properties. Journal of American Statistical Association 96, 1348–1360.

[23]. Fan J and Lv J (2008). Sure independence screening for ultrahigh dimensional feature space 
(with discussion). Journal of the Royal Statistical Society Series B 70, 849–911.

[24]. Fan J and Lv J (2010). A selective overview of variable selection in high dimensional feature 
space (invited review article). Statistica Sinica 20, 101–148. [PubMed: 21572976] 

[25]. Fan J, Samworth RJ, and Wu Y (2009). Ultrahigh dimensional variable selection: beyond the 
linear model. J. Mach. Learn. Res 10, 1829–1853.

[26]. Fan Y, Demirkaya E, and Lv J (2017). Nonuniformity of p-values can occur early in diverging 
dimensions arXiv preprint arXiv:1705.03604.

[27]. Fan Y and Fan J (2011). Testing and detecting jumps based on a discretely observed process. 
Journal of Econometrics 164, 331–344.

[28]. Fan Y, Kong Y, Li D, and Lv J (2016). Interaction pursuit with feature screening and selection 
arXiv preprint arXiv:1605.08933.

[29]. Fan Y, Kong Y, Li D, and Zheng Z (2015). Innovated interaction screening for high-dimensional 
nonlinear classification. The Annals of Statistics 43, 1243–1272.

[30]. Fan Y and Lv J (2013). Asymptotic equivalence of regularization methods in thresholded 
parameter space. Journal of the American Statistical Association 108, 1044–1061.

[31]. Fan Y and Lv J (2016). Innovated scalable efficient estimation in ultra-large Gaussian graphical 
models. The Annals of Statistics 44, 2098–2126.

[32]. Hall P and Wang Q (2010). Strong approximations of level exceedences related to multiple 
hypothesis testing. Bernoulli 16, 418–434.

[33]. Härdle W, Liang H, and Gao JT (2000). Partially Linear Models Heidelberg: Springer Physica 
Verlag.

[34]. Härdle W and Stoker TM (1989). Investigating smooth multiple regression by the method of 
average derivatives. Journal of the American statistical Association 84, 986–995.

[35]. Hastie T and Tibshirani R (1990). Generalized Additive Models London: Chapman & Hall/CRC.

Fan et al. Page 35

J Am Stat Assoc. Author manuscript; available in PMC 2020 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[36]. Hastie T, Tibshirani R, and Friedman J (2009). The Elements of Statistical Learning: Data 
Mining, Inference, and Prediction (2nd edition). Springer.

[37]. Horowitz JL (2009). Semiparametric and nonparametric methods in econometrics Springer.

[38]. Horvath DP, Schaffer R, and Wisman E (2003). Identification of genes induced in emerging 
tillers of wild oat (avena fatua) using arabidopsis microarrays. Weed Science 51, 503–508.

[39]. Huber PJ (1973). Robust regression: Asymptotics, conjectures and monte carlo. The Annals of 
Statistics 1, 799–821.

[40]. Ichimura H (1993). Semiparametric least squares (sls) and weighted sls estimation of single-
index models. Journal of Econometrics 58, 71–120.

[41]. Lauritzen SL (1996). Graphical Models Oxford University Press.

[42]. Li Q and Racine JS (2007). Nonparametric econometrics: theory and practice Princeton 
University Press.

[43]. Lin Q, Zhao Z, and Liu JS (2016). Sparse sliced inverse regression for high dimensional data 
arXiv:1611.06655.

[44]. Liu W and Shao Q-M (2014). Phase transition and regularized bootstrap in large-scale t-tests with 
false discovery rate control. Ann. Statist 42, 2003–2025.

[45]. Lv J (2013). Impacts of high dimensionality in finite samples. The Annals of Statistics 41, 2236–
2262.

[46]. McCullagh P and Nelder JA (1989). Generalized Linear Models Chapman and Hall, London.

[47]. Meier L, van de Geer S, and Bühlmann P(2009). High-dimensional additive modeling. The 
Annals of Statistics 37, 3779–3821.

[48]. Meng L, Sun F, Zhang X, and Waterman MS (2011). Sequence alignment as hypothesis testing. J. 
Comput. Biol 18, 677–691. [PubMed: 21554016] 

[49]. Prelić A, Bleuler S, Zimmermann P, Wille A, Bühlmann P, Gruissem W, Hennig L, Thiele L, and 
Zitzler E (2006). A systematic comparison and evaluation of biclustering methods for gene 
expression data. Bioinformatics 22, 1122–1129. [PubMed: 16500941] 

[50]. Ramel F, Sulmon C, Bogard M, Couèe I, and Gouesbet G (2009). Differential patterns of reactive 
oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced 
tolerance in arabidopsis thaliana plantlets. BMC Plant Biology 9, 1–18. [PubMed: 19123941] 

[51]. Ravikumar P, Liu H, Lafferty J, and Wasserman L (2009). Spam: sparse sdditive models. Journal 
of the Royal Statistical Society Series B 71, 1009–1030.

[52]. Ren Z, Kang Y, Fan Y, and Lv J (2018). Tuning-free heterogeneous inference in massive 
networks. Journal of the American Statistical Association, to appear

[53]. Schäfer J and Strimmer K (2005). A shrinkage approach to large-scale covariance matrix 
estimation and implications for functional genomics. Statistical Applications in Genetics and 
Molecular Biology 4, 1544–1615.

[54]. Schmitt BA (1992). Perturbation bounds for matrix square roots and pythagorean sums. Linear 
algebra and its applications 174, 215–227.

[55]. Shah RD and Samworth RJ (2013). Variable selection with error control: Another look at stability 
selection. J. Roy. Statist. Soc. Ser. B 75, 55–80.

[56]. Stoker TM (1986). Consistent estimation of scaled coefficients. Econometrica, 1461–1481.

[57]. Storey JD (2002). A direct approach to false discovery rates. J. Roy. Statist. Soc. Ser. B 64, 479–
498.

[58]. Storey JD, Taylor JE, and Siegmund D (2004). Strong control, conservative point estimation and 
simultaneous conservative consistency of false discovery rates: a unified approach. J. Roy. Statist. 
Soc. Ser. B 66, 187–205.

[59]. Su W and Candès EJ (2016). Slope is adaptive to unknown sparsity and asymptotically minimax. 
Ann. Statist 44, 1038–1068.

[60]. Sur P, Chen Y, and Candès EJ (2017). The likelihood ratio test in high-dimensional logistic 
regression is asymptotically a rescaled chi-square arXiv preprint arXiv:1706.01191.

[61]. Tibshirani R (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 
58, 267–288.

Fan et al. Page 36

J Am Stat Assoc. Author manuscript; available in PMC 2020 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[62]. Wienkoop S, Glinski M, Tanaka N, Tolstikov V, Fiehn O, and Weckwerth W (2004). Linking 
protein fractionation with multidimensional monolithic reversed-phase peptide chromatography/
mass spectrometry enhances protein identification from complex mixtures even in the presence of 
abundant proteins. Rapid Commun. Mass Spectrom 18, 643–650. [PubMed: 15052571] 

[63]. Wille A, Zimmermann P, Vranová E, Fürholz A, Laule O, Bleuler S, Hennig L, Prelić A, von 
Rohr P, Thiele L, et al. (2004). Sparse graphical Gaussian modeling of the isoprenoid gene 
network in arabidopsis thaliana. Genome biology 5, R92. [PubMed: 15535868] 

[64]. Wu WB (2008). On false discovery control under dependence. Ann. Statist 36, 364–380.

[65]. Yang E, Lozano A, and Ravikumar P (2014). Elementary estimators for high-dimensional linear 
regression. In Proceedings of the 31st International Conference on Machine Learning 
(ICML-14), 388–396.

[66]. Zhang Y and Liu JS (2011). Fast and accurate approximation to significance tests in genome-
wide association studies. Journal of the American Statistical Association 106, 846–857. 
[PubMed: 22140288] 

Fan et al. Page 37

J Am Stat Assoc. Author manuscript; available in PMC 2020 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fan et al. Page 38

Table 1:

Simulation results for linear model (20) in simulation example 1 with A = 1.5 in Section 4.1

ρ p

RANK RANK+ RANKs RANKs+

FDR Power FDR Power FDR Power FDR Power

0 200 0.2054 1.00 0.1749 1.00 0.1909 1.00 0.1730 1.00

400 0.2062 1.00 0.1824 1.00 0.2010 1.00 0.1801 1.00

600 0.2263 1.00 0.1940 1.00 0.2206 1.00 0.1935 1.00

800 0.2385 1.00 0.1911 1.00 0.2247 1.00 0.1874 1.00

1000 0.2413 1.00 0.2083 1.00 0.2235 1.00 0.1970 1.00

0.5 200 0.2087 1.00 0.1844 1.00 0.1875 1.00 0.1692 1.00

400 0.2144 1.00 0.1879 1.00 0.1954 1.00 0.1703 1.00

600 0.2292 1.00 0.1868 1.00 0.2062 1.00 0.1798 1.00

800 0.2398 1.00 0.1933 1.00 0.2052 0.9997 0.1805 0.9997

1000 0.2412 1.00 0.2019 1.00 0.2221 0.9984 0.2034 0.9984
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Table 2:

Simulation results for linear model (20) in simulation example 1 with A = 3.5 in Section 4.1

ρ p

RANKs RANKs+ HKF HKF+

FDR Power FDR Power FDR Power FDR Power

0 200 0.1858 1.00 0.1785 1.00 0.1977 0.9849 0.1749 0.9837

400 0.1895 1.00 0.1815 1.00 0.2064 0.9046 0.1876 0.8477

600 0.2050 1.00 0.1702 1.00 0.1964 0.8424 0.1593 0.7668

800 0.2149 1.00 0.1921 1.00 0.1703 0.7513 0.1218 0.6241

1000 0.2180 1.00 0.1934 1.00 0.1422 0.7138 0.1010 0.5550

0.5 200 0.1986 1.00 0.1618 1.00 0.1992 0.9336 0.1801 0.9300

400 0.1971 1.00 0.1805 1.00 0.1657 0.8398 0.1363 0.7825

600 0.2021 1.00 0.1757 1.00 0.1253 0.7098 0.0910 0.6068

800 0.2018 1.00 0.1860 1.00 0.1374 0.6978 0.0917 0.5792

1000 0.2097 0.9993 0.1920 0.9993 0.1552 0.6486 0.1076 0.5524

J Am Stat Assoc. Author manuscript; available in PMC 2020 July 31.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fan et al. Page 40

Table 3:

Simulation results for partially linear model (21) in simulation example 2 in Section 4.1

ρ p

RANK RANK+ RANKs RANKs+

FDR Power FDR Power FDR Power FDR Power

0 200 0.2117 1.00 0.1923 1.00 0.1846 0.9976 0.1699 0.9970

400 0.2234 1.00 0.1977 1.00 0.1944 0.9970 0.1747 0.9966

600 0.2041 1.00 0.1776 1.00 0.2014 0.9968 0.1802 0.9960

800 0.2298 1.00 0.1810 1.00 0.2085 0.9933 0.1902 0.9930

1000 0.2322 1.00 0.1979 1.00 0.2113 0.9860 0.1851 0.9840

0.5 200 0.2180 1.00 0.1929 1.00 0.1825 0.9952 0.1660 0.9949

400 0.2254 1.00 0.1966 1.00 0.1809 0.9950 0.1628 0.9948

600 0.2062 1.00 0.1814 1.00 0.2038 0.9945 0.1898 0.9945

800 0.2264 1.00 0.1948 1.00 0.2019 0.9916 0.1703 0.9906

1000 0.2316 1.00 0.2033 1.00 0.2127 0.9830 0.1857 0.9790

J Am Stat Assoc. Author manuscript; available in PMC 2020 July 31.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fan et al. Page 41

Table 4:

Simulation results for single-index model (22) in simulation example 3 in Section 4.1

ρ p

RANK RANK+ RANKs RANKs+

FDR Power FDR Power FDR Power FDR Power

0 200 0.1893 1 0.1413 1 0.1899 1 0.1383 1

400 0.2163 1 0.1598 1 0.245 0.998 0.1676 0.997

600 0.2166 1 0.1358 1 0.2314 0.999 0.1673 0.998

800 0.1964 1 0.1406 1 0.2443 0.992 0.1817 0.992

1000 0.2051 1 0.134 1 0.2431 0.969 0.1611 0.962

0.5 200 0.2189 1 0.1591 1 0.2322 1 0.1626 1

400 0.2005 1 0.1314 1 0.2099 0.996 0.1615 0.995

600 0.2064 1 0.1426 1 0.2331 0.998 0.1726 0.998

800 0.2049 1 0.1518 1 0.2288 0.994 0.1701 0.994

1000 0.2259 1 0.1423 1 0.2392 0.985 0.185 0.983
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Table 5:

Simulation results for additive model (23) in simulation example 4 in Section 4.1

ρ p

RANK RANK+ RANKs RANKs+

FDR Power FDR Power FDR Power FDR Power

0 200 0.1926 0.9780 0.1719 0.9690 0.2207 0.9490 0.1668 0.9410

400 0.2094 0.9750 0.1773 0.9670 0.2236 0.9430 0.1639 0.9340

600 0.2155 0.9670 0.1729 0.9500 0.2051 0.9310 0.1620 0.9220

800 0.2273 0.9590 0.1825 0.9410 0.2341 0.9280 0.1905 0.9200

1000 0.2390 0.9570 0.1751 0.9350 0.2350 0.9140 0.1833 0.9070

0.5 200 0.1904 0.9680 0.1733 0.9590 0.2078 0.9370 0.1531 0.9330

400 0.2173 0.9650 0.1701 0.9540 0.2224 0.9360 0.1591 0.9280

600 0.2267 0.9600 0.1656 0.9360 0.2366 0.9340 0.1981 0.9270

800 0.2306 0.9540 0.1798 0.9320 0.2332 0.9150 0.1740 0.9110

1000 0.2378 0.9330 0.1793 0.9270 0.2422 0.8970 0.1813 0.8880
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Table 6:

Selected genes and their associated pathways for real data analysis in Section 5

RANK RANK+

Pathway Gene Pathway Gene

Calvin AT4G38970 Calvin AT4G38970

Carote AT1G57770 Carote AT1G57770

Folate AT1G78670 Folate AT1G78670

Inosit AT3G56960

Phenyl AT2G27820 Phenyl AT2G27820

Purine AT3G01820 Purine AT3G01820

Ribo AT4G13700

Ribo AT2G01880 Ribo AT2G01880

Starch AT5G19220 Starch AT5G19220

Lasso

Pathway Gene Pathway Gene

Berber AT2G34810 Porphy AT4G18480

Calvin AT4G38970 Pyrimi AT5G59440

Calvin AT3G04790 Ribo AT2G01880

Glutam AT5G18170 Starch AT5G19220

Glycol AT4G27600 Starch AT2G21590

Pentos AT3G04790 Trypto AT5G48220

Phenyl AT2G27820 Trypto AT5G17980

Porphy AT1G03475 Mevalo AT5G47720

Porphy AT3G51820
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