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Abstract

The simultaneous estimation and variable selection for Cox model has been discussed by several
authors (Fan and Li, 2002; Huang and Ma, 2010; Tibshirani, 1997) when one observes right-
censored failure time data. However, there does not seem to exist an established procedure for
interval-censored data, a more general and complex type of failure time data, except two
parametric procedures given in Scolas et al. (2016) and Wu and Cook (2015). To address this, we
propose a broken adaptive ridge (BAR) regression procedure that combines the strengths of the
quadratic regularization and the adaptive weighted bridge shrinkage. In particular, the method
allows for the number of covariates to be diverging with the sample size. Under some weak
regularity conditions, unlike most of the existing variable selection methods, we establish both the
oracle property and the grouping effect of the proposed BAR procedure. An extensive simulation
study is conducted and indicates that the proposed approach works well in practical situations and
deals with the collinearity problem better than the other oracle-like methods. An application is also
provided.
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1. Introduction

The statistical analysis of interval-censored failure time data has been extensively discussed

and especially, many procedures have been proposed in the literature for their regression
analysis (Finkelstein, 1986; Jewell and van der Laan, 2004; Sun, 2006). However, there

exists little literature on simultaneous estimation and variable selection for interval-censored
data although some literature has been developed for right-censored failure time data (Fan
and Li, 2002; Huang and Ma, 2010; Tibshirani, 1997). By interval-censored data, we mean
that the failure time of interest is known or observed only to belong to an interval instead of
being observed exactly. It is easy to see that they include right-censored data as a special
case and can naturally occur in a longitudinal or periodic follow-up study such as clinical
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trials among other situations. In the following, we will discuss regression analysis of
interval-censored data with the focus on simultaneous estimation and covariate selection.

Covariate or variable selection is a commonly asked question in statistical analysis and many
methods for it have been developed, especially under the context of linear regression, such
as forward selection, backward selection and best subset selection. Among them, the
penalized estimation procedure, which optimizes an objective function with a penalty
function, has recently become increasingly popular. Among the penalty functions, it is well-
known that the L penalty function is usually a desired choice as it directly penalizes the
cardinality of a model and seeks the most parsimonious model explaining the data. However,
it is non-convex and the solving of an exact Ly-penalized nonconvex optimization problem
involves exhaustive combinatorial best subset search, which is NP-hard and computationally
infeasible for high dimensional data. Corresponding this, Tibshirani (1996) considered the
L, penalty function, which gives the closest convex relaxation, and developed the least
absolute shrinkage and selection operator (LASSO) procedure. In particular, the L1-based
optimization problem can be solved exactly with efficient algorithms. However, the LASSO
procedure does not have the oracle property or the grouping effect, which is especially
desirable when covariates are highly correlated as often the case in high dimensional
situations. Also the LASSO procedure tends to select too many small noise features and is
biased for large parameters.

Following Tibshirani (1996), many authors have proposed other penalty functions, including
the smoothly-clipped absolute deviation (SCAD) penalty by Fan and Li (2001), the elastic
net by Zou and Hastie (2005), the adaptive LASSO (ALASSO) penalty by Zou (2006), the
group LASSO by Yuan and Lin (2006), the smooth integration of counting and absolute
deviation (SICA) penalty by Lv and Fan (2009) and the seamless-Lg (SELO) penalty by
Dicker et al. (2013). All of them either have the oracle property or the grouping effect but
none has both. In the following, we present a broken adaptive ridge (BAR) penalized
procedure that has both the oracle property and the grouping effect. It approximates the Lg-
penalized regression using an iteratively reweighted Ly-penalized algorithm and has the
advantages of simultaneous variable selection, parameter estimation and clustering. Also the
BAR iterative algorithm is fast and converges to a unique global optimal solution.

As mentioned above, many authors have investigated the variable selection problem for
right-censored failure time data and in particular, several penalized procedures have been
proposed under the framework of the Cox’s proportional hazards (PH) model. For example,
Tibshirani (1997), Fan and Li (2002) and Zhang and Lu (2007) generalized the LASSO,
SCAD and ALASSO penalty-based procedures, respectively, to the PH model situation with
right-censored data. Furthermore, Shi et al. (2014) discussed the same problem but the
generalization of the SICA penalty-based procedure. Note that conceptually it may seem to
be straightforward to generalize the procedures above to interval-censored data. However,
this is not true partly due to the much more complex structures of interval-censored data. For
example, with right-censored data under the PH model, a partial likelihood function, which
is free of the underlying baseline hazard function and thus is parametric with respect to
covariate effects, is available and has been employed as the objective function in all of the
penalized procedures described above. In contrast, no such parametric objective function is
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available for interval-censored data and one has to deal with both regression parameters and
the baseline hazard function together.

For the covariate selection based on interval-censored data, two parametric procedures have
been developed in Scolas et al. (2016) and Wu and Cook (2015) and in particular, the latter
assumed that the baseline hazard function is a piecewise constant function. One drawback of
this is that the piecewise constant function is neither continuous nor differentiable. More
importantly, there is no theoretical justification available for both procedures. In the
following, instead of the piecewise constant function, we will employ Bernstein polynomials
to approximate the underlying cumulative hazard function. Note that although the uses of
piecewise constant functions and Bernstein polynomials may look similar, the two
approaches are actually quite different. One major difference is that unlike the piecewise
constant function, the Bernstein polynomial approximation is a continuous approximation
and has some nice properties including differentiability. More comments on this are given
below.

The remainder of the paper is organized as follows. In Section 2, we will first describe some
notation and assumptions that will be used throughout the paper and then the idea behind the
proposed BAR regression procedure as well as some background. Section 3 presents the
proposed BAR regression procedure and in particular, an iterative algorithm for the
determination of the BAR estimators is developed. In Section 4, we establish the oracle
property and grouping effect of the proposed method, and Section 5 gives some results
obtained from an extensive simulation study conducted for the assessment of the proposed
approach. In particular, we compared the BAR regression procedure and the methods that
make use of other commonly used penalty functions, and the results indicate that the
proposed method can outperform other methods in general. In Section 6, an application is
provided and Section 7 contains some discussion and concluding remarks.

Notation, Assumptions and Some Background

Notation, Assumptions and Sieve Maximum Likelihood

Consider a failure time study consisting of 77 independent subjects. For subject / let 7;
denote the failure time of interest and suppose that there exists a p-dimensional vector of
covariates denoted by Z;= (Z,..., Zj)’, = 1,..., n. Also suppose that one observes
interval-censored data given by @ = {(L;, R], Z;}} = 1, where (L, R] denotes the observed or
censored interval to which 7;belongs. It is apparent that £;= 0 or ;= oo corresponds to a
left- or right-censored observation on the ith subject. In the following, we will assume that
the censoring mechanism behind the censoring intervals is independent of the failure time of
interest. That is, we have independent or non-informative interval censoring (Sun, 2006)

For covariate effects, in the following, we will assume that the 7;s follow the PH model or
that given Z,, the cumulative hazard function of 7;is given by

AGC| Z) = AP Z. )
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In the above, A (t) denotes an unknown cumulative baseline hazard function and g a vector
of regression parameters. Then the likelihood function has the form

Lu(B, Ao) = ﬁ[exp[ — Ao(Lpel i} — exp| = Ag(R)” 71} @

i=1

Here we assume that Ag(0) = 0 and Ag(o0) = oo. In practice, one special case of interval-
censored data that occurs quite often is current status or case I interval-censored data in
which each subject is observed only once. For the situation, all observations are e left- or
right-censored. One type of studies that naturally produce such data is cross-sectional
studies, which are commonly conducted in medical studies and social science among others
(Jewell and van der Laan, 2004; Sun, 2006). In this case, the likelihood function above
reduces to

S

where &;= 1 for left-censored observations and 0 otherwise.

To estimate = (B, Ag) in general, a natural approach is clearly to maximize the log-
likelihood function /,(8, Ag) = log{L (B, Ao)}. However, it is obvious that this is not an easy
task since /{8, Ag) involves both finite-dimensional and infinite-dimensional parameters. To
deal with this and also to give a parametric objective function to be used below, we propose
to employ the sieve approach to approximate Ag by using Bernstein polynomials (Wang and
Ghosh, 2012; Zhou et al., 2016). More specifically, define

O={9=B.AN)ERBR M)},

denoting the parameter space of #, where % = {1 € R”,| || < M} with Mbeing a positive
constant and . is the collection of all bounded and continuous non-decreasing, non-
negative functions over the interval [, ] with 0 < u< v< < 0o > In practice, [¢ V] is usually
taken as the range of the observed data. Furthermore, define the sieve space

0y ={9,=(B.Aon) € B® My},

where

m
My = AonD) = DAk Byt mu): > T|pf < My 0<¢f <o <. <o
k=0 0<k<m

with the ¢}’s being some parameters and
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By(t.m,u,v) = (Z)(’_”)k(l - t‘”)m_k, k=0,...m,

which are Bernstein basis polynomials of degree m = o(r?) for some s € (0,1). More
discussion about 7, will be given below.

By focusing on the sieve space @, the likelihood function given in (2) can be rewritten as

Ly(B.4i's) = ﬁ[exp{ = AouLel 1} = exp{ — Agu(R)" 71}, ®

i=1

and if one is only interested in estimating g, it is natural to focus on the sieve profile log-

likelihood function /,(g) = maxlog
¢*

L,(B, qbZ’s)]. Note that due to the non-negativity and

monotonicity features of Ag, in the maximization above, we need the constraint
0 < é§ < b} <... <k, butit can be easily removed by the reparameterization ¢ = ¢ and

o = Zf: Oed’i, 1 <i < m. In the following, we will discuss the development of a penalized or

regularized procedure for simultaneous estimation and covariate selection based on

1,(B) = m(;xlog[Ln(ﬂ’ ¢,’<s)l.

2.2 Regularized Sieve Maximum likelihood Estimation

For the simultaneous estimation and covariate selection for model (1), we will consider the
approach that minimizes the penalized function.

o p P 22
Lpp(BI B) = —21,(P) + Z 1:P(|.3j|;/1) = =20,p)+ 4 2 1:% (4)
Jj= J= ﬂj

where A denotes a tuning parameter and \ﬁ = (B/l, .‘.,;\9;)’ is a consistent estimator of B with

no zero components. The choice of \ﬁ will be discussed below. A main motivation behind

A4
the procedure above is that given the consistency of \/; the term ﬂjz-/ﬂjz-, is expected to
converge to /|B} # 0) in probability as /7goes to infinity and therefore the method can be
regarded as an automatic implementation of the best subset selection in some asymptotic
sense. In other words, the adaptive penalty term in (4) can be taken as an approximation to
the Lg penalty. A similar idea was discussed in Liu and Li (2016) under the context of
generalized linear models with complete data and in Kawaguchi et al.(2017) for the PH
model with right-censored data, respectively.

It is apparent that instead of the penalty function used in (4), one can employ other penalty
functions such as the Lo-penalty A|B}; A) = A A|B] = 0), which directly penalizes the
cardinality of a model and is the most essential sparsity measure due to its discrete nature.
However, as mentioned above, its implementation is NP-hard and computationally infeasible
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for high dimensional data. Other possible choices may include the LASSO penalty A|Bj|; 1)
=\ |B|, the ALASSO penalty A|Bf; A) = A wj |B] with w; being a weight, the SCAD
penalty P(|B): 1) = 4 /(l)’3 j|min{1, (ah — x)4/(ak — ) }dx with a > 2, the SICA penalty
P(|Bj]: 4) = Az + 1)|Bj|/(|B)] + ) with = > 0, the SELO penalty

1641
i1+ 7

A

P(Bjf: 2) = Toa®) 0% +1

with > 0, or the minimax concave (MCP) penalty

1B/l (as -
P(|ﬂj|;/1)=/1[)‘ — *ix

with a> 1 given in Zhang (2010). However, all of these procedures would be quite complex
computationally partly because multiple parameters need to be tuned. More importantly, in
addition to the oracle property and the grouping effect given below, one will see from the
numerical study below that the proposed method generally outperforms the procedures
based on other penalty function.

3. BAR Regression Estimation Procedure

Now we will describe how to minimize /pp(ﬁlﬁ) given in (4) or the implementation of the

proposed BAR regression procedure. For this, it is apparent that one could directly minimize
(4) by some numerical iterative algorithms. For example, given a good initial value ﬁ(o), one
can then update ﬂ(k‘l) iteratively by the following reweighed L, —penalized Cox regression
estimator

)4 2

. B;
= argmin{ — 2/ + A —
gﬂ P(ﬁ) "Z ~k—1) 2

jzl(ﬁj )

Ak)

B k=1, ®)

where A, is a non-negative penalization tuning parameter. However, it is easy to see that this
would be computationally costly. So instead we will present a data-driven algorithm, which
is much easier and computationally more efficient. In the algorithm, we will approximate the
log-likelihood function using the Newton-Raphson update through an iterative least squares
procedure, which solves the least squares problem subject to the reweighted L, penalty at
each iteration.

Let ¢ = (¢, ..., dp) AN 1,(B, ) = log{ L, (B, dis)}. Define

(B, b) Ply(B.¢)

Bl =—55—  InBld) =—5555—.
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the partial gradient vector and the partial Hessian matrix about g, respectively. Suppose that
(B. ¢) satisfies /,,(8, ¢) = 0. Then for Bwithin a small neighborhood of g, the second-order

Taylor expansion gives

1B) % 3inB| D) [nB| D]~ 6] )] + .

where cis a constant. Let the matrix X be defined by the Cholesky decomposition of
—i,(B1d) as —i ,(B1$) = X' X and define the pseudo response vector

y= X" 1i (BI®) - I ,(61$)B]. Then we have

ly = XBI% = — [i 8| )] [ 8|3 [i niB| D))

where | - || denotes the Euclidean norm for a given vector. This implies that minimizing (4)
is asymptotically equivalent to minimizing the following penalized least squares function

p 2
2 Bj
lly = XBII + 4, lvfz.
J= -

Bj

A similar least squares approximation was discussed in Wang and Leng (2007) to get a
unified LASSO estimation.

Now we are ready to present the iterative algorithm. Define

N4 2 L g7
g(B) = argmin{ ||y — XB||* + 4, D_ <} ©)
B j=1 ﬁj2

By some algebraic manipulations, one can show that
% v o1—1
8(B) = {X'X+22,D(B)| X'y <7>

and one can obtain the BAR regression estimator given by minimizing (4) by solving (6) or

N 4
(7), where D(B) = diag[ﬂfZ, ﬂ;zl, a px pmatrix. In the following, we will focus on the

situation where p can diverge to infinity but p < n, and for this, we will denote pby p, to
emphasize the dependence of pon 7. Let Q,=Q,(B) = X'Xand v,=v(B) = X'y. For a
fixed A, which will be discussed below, one can solve (6) as follows.

)

* =3, ¢y satisfying

). As an example, one can take J;(O) to be a vector of

Step 1. set k=0 and choose an intial estimator 6"

~0
187 - Boll = 05¢cowim!"?
zeros as the proposed algorithm is insensitive to the initial values of ¢ and take

ﬁ(o) to be the ridge regression estimator
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20

Pn
B = mg;nin[ —2y(B)+ 6D ﬁ?], ©)

ji=1
where &, is a non-negative tuning parameter to be discussed below.

Step 2. At the Ak, step, compute the partial derivatives in(ﬁ(k)li(k)) and

i (8*16%, where

. 1 SR ZHAR Z;) — S(LIN ZHN(L Z))
InlPld) = ;Z' SLIZ) - SRZ)

and

SRV ZHARN Z){1 = AR} Z)) } — SN ZHAL; | Zp{1 — ML) Zy))

e = 2 2.7, l SIL1Z) = S(R1Z)

{S(RIZ)ARI Z) = S(LI| ZYN(L1 Z))} .
(S(Li\ Z) - SR\ Z)))’ ©

with S(4Z)) = exp{-A(¢ | Z)}, denoting the survival function for subject 7 given
Zj

Step 3. Update the estimate of Bby

~ ~ -1
FEr D =+ 2,06 v

where @, = —i,(3*“16*) and v, = i, 8*16") - I, B* 16

Step 4. Given the current estimate 3 ™", solve a1,(8* TV

k+1)

, )/ d¢ = 0 to obtain
the updated estimate ¢

Step 5. Go back to Step 2 until the convergence is achieved.

Let 8% = limy, _, o8’ denote the estimator of Bobtained above, which will be referred to as

the BAR estimator. Note that in the iterative process above, one does not really need to carry
out the Cholesky decomposition of —i ,(81¢) as only the calculation of Q,and v, is needed.

To implement the algorithm above, one needs to select two tuning parameters £,and A,
simultaneously and for this, as many other authors, we propose to perform two-dimensional
grid search based on the C-fold cross-validation. More specifically, one first divides the
observed data into Cnon-overlapping parts with approximately the same size. For given &,
and A, define the cross-validation statistic as

J Am Stat Assoc. Author manuscript; available in PMC 2020 July 31.
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S (0 (=0
CV@n,An):Z:[ln(ﬁ 3TN m9E 9 g9
c=1

In the above, 1§~ © denotes the log likelihood function for the whole data set without the ¢

part, and ﬁ( =9 and $( =9 are the proposed BAR estimators of gand ¢ based on whole data

set without the ¢/ part. Then one can choose the values of £,,and A, that maximize CU&,,
A,). Instead of the C-fold cross-validation, one may employ other criteria such as the
generalized cross-validation and Bayesian information criterion. More comments on this and
on the selection of &;and A, are given below.

4. The Asymptotic Properties of the BAR Estimator

Now we discuss the asymptotic properties of the proposed BAR estimator g*. For this, let
Bo = (Bo, 1 --- o, p,)’ denote the true value of ft and without loss of generality, assume

Bo = (Bo1- Byp)'» Where By consists of all g, (g, < pp) nonzero components and fty, the
remaining zero components. Correspondingly, we will divide the BAR estimator

A PN 1 R
B" = (B1.P2) inthe same way.

To establish the asymptotic properties, we need the following regularity conditions. (C1). (i)
The set % is a compact subset of 2”7 and f is an interior point of . (ii) The matrix
KZZ’) is non-singular with Z being bounded. That is, there exists z, > 0 such that A || 4 ||
<z)=1

(C2). The union of the supports of L and Ris contained in an interval [¢,] withO < y< v<
oo, and there exists a positive number ¢ such that AR- L= ¢) = 1.

(C3). The function Ag() is continuously differentiable up to order r in [u,v] and satisfies a1
< Ag (1) < Ag(V) < afor some positive constant a.

(C4). There exists a compact neighborhood %, of the true value S such that

sup [l 10,8 - 18| £ 0,
B e %y

where /() is a positive definite p, x p, matrix.
(C5). There exists a constant ¢> 1 such that ¢ < Apin(n™1Q,) < Amax771Q,) < cfor

sufficiently large 7, where Amin(-) and A;.4(:) stand for the smallest and largest eigenvalues
of the matrix.

(C6). AS n — o0, ppgy/\/n — 0, Ay/yfn — 0, Eylafn — 0, Apfg,/n — 0 and Ag/(p,,\/ﬁ) — oo,

(C7). There exist positive constants gy and a; such that @ < |5y < &, 1 < /< g

J Am Stat Assoc. Author manuscript; available in PMC 2020 July 31.
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(C8). The initial estimator 3 satisfies ||5“ - go|| = O(/puln).

Conditions (C1)—(C3) are necessary for the existence and consistence of the sieve maximum
likelihood estimator of Ag(?) and usually satisfied in practice (Zhang et al., 2010).
Conditions (C4) and (C5) assume that n=1Q,(B) is positive definite almost surely and its
eigenvalues are bounded away from zero and infinity. Condition (C6) gives some sufficient,
but not necessary, conditions needed to prove the numerical convergence and asymptotic
properties of the BAR estimator. Condition (C7) assumes that the nonzero coefficients are
uniformly bounded away from zero and infinity, and condition (C8) is crucial for

establishing the oracle property of BAR. First we will establish the oracle property of g*.

Theorem 1. (Oracle Property). Assume that the regularity conditions (C1) —(C8) hold. Then
with probability tending to 1, the BAR estimator g = (31 , B, )’ has the following properties:

1.  pi=o.

2. p exists and is the unique fixed point of the equation ; = (@ + 4,D;(8) VD,
where Dy () = diag{f7 %.....8;7}, @ is the g, x g, leading submatrix of Q,, and

vil is the vector consisting of the first g, components of v,

3. Jn(BT - Po1) converges in distribution to a multivariate normal distribution Ngn
(0, Z), where X is defined in the Appendix.

As mentioned above, in some situations, covariates have a natural group structure, meaning
that the highly correlated covariates may have similar regression coefficients and thus should
be selected or deleted simultaneously. One example of this is given by the gene network
relationship where some genes are strongly correlated and often referred to as grouped genes
(Segal et al., 2003). For the situation, it is clearly desirable that a variable selection approach
can have all coefficients within a group clustered or selected together or has the grouping
effect. To describe the grouping effect of the proposed BAR regression procedure, note that
based on (9), the correlation between Zjand Z, the (j, k) components of the original
covariates, can be described by that between x;and X4, where X;denotes the fth o
dimensional column vector of X = (Xy,..., Xpp), /i K= 1,..., pp Thus we have the following
grouping effect property.

Theorem 2. Assume that the columns of matrix X = (xl, ...,xpn) have been standardized.
Then with probability tending to one as /7 —co, the BAR estimator §* = (7..... 8}, )
satisfies the following inequality

11
Bi B}

1
< Tn||y||~/2(1 —pij)

for nonzero g} and g7, where pjjdenotes the sample correlation coefficient between x;and

Xj

J Am Stat Assoc. Author manuscript; available in PMC 2020 July 31.
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The proof of the asymptotic properties above is sketched in the Appendix.

5. Simulation Studies

Simulation studies were conducted to assess the finite sample performance of the proposed
BAR regression procedure and compare it to other methods. In the study, for given p, the
covariates Z were assumed to follow the multivariate normal distribution with mean zero,
variance one, and the correlation between Zjand Z being o4 with p= 0.5, j k=1,..., pp
The true failure times 7;'s were generated from model (1) with Ag(d = tor Ag(d = log(t+
1). For the observed data, we considered both current status data and general interval-
censored data, and for the generation of the former, we generated the observation times from
the uniform distribution over (tg, 3) and then compared them to the generated true failure
times. Here we took £ = 0 or 1.5, giving the percentage of right-censored observations being
approximately 40% and 20%, respectively. Note that for the situation, the censoring interval
was given either from zero to the observation time if the true failure time was smaller than
the observation time or from the observation time to infinity otherwise. For the generation of
general interval-censored data, to mimic clinical studies, we assumed that there exist M
equally spaced examination time points over (0, r) and each subject was observed at each of
these time points with probability 0.5. Then for subject / the censoring interval (L;R] was
determined by choosing L and R; as the largest examination time point that is smaller than
Tj and the smallest examination time point that is greater than 7}, respectively. The results
given below are based on /7= 100 or 300 with 500 replications.

Table 1 presents the results on the covariate selection based on current status data with p, =
10 or 30, and Ao(9) = ¢ Here we set Bj= 0.5 for the first and last two components of the
covariates and Bj = 0 for other components. The results given in Tables 2 and 3 were
obtained based on the same set-ups but for general interval-censored data with Ag(t) =t or
Ao(h =log(t+ 1), respectively. In all cases, ;was set to be 3, giving approximately 20% to
25% right-censored observations. Define the mean weighted squared error (MSE) to be

(B* = Bo) E(ZZ'Y(B* - Bo). In all tables, we reported the median of MSE (MMSE), the

standard deviation of MSE (SD), the averaged number of non-zero estimates of the
parameters whose true values are not zero (TP), and the averaged number of non-zero
estimates of parameters whose true values are zero (FP). It is easy to see that TP and FP
provide the estimates of the true and false positive probabilities, respectively. For the results
here, we took m, the degree of Bernstein polynomials, to be 3 and used the ridge regression
estimate and 5-fold CV as initial estimates of the proposed algorithm and for the selection of
the tuning parameters, respectively.

In addition to the performance of the proposed BAR regression procedure, for comparison,
we also obtained the covariate selection results based on minimizing the penalized function
(4) with replacing A(Bjl; A) by LASSO, ALASSO, MCP, SCAD, SELO or SICA,
respectively. Moreover, the method proposed by Wu and Cook (2015), which is referred to
as LASSO WC in the tables, was also implemented with the use of the LASSO penalty
function for the case of general interval-censored data. In these tables, the oracle method
refers to the approach that only includes the covariates whose coefficients are not zero. In
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other words, for the situation, the truth was assumed to be known and no variable selection
was performed. One can see from Tables 1-3 that the BAR approach gave the smallest
MMSE and FP in most cases among the methods considered. Also the BAR approach
generally yielded the largest TP among all except the procedure based on the LASSO
penalty as expected. For all methods, the performance did not seem to depend on the
cumulative baseline hazard function and the number of the pre-specified observation times.
We also considered other set-ups and obtained similar results.

Tables 4 and 5 give some results on assessing the grouping effects of the methods considered
above with Table 4 corresponding to current status data and Table 5 general interval-
censored data. Here both types of censored data were generated in the same way as above
with p , =10, 7=300, and the true values of 1 and B, being 0.5, and B¢ being 0.8, and the
other Bj’s being 0. Also the covariates were grouped into four groups as (21, 2), (Z3, Za,
Z5), (Zs, Z7, Zg) and (4, Z10), and the covariates in the first two groups were generated
from the normal distribution with mean zero and Cov(Z;, Z)) = p "/ with p = 0.8, 0.9 or
0.95, where 7, j€(1,2) or (3, 4, 5). The covariates within the last two groups were generated
from the correlated Bernoulli distribution with £(Z) = 0.5 and Cov(Z, Z) = p4, where /,
€ (6, 7, 8) or (9,10), and the covariates in different groups were assumed to be independent.
Here in addition to MMSE, TP and FP, we also calculated the statistic

G=02xG|+03%Gy+03XG3+02xGy,

measuring the grouping effect. In the above, G; and G4 denote the percentages of the first
and last two components of the estimated regression coefficients being both nonzero,
respectively, and G, and Gz denote the percentages of the three components of the estimated
regression coefficients corresponding to the covariates in the second and third group all
being zero, respectively. The results suggest that the proposed BAR approach generally gave
better performance than the other methods on the covariate selection as before and also
clearly had higher G values or much better grouping effects than the other methods.

6. An Application

In this section, we apply the proposed BAR regression procedure to a set of interval-
censored data on childhood mortality in Nigeria collected in the 2003 Nigeria Demographic
and Health Survey (Kneib, 2006). In the data, the death time was observed exactly if the
death occurs within the first two months of birth and after that, the information on the
mortality was collected through interviewing the mothers of the childhood. Thus only
interval-censored data were observed on the death time in general. In the study, the
covariates on which the information was collected include the age of the child’s mother
when giving birth, the mother’s body mass index, whether the baby was delivered in a
hospital, the gender of the child, whether the mother received higher education, and whether
the family lived in urban. One of the main goals of the study is to determine the covariates or
factors that had significant influence on the children’s mortality in Nigeria. For the analysis
below, we will focus on 5730 children for whom the information about all of the covariates
above is available.
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To apply the proposed BAR regression procedure, let AGE and BMI denote the age and
body mass index of the mother at birth, and define HOSP = 1 if the baby was delivered in a
hospital and 0 otherwise, GENDER = 1 if the baby was male and 0, EDU = 1 if the mother
received higher education and 0 otherwise, and URBAN = 1 if the family lived in urban and
0 otherwise. For the analysis, we performed the standardization on the two continuous
covariates AGE and BMI and the analysis results given by the proposed BAR regression
procedure are presented in Table 6. For the results here, we used m = 3 or 12 for the degree
of Bernstein Polynomials and obtained the standard errors of the estimates, given in the
parentheses, by using the bootstrap procedure with 100 bootstrap samples randomly drawn
with replacement from the observed data. For the selection of the tuning parameters and the
initial estimates, as in the simulation study, we used the 5-fold cross-validation and the ridge
regression estimate, respectively.

In Table 6, as in the simulation study and for comparison, we also include the analysis
results obtained by applying the other penalized procedures discussed there. First one can
can see from the table that on the covariate selection, all penalized estimation methods gave
consistent results and the results are also consistent with respect to the degree m of Bernstein
Polynomials. They suggest that the mother’s age and body mass index and the child’s
gender had no relationship with or significant influence on the child’s mortality rate except
using the LASSO-based method. Although the latter selected the child’s gender as a non-
zero covariate, the estimation suggests that it did not have any significant effect on the
child’s mortality or death rate. Based on the estimation results, all methods indicate that the
children delivered in a hospital or whose family lived in urban had significantly lower
mortality risk. Also it seems that the mother’s education had some mild effect on the
mortality and the children who had the mother with a higher education may have lower
mortality risk too. For the analysis here, we also tried other m values and obtained similar
results. To further see this, Figure 1 presents the obtained estimates of the cumulative
baseline hazard function Ag(# with m=3 and 12 and they seem to be close to each other.

By following the suggestion from a reviewer, we also performed the covariate selection by
using the two commonly used approaches that do not impose the penalty: the forward
variable selection and the best subset selection, and include the obtained results in Table 6.
Here for the former, we considered the two inclusion levels of 0.01 and 0.05 and for the
latter, the AIC criterion was used. One can see that as expected, the AlC-based best subset
selection gave similar results but the results yielded by the forward variable selection depend
on the inclusion level. Although the results based on the inclusion level of 0.05 are similar to
those given above, the forward variable selection with the inclusion level of 0.01 indicates
that the covariate EDU did not seem to have any effect on the mortality of the children. Note
that the proposed BAR procedure does not require the subjective selection of an inclusion
level.

Discussion and Concluding Remarks

This paper discussed simultaneous covariate selection and estimation of covariate effects for
the PH model with interval-censored data. As mentioned above, interval-censored data often
occur in many fields and include right-censored data as special cases. Although many
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statistical procedures have been developed in the literature for their analysis (Sun et al.,
2015; Zhang et al., 2010), only limited research exists for covariate selection (Scolas et al.,
2016; Wu and Cook, 2015) due to the special data structures and the difficulties involved. To
address the problem, we presented a BAR regression estimation procedure that can allow
one to perform both parameter estimation and variable selection simultaneously. In addition,
unlike some of the existing methods, the oracle property of the proposed approach was
established along with the clustering effect for the situation when covariates are highly
correlated. Furthermore the numerical studies indicated that it usually has better
performance than the existing procedures with and without imposing the penalty.

In the proposed approach, we have employed Bernstein polynomials to approximate the
underlying unknown function. As mentioned above, the idea discussed above still applies if
one prefers to use other approximations such as the piecewise constant function as in Wu
and Cook (2015). However, unlike the latter, the Bernstein polynomial approximation is a
continuous approximation and has some nice properties including differentiability. In
consequence, the resulting log-likelihood function, its gradients and Hessian matrix all have
relatively simpler forms, and the resulting method can be easily implemented. In particular,
as seen above, it allows the development of a much faster and simpler algorithm for the
implementation of the method than the EM algorithm developed in Wu and Cook (2015).
Also it allows the establishment of the asymptotic properties of the resulting method
including the oracle property. In addition, the proposed method can provide a better and
more natural way than that in Wu and Cook (2015) for the estimation of a survival function,
which is often of interest in medical studies among others.

It should be noted that although the algorithm given above is quite simpler, the proposed
procedure could be slower than the other variable selection procedures discussed in the
simulation study due to the need for the selection of two tuning parameters. To improve this,
we conducted some simulation studies and they suggested that actually one can fix the
tuning parameter &, to be a constant between 1 and 1500 and focus only on the selection of
the tuning parameter A , by the cross-validation. The resulting simplified BAR procedure
gives similar performance to the original BAR procedure on the variable selection but is
faster than all of the other procedures discussed in the simulation study.

For the selection of the two tuning parameters in the proposed method, we have used the C-
fold cross-validation. It is apparent that the method is still valid if one instead employs other

criterion such as the generalized C-fold cross-validation defined as
C [, (-9 2 (o) (=) 2(=0
In(B ¢ ) l B N )
GCV (& ) = D | 5 — 5
c=1| 1=k =Y~ w0 =k~ (=)

¢) (-0

using the notation defined for GC &), A ) (Bradic et al., 2011). Here n(=¢) denotes the size
of the total sample without ¢ part and k(=) the number of the non-zero B estimates based
on the total sample without ¢t part. Therefore, the optimal &,and A, are the values that
minimize GC &, \j). Bayesian information criterion is another widely used criterion
based on
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BIC(Ey, Ay) = — 21(B. §) + gy X log(n)

with g, denoting the number of the non-zero g estimates. Note that this criterion can be
more computationally efficient than the two criteria mentioned above as it is unnecessary to
partition the data into several parts. We performed some simulation studies for comparing
the three criteria, and they suggested that the C-fold cross-validation is generally
conservative in the sense that the other two tend to throw away some important covariates.

There exist several directions for future research. One is that in the preceding sections, we
have focused on model (1) and it is apparent that sometimes a different model may be
preferred or more appropriate. In other words, it would be useful to generalize the proposed
method to the situation where the failure time of interest follows some other models such as
the additive hazards model or semiparametric transformation model. In the proposed
method, it has been assumed that the censoring mechanism that generates the censoring
intervals is non-informative or independent of the failure time of interest. It is clear that this
may not hold in some situations (Ma et al., 2015; Sun, 2006) and in this case, the proposed
method would not be valid or could give biased results. In other words, one needs to modify
the proposed BAR procedure or develop some methods that allow for or can take into
account the informative censoring.

In the preceding sections, it has been supposed that the dimension of covariates p,, can
diverge to infinity but is smaller than the sample size n. It is apparent that there may exist
some situations where pj is larger than 7, and one such example is genetic or biomarker
studies where there may exist hundreds of thousands genes or biomarkers. For the situation,
as mentioned above, some literature has been developed when one observes right-censored
data but it is quite difficult to directly generalize these existing procedures to interval-
censored data. In other words, more research is clearly needed for the situation. Note that
although the idea described above may still apply, the implementation procedure given
above would not work due to the irregularity of some involved matrices. That is, one needs
to develop some different or new implementation procedures or algorithms as well as
working out some other issues.
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Appendix:: Asymptotic Properties of p~*

In this appendix, we will sketch the proofs of the asymptotic properties of the proposed BAR
estimator g* described in Theorems 1 and 2. For this, define

(a* B

)’* (ﬁ)) = g(ﬂ) = (Qn + AnD(ﬂ))_lvn, (A1)

and partition the matrix (n"1Q,)~1 into
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(=ta) = o)

where Ais a g, X g, matrix. Note that since Q, is nonsingular, it follows by multiplying
Q;I(Qn + 4,D(B)) and subtracting g on both sides of (A.1) that we have

AD;(B))a* + BDy(Br)y*

(a* - ﬁOl) n An
B'Di(Bpa* + GDy(Br)y*

r* "

) =b - f. A2

where a b = Q, 'v,,. Di(B) = diag(B7 .....85 ) and D(B) = diag(B % 1...--Bp0).

n
To prove Theorem 1, we need the following two lemmas.

Lemma 1. Let { 6, } be a sequence of positive real numbers satisfying §, —o0 and

Snpnl Ay — 0. Define H, = [ f= (1. pp)': 1 € [1/Ko. Kol ™. ||Bal| < 6/puin}, Where Ko > Lis a
constant such that go; € [1/K, Kol%. Then under the regular conditions (C1)-(C8) and with
probability tending to 1, we have

. Iyl
get, B

< % for some constant ¢y > 1;

ii. g(:) is a mapping from H , to itself.

Proof. First from the formula (7), it is easy to see that b is equal to g(8) with A, = 0, which
is equivalent to the maximizer of the sieve log-likelihood function. By using arguments
similar to those in Zhang et al. (2010), one can obtain that || — fo|| = O(/p,/n), and hence it

follows from (A.2) that

An , An .
sup - ||y* + —=B'D1(Ba* + —~GDy(B)y*

peHy

= Op(. [pu/n).

By condition (C5) and the fact that

188 - 142 < 8B + 4%l < |10y ™2] < 2

we can derive || B|| < +/2c. Furthermore, based on conditions (C5) and (C6) and note that
B1 € [1/Ko. Kol™ and [la*[| < [|g(B)]| < 1Bl = 0,(,/p,), we have

An
sup ([—B'Di(Ba*
Be Hy h

=0, (/puln). (A3

Since A pin (G)>c™L, it follows from (A.2) that, with probability tending to 1,
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n Dn
Oy( n)S5n\/; . (A4

Let my«/p, = (r{/ By, + 175/ By + 25 -+ Y — an! Bpy)'- 1t then follows from the Cauchy-Schwarz

—|lr*l < sup
pe Hy,

inequality and the assumption ||| < 6,,/pn/n that

1718 < 1D2(BY* |6y [pul .

and
[l = [[(D2B ™y 15| < (jmyesg]| - B2l < |1iy215]| S/l (A5)

for all large n. Thus from (A.4) and (A.5), we have the following inequality

A o/ P)
e \/*Ilmy*/ﬁzll ﬁ f :

Immediately from pné,z,/,l,, — 0, we have

1 1
My <—< —, c>1
™|l = =7, @ (c>1 (A6)

Pndic
with probability tending to one. Hence it follows from (A.5) and (A.6) that
75Nl < lBall < 8py/pal/n — 0 as n — oo, A7)
Which implies that conclusion (i) holds.

To prove (i), we only need to verify that a* € [1/K, Ko]% with probability tending ti 1 since
(A.7) has showed that ||y*|| < 8,./pn/n With probability tending to 1 Analogously, given

condition (C5), p; € [1/Ko, Kol and [la*[| < Op(,/p,), we have

= Op(Jpn/n).

/1}1
sup ||—AD(fer*
peH,"

Then from (A.2), we have

p(\/Pn/n) < S/ puln, (A.8)

sup
BeHy

a*

< 2¢8,4/pa/n. Hence based on

condition (C5), we know that as 7— oo and with probability tending to one,

J Am Stat Assoc. Author manuscript; available in PMC 2020 July 31.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Zhao et al. Page 18

(A.9)

2W26[n
s

A"BD N An "
—BDy(By*|| < =Bl sup || Da(B)y*| <
" n n ﬂEHn

sup
peH
Therefore from (A.8) and (A.9), we can get

2
222 + 16/
sup ||“*—ﬁ01||S7( 2 mfen
peH, Jn

n

with probability tending to one, which implies that for any € > 0, P(||a* — By < €)— 1.

Thus it follows from gy; € [1/Kq, Kol that a* € [1/K¢, Kol holds for large 1, which
implies that conclusion (ii) holds. This completes the proof.

Lemma 2. Under the regular conditions (C1)—(C8) and with probability tending to 1, the

. -1 . . . . .
equation a = (Qﬁ,l) + 4,Di(@) VD has a unique fixed-point @ in the domain [1/Kg, Ko
Proof. Define

(@) = (F1(@), f2(@). ... f(@) = (@ + 4, Dy(@) VD, (A0

where a = (a, ..., ag,)". By multiplying (le))_l(gﬁf) + A,,Dl(a)) and then minus By1 on both
sides of (A.10), we have

-1 -1 —
F@ = o1 + @S D@ f@ = @) VD - gor = (xjxp” I xqe,

where X is the first g, columns of X, and e =y — XB. Therefore,

-1
s @ - o1+ @D D@ || = 0z
a € [1/Kg, Kolin

Similar to (A.3), it can be shown that

) _
H’(n—lggl)) lDl(a)f(a)” = Op(\fanln).

sup
a € [1/Kp, Kol

Thus,

sup [|.f(@) = Bo1ll < Su\/qn/n — 0,
a € [1/K, Ko]qn
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which implies that f(e@) € [1/K(, Ko]?" with probability tending to one. That is, fa) is a

mapping from [1/Kg, Kol to itself.

Also by multiplying Qﬁ,l) + 4,Dj(a) and taking derivative with respect to a on both sides of
(A.10), we have

A o -2 —2fq (@)
LoD 4 2 b @)@y + g AW T,
n n n oc3 a3
1 qn
Where f(a) = df(a)/oa’. Then
A ) 24 1) fgla)
s [deD M p@y@|= s 22 a1 ‘13)H = op(1)..
a € [1/Kg, Kol a € [1/Kg, Kol9n G g,

According to condition (C6) and the fact that & € [1/K, K%, we can derive

A .
: —Tan)llf(a)ll.

> LoD i@ - | 2 py@ @] >

c

! .
(%9511) + %Dl(a))f (@)

Thus we have that supg e [1/k0, Ko19ll /(@) — 0, which implies that £-) is a contraction

mapping from [1/K, Kol to itself with probability tending to one. Hence according to the

contraction mapping theorem, there exists one unique fixed-point @* e [1/Ky, Kol such that
~x _ (o) S LoD
at = (Q, " + A Di(a®) vy (A11)

Proof of Theorem 1. First consider conclusion (1). According to the definitions of 3* and

A9, it follows from (A.7) that

~ . ~(k)
B>= lim B =0 (A12)

k — o0
holds with the probability tending to 1.

Next we will show that P(ﬁ’f = a*) — 1. For this consider (A.2) and define y* = 0 if 8,=0.
Note that for any fixed 7, from (A.2), we have

lim y*(B) = 0.

b —

Furthermore, by multiplying (Q, + A ,D(8)) on both sides of (A.1), we can get
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;m%aﬂm=499%+%Dﬂm»'%9%=ﬂﬁo.
2—)

By combining (A.12) and (A.13), it follows that

~(k)
m= sup || FB) — (B B — 0. as k — 0.
B1 € [1/Kg, KlTn

Since f{) is a contract mapping, (A.11) yields

Ak) k)

L7 - axll = || r 8 g

- @l < B =&l @

Let y = ||ﬁ(1k) - &*”. It Then follows from (A.14) and (A.15) that

aB®) = 1 + B - @

1
S+ Zhye

hiey 1 = lar 6 - @] <

Page 20

(A.13)

(A.14)

(A.15)

From (A.14), from any €= 0, there exists A/> 0 such that when &> N, |74 < e Employing
some recursive calculation, we have /s, — 0 as k— oo, Hence, with probability tending to

one, we have

3

—&*||—>Oask—>oo.

Since % = limy, _, B, it follows from the uniqueness of the fixed-point that
Pi=a%—1,  k—o.
Finally, based on (A.11), we have \/n(a* — By1) = 1] + I, where

-1
m = ya|@5 + 2,D1@) " QWP - 1, 1o,

and

1
= n@ + 1,01@) v - Vg).

It follows from the first order resolvent expansion formula that

~ -1 -1 -1 ~ ~ -1
@V + 4,D@) =@M - 1,@" Di@HQy + 4,D1@") .

This yields that
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m = f( Lo ™ piancdal + i@ Lol

By the assumption (C5) and (C6), we have
[T ]| = Op(Any/gn/n) — 0. (A17)

Furthermore, it follows from (A.16) and the assumption A,/\/n — 0 hat

-1
M = V| Q) — o, (1Y) |[(oviD — Ly )
- (A.18)
— Loy Ly oW + o)
nn ) n Bo (1),

where =12\ — @D o) = n= 112/ D" 16 *) + 0,(1) with iD(B*14*) denoting the first q,,

ORA

components of i), (B*1¢™) Let 1(B) = { - ln(ﬁlcp*)} be the Fisher information matrix, where

i',(B1¢) is the partial Hessian matrix about 8. Since n=1/2 ,(8*1$*) — N(0, = 11(By)), we
have yn(@* — 1) — Ny, 0. ) with = = n@ gon ™ 170Gy Bey ", where 10 (o) i the

leading g, x g, sub-matrix of 1(Bg). This completes the proof.

Proof of Theorem 2. Let

Pn ﬂll
QBB =y = XPIP 4y 22—
=L@
and e®+ D =y _ xp* D \where gD = argminﬂQ(ﬂlﬁ(k)). On the one hand, from
op“* ])lﬂ ) < 00013, we have
~(k+ 1)\2
P _|B;
le®k+ DI 4 4, ()§||y||2.
=1 ;0?2
= B
Therefore,
lla%+ DI <y
On the other hand, when 40, note that
o018 ey
k1) _ okt 1)
0ﬂ] ﬁ 2xl£ +2}»n (3(]() =0,
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where /e {1,..., p;}. It then follows that

Y
ﬁ§k+1)= ; _xl,g(k+1)' (A.19)
n

1Y)

Since limy ., B TV = 1imy _ B = B and by taking the limitation on both sides of

(A.19),] we have that

11,

1 1 A
=——xje* and —~;=-
i ﬂ}k' I

5

hold with probability tending to 1 for any / je {1,..., pz} and B B} # 0, where
£* = y— XB*. Therefore

1

B}

1A 1
< e i = xjj) < I IV2T= 1))

1
Bj
This complete the proof.
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Table 1.

Results on covariate selection based on current status data data with Ag(9) = ¢

Method ~ MMSE(SD) TP FP  MMSE(SD) TP FP
n=100and p,=10
20% right-censored 40% right-censored
BAR 0.349 (0.744) 3460 0.704 0.359 (0.536) 3.376 0.754
LASSO 0.296 (0.171) 3.804 1.656 0.282(0.169) 3.822 1.736
ALASSO 0.345(0.272) 3.408 1100 0.350(0.310) 3.310 1.074
MCP 0.472(1.865) 3.094 0.704 0.473(1.165) 3.054 0.746
SCAD 0.483 (0.700) 3.096 0.828 0.481(0.553) 2.998 0.640
SELO 0.483 (1.692) 3.318 0.932 0.475(1.371) 3.294 1.040
SICA 0463 (1.562) 3.206 0.810 0.457 (1.352) 3.188 0.856
Oracle 0.203(0.676) 4 0  0189(0550) 4 0
n=300and p,=10
20% right-censored 40% right-censored
BAR 0.062 (0.078) 3.954 0.286 0.062(0.082) 3.934 0.246
LASSO 0.150 (0.067) 4 1.360 0.127 (0.067) 3.998 1.476
ALASSO 0.120(0.117) 3.928 0550 0.108(0.117) 3.934 0.542
MCP 0.079 (0.117) 3.934 0.406 0.071(0.116) 3.930 0.406
SCAD 0.078 (0.118) 3.944 0.662 0.075(0.118) 3.922 0.596
SELO 0.075(0.111) 3.928 0.404 0.073(0.112) 3.934 0.440
SICA 0.077 (0.114) 3.952 0.444 0.075(0.109) 3.958 0.522
Oracle 0.053 (0.085) 4 0 0046 (0.086) 4 0
m,=300 and p, =30
20% right-censored 40% right-censored
BAR 0.074 (0.092) 3876 0.330 0.072(0.091) 3.882 0.378
LASSO 0.231(0.081) 3.998 2.856 0.215(0.081) 3.988 2.782
ALASSO 0.304 (0.210) 3.712 1.004 0.323(0.210) 3.708 0.812
MCP 0.112 (0.196) 3.864 0.63 0.092(0.174) 3.874 0.684
SCAD 0.216 (0.107) 3.83 0.984 0.227(0.099) 3.832 1.016
SELO 0.093 (0.130) 3.864 0.530 0.085(0.140) 3.864 0.634
SICA 0.104 (0.161) 3.834 0.640 0.086(0.151) 3.858 0.716
Oracle 0.053 (0.077) 4 0  0020(0.047) 4 0
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Results on covariate selection based on interval-censored data with AO() = ¢

Table 2.

Method MMSE(SD) TP FP  MMSE(SD) TP  FP
0,=10 =100, M= 10 =100, M= 20

BAR 0.133(0.131) 3818 0362 0.107(0.114) 3.892 0.426
LASSO 0.182(0.108) 3.966 1.370 0.146(0.094) 3.976 1446
LASSOWC 0.148 (0.094) 3976 1.766 0.120(0.083) 3.986 1.784
ALASSO 0207 (0.166) 3.706 064 0.170(0.142) 3.806 0.664
MCP 0.202(0.194) 3616 0588 0.142(0.148) 3.756 0.638
SCAD 0.319(0.130) 3.780 0.596 0.258 (0.123) 3.852 0.672
SELO 0.180 (0.176) 3.728 0588 0.138(0.138) 3.808 0.548
SICA 0.184 (0.176) 3.660 0.460 0.133(0.136) 3.772 0.424
Oracle 0.086 (0.108) 4 0 0073(0089) 4 0
pp=10 =300, M=10 n=300, M= 20

BAR 0.030(0.026) 4 0176 0.025(0.024) 4 0220
LASSO 0076 (0.041) 4 1334 0058(0.034) 4 1464
LASSOWC 0.071(0.041) 4 1434 0055(0.033) 4 1476
ALASSO  0.056 (0.060) 3.992 0.404 0.039 (0.049) 3.998 0.468
MCP 0.029(0.041) 3.994 0398 0.024(0.030) 4  0.380
SCAD 0.060 (0.048) 3.998 0476 0.044(0.037) 4 059
SELO 0.035(0.040) 3.998 0.600 0.029(0.032) 4 0532
SICA 0.033(0.039) 3996 0418 0.028(0.031) 3.998 0.450
Oracle 0.024 (0.026) 4 0  00200021) 4 0
0,=30 =300, M= 10 =300, M= 20

BAR 0.034(0.030) 4 0286 0027(0.025) 4 0332
LASSO 0159 (0.062) 4 1628 0.128(0.054) 4 1892
LASSOWC 0.152(0.060) 4 1666 0115(0.048) 4 1918
ALASSO  0.138(0.137) 3950 0770 0.142(0.171) 3.968 0.488
MCP 0.028 (0.054) 3.966 0578 0.023(0.035) 3.996 0.658
SCAD 0.183(0.083) 3.984 0540 0.142(0.069) 3.990 0.548
SELO 0.043(0.047) 4 0598 0.030(0.041) 3.988 0518
SICA 0.039 (0.045) 3.992 0.398 0.026(0.037) 3.988 0.346
Oracle 0.024 (0.027) 4 0 001900022 4 0
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Results on covariate selection based on interval-censored data with AO() = log(¢+ 1)

Table 3.

Method MMSE(SD) TP FP  MMSE(SD) TP  FP
0,= 10 =100, M= 10 =100, M= 20

BAR 0.172(0.199) 3.756 0.476 0.133(0.170) 3.852 0.516
LASSO 0197 (0.101) 3938 1.458 0.144(0.085) 3.966 1.544
LASSOWC 0.164 (0.098) 3962 1.872 0.145(0.085) 3.972 1.758
ALASSO 0206 (0.145) 3.728 1.060 0.153(0.125) 3.812 1.114
MCP 0.249 (0.283) 3526 0.626 0.209(0.230) 3.684 0.690
SCAD 0.351(0.157) 3.650 0.750 0.272(0.138) 3.786 0.824
SELO 0.237(0.270) 3.682 0756 0.195(0.226) 3.778 0.756
SICA 0.236 (0.263) 3622 0642 0190(0.213) 3.76 0.604
Oracle 0.092 (0.157) 4 0  0083(0.097) 4 0
pp=10 =300, M=10 n=1300, M= 20

BAR 0.033(0.03) 4 0202 0030(0.034) 4 0234
LASSO 0070 (0.041) 4 1246 0048(0.030) 4 1422
LASSOWC 0090(0.048) 4 1124 0071(0.040) 4 1192
ALASSO 0058 (0.062) 3998 0.392 0.039(0.043) 3.998 0.380
MCP 0.036 (0.048) 3.996 0288 0.031(0.045) 4  0.360
SCAD 0073(0.054) 4 0416 0.060(0.046) 4 0434
SELO 0047 (0.048) 4 0588 0.040(0.048) 4 0582
SICA 0.041(0.047) 4 0442 0036(0.045) 4 0446
Oracle 0.029 (0.037) 4 0  0025(0035) 4 0
0,=30 =300, M= 10 =300, M= 20

BAR 0.036 (0.037) 3.994 0.196 0.031(0.031) 3.998 0.226
LASSO 0128 (0.055) 4 2324 0.096(0.046) 4 2274
LASSOWC 0.133(0.056) 4 2706 0105(0.051) 4 2774
ALASSO  0.169 (0.159) 3.920 0700 0.192(0.176) 3.904 0.604
MCP 0.038 (0.056) 3.992 0.614 0.032(0.041) 3.998 0570
SCAD 0.169 (0.072) 3.986 0560 0.129 (0.063) 3.998 0.612
SELO 0.033(0.044) 4 0490 0.039(0.045) 4 0384
SICA 0.048 (0.055) 3.994 0452 0.040(0.045) 4 0434
Oracle 0.027 (0.036) 4 0  0024(0030) 4 0
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Table 4.

Results on grouping effects based on current status data

Method MMSE (SD) TP FP G
p=038
BAR 0.172(0.238) 3.684 0.408 0.823
LASSO 0.297 (0.216) 3.966 1.698 0.606
ALASSO 0.311(0.259) 3574 0.712 0.732
MCP 0.277 (0.306) 3.300 0.598 0.693
SCAD 0.269 (0.305) 3.506 0.788 0.686
SELO 0.280(0.311) 3.480 0.802 0.681
SICA 0.273(0.307) 3.458 0.756 0.685
Oracle 0.106 (0.224) 4 0 1
p=09
BAR 0.168 (0.313) 3.446 0.452 0.756
LASSO 0.211(0.201) 3.900 1.760 0.564
ALASSO 0.261(0.228) 3.224 0.858 0.628
MCP 0.265(0.383) 2912 0.866 0.557
SCAD 0.244 (0.363) 2956 0.910 0.537
SELO 0.261(0.371) 3.008 1.020 0.523
SICA 0.276 (0.365) 2.894 0.878 0.536
Oracle 0.099 (0.282) 4 0 1
p=0.95
BAR 0.134(0.237) 3.014 0.352 0.697
LASSO 0.200(0.187) 3.750 1.830 0.539
ALASSO 0.191(0.216) 2.930 1.274 0.473
MCP 0.203 (0.316) 2.614 0.814 0.509
SCAD 0.211 (0.320) 2.602 1.054 0.438
SELO 0.223(0.289) 2596 1.020 0.438
SICA 0.225(0.338) 2.692 1.218 0.423
Oracle 0.097 (0.242) 4 0 1
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Results on grouping effects based on interval-censored data

Method MMSE (SD) TP FP G
p=038
BAR 0.061 (0.075) 3.938 0.164 0.940
LASSO 0.162 (0.121) 3.998 1.282 0.695
ALASSO 0.108 (0.126) 3.940 0.598 0.833
MCP 0.081(0.107) 3.830 0.530 0.811
SCAD 0.068 (0.115) 3.872 0.770 0.773
SELO 0.079 (0.096) 3.894 0.508 0.833
SICA 0.079 (0.102) 3.854 0.460 0.837
Oracle 0.048 (0.063) 4 0 1
p=09
BAR 0.063 (0.083) 3.804 0.276 0.882
LASSO 0.093 (0.088) 3.990 2.342 0.526
ALASSO 0.100(0.118) 3.744 0.634 0.780
MCP 0.104 (0.106) 3.388 0.686 0.680
SCAD 0.090 (0.100) 3.536 0.744 0.703
SELO 0.106 (0.104) 3.298 0.480 0.721
SICA 0.106 (0.099) 3.424 0.636 0.708
Oracle 0.043 (0.069) 4 0 1
p=0.95
BAR 0.067 (0.084) 3.516 0.412 0.784
LASSO 0.083(0.081) 3.938 2.074 0.533
ALASSO 0.092 (0.098) 3.442 0.878 0.659
MCP 0.108 (0.093) 2.986 1.018 0.535
SCAD 0.107 (0.090) 3.070 1.086 0.534
SELO 0.109 (0.094) 2.988 0.944 0.557
SICA 0.111(0.092) 2.902 0.802 0.572
Oracle 0.042 (0.069) 4 0 1
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Table 6.
Analysis results of children’s mortality data
Method AGE BMI HOSP GENDER EDU URBAN
m=3
BAR - - —0.3516(0.1273) - —0.2071(0.1235y  —0.3052(9.1104)
LASSO - - —0.3016(0.1054)  0.02 3200595y —0.1837(0.0916) —0.2526(0 0941
ALASSO - - —0.34519.1060) - =0.1938(0.0040) —0.2924(0 0g59)
MCP - - —0.3556(0.1213) - -0.2240(0.1316)  —0.2932(0 0096)
SCAD - - —0.35630.1209) - —0.2259(0.1324y  —0.31890 0097
SELO - - —0.35490.1210) - —0.2185¢.1257y  —0.3144(0.1017)
SICA - - —0.3559(9.123) =0.2209(0.1308y  —0.3163(0.1018)
Forward (0.05) - - ~0.3561( 1065 - 02251 gosey  ~0.3185(0.0070)
Forward (0.01) - - —0.4619 (0 0935) - - =0.34640.0977)
Best Subset - - —0.3561(0.1065) - —0.22510,0985)  —0.3185(0 0970)
m=12

BAR - - =0.3507(0.1266) - =0.2061(0.1209)  —0.3004(0.1067)
LASSO ; - 0295700103 000 T4gossy 0.1829000sg  ~0.24430 goss)
ALASSO - - =0.3271(0.1003) - —0.1442(00852y  —0.2455(0 0039)
MCP - - —0.3582(9.1195) - -0.2339(0.1257y  —0.3205(0 0993)
SCAD - - —0.3556(0.137) - —0.2259¢0.11200  —0.3152g 1005
SELO ; - ~0.3552001200) ; ~0.2218(0.1501  ~0.31290.1009)
SICA - - -03521105) - ~021180 1251  ~0.3028(0 1017
Forward (0.05) - - —0.35520.1055) - —0.22430.0975)  —0.3140(0 0950
Forward (0.01) - - —0.4602(0_0925) - - —0.3414(0_0955)
Best Subset - - —0.3552(¢ 1055) - —0.2243(90975y  —0.3140(0 0959)
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