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Abstract

The simultaneous estimation and variable selection for Cox model has been discussed by several 

authors (Fan and Li, 2002; Huang and Ma, 2010; Tibshirani, 1997) when one observes right-

censored failure time data. However, there does not seem to exist an established procedure for 

interval-censored data, a more general and complex type of failure time data, except two 

parametric procedures given in Scolas et al. (2016) and Wu and Cook (2015). To address this, we 

propose a broken adaptive ridge (BAR) regression procedure that combines the strengths of the 

quadratic regularization and the adaptive weighted bridge shrinkage. In particular, the method 

allows for the number of covariates to be diverging with the sample size. Under some weak 

regularity conditions, unlike most of the existing variable selection methods, we establish both the 

oracle property and the grouping effect of the proposed BAR procedure. An extensive simulation 

study is conducted and indicates that the proposed approach works well in practical situations and 

deals with the collinearity problem better than the other oracle-like methods. An application is also 

provided.
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1. Introduction

The statistical analysis of interval-censored failure time data has been extensively discussed 

and especially, many procedures have been proposed in the literature for their regression 

analysis (Finkelstein, 1986; Jewell and van der Laan, 2004; Sun, 2006). However, there 

exists little literature on simultaneous estimation and variable selection for interval-censored 

data although some literature has been developed for right-censored failure time data (Fan 

and Li, 2002; Huang and Ma, 2010; Tibshirani, 1997). By interval-censored data, we mean 

that the failure time of interest is known or observed only to belong to an interval instead of 

being observed exactly. It is easy to see that they include right-censored data as a special 

case and can naturally occur in a longitudinal or periodic follow-up study such as clinical 
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trials among other situations. In the following, we will discuss regression analysis of 

interval-censored data with the focus on simultaneous estimation and covariate selection.

Covariate or variable selection is a commonly asked question in statistical analysis and many 

methods for it have been developed, especially under the context of linear regression, such 

as forward selection, backward selection and best subset selection. Among them, the 

penalized estimation procedure, which optimizes an objective function with a penalty 

function, has recently become increasingly popular. Among the penalty functions, it is well-

known that the L0 penalty function is usually a desired choice as it directly penalizes the 

cardinality of a model and seeks the most parsimonious model explaining the data. However, 

it is non-convex and the solving of an exact L0-penalized nonconvex optimization problem 

involves exhaustive combinatorial best subset search, which is NP-hard and computationally 

infeasible for high dimensional data. Corresponding this, Tibshirani (1996) considered the 

L1 penalty function, which gives the closest convex relaxation, and developed the least 

absolute shrinkage and selection operator (LASSO) procedure. In particular, the L1-based 

optimization problem can be solved exactly with efficient algorithms. However, the LASSO 

procedure does not have the oracle property or the grouping effect, which is especially 

desirable when covariates are highly correlated as often the case in high dimensional 

situations. Also the LASSO procedure tends to select too many small noise features and is 

biased for large parameters.

Following Tibshirani (1996), many authors have proposed other penalty functions, including 

the smoothly-clipped absolute deviation (SCAD) penalty by Fan and Li (2001), the elastic 

net by Zou and Hastie (2005), the adaptive LASSO (ALASSO) penalty by Zou (2006), the 

group LASSO by Yuan and Lin (2006), the smooth integration of counting and absolute 

deviation (SICA) penalty by Lv and Fan (2009) and the seamless-L0 (SELO) penalty by 

Dicker et al. (2013). All of them either have the oracle property or the grouping effect but 

none has both. In the following, we present a broken adaptive ridge (BAR) penalized 

procedure that has both the oracle property and the grouping effect. It approximates the L0-

penalized regression using an iteratively reweighted L2-penalized algorithm and has the 

advantages of simultaneous variable selection, parameter estimation and clustering. Also the 

BAR iterative algorithm is fast and converges to a unique global optimal solution.

As mentioned above, many authors have investigated the variable selection problem for 

right-censored failure time data and in particular, several penalized procedures have been 

proposed under the framework of the Cox’s proportional hazards (PH) model. For example, 

Tibshirani (1997), Fan and Li (2002) and Zhang and Lu (2007) generalized the LASSO, 

SCAD and ALASSO penalty-based procedures, respectively, to the PH model situation with 

right-censored data. Furthermore, Shi et al. (2014) discussed the same problem but the 

generalization of the SICA penalty-based procedure. Note that conceptually it may seem to 

be straightforward to generalize the procedures above to interval-censored data. However, 

this is not true partly due to the much more complex structures of interval-censored data. For 

example, with right-censored data under the PH model, a partial likelihood function, which 

is free of the underlying baseline hazard function and thus is parametric with respect to 

covariate effects, is available and has been employed as the objective function in all of the 

penalized procedures described above. In contrast, no such parametric objective function is 
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available for interval-censored data and one has to deal with both regression parameters and 

the baseline hazard function together.

For the covariate selection based on interval-censored data, two parametric procedures have 

been developed in Scolas et al. (2016) and Wu and Cook (2015) and in particular, the latter 

assumed that the baseline hazard function is a piecewise constant function. One drawback of 

this is that the piecewise constant function is neither continuous nor differentiable. More 

importantly, there is no theoretical justification available for both procedures. In the 

following, instead of the piecewise constant function, we will employ Bernstein polynomials 

to approximate the underlying cumulative hazard function. Note that although the uses of 

piecewise constant functions and Bernstein polynomials may look similar, the two 

approaches are actually quite different. One major difference is that unlike the piecewise 

constant function, the Bernstein polynomial approximation is a continuous approximation 

and has some nice properties including differentiability. More comments on this are given 

below.

The remainder of the paper is organized as follows. In Section 2, we will first describe some 

notation and assumptions that will be used throughout the paper and then the idea behind the 

proposed BAR regression procedure as well as some background. Section 3 presents the 

proposed BAR regression procedure and in particular, an iterative algorithm for the 

determination of the BAR estimators is developed. In Section 4, we establish the oracle 

property and grouping effect of the proposed method, and Section 5 gives some results 

obtained from an extensive simulation study conducted for the assessment of the proposed 

approach. In particular, we compared the BAR regression procedure and the methods that 

make use of other commonly used penalty functions, and the results indicate that the 

proposed method can outperform other methods in general. In Section 6, an application is 

provided and Section 7 contains some discussion and concluding remarks.

2. Notation, Assumptions and Some Background

2.1. Notation, Assumptions and Sieve Maximum Likelihood

Consider a failure time study consisting of n independent subjects. For subject i, let Ti 

denote the failure time of interest and suppose that there exists α p-dimensional vector of 

covariates denoted by Zi = (Zi1,…, Zip)′, i = 1,…, n. Also suppose that one observes 

interval-censored data given by D = (Li, Ri], Zi i = 1
n , where (Li, Ri] denotes the observed or 

censored interval to which Ti belongs. It is apparent that Li = 0 or Ri = ∞ corresponds to a 

left- or right-censored observation on the ith subject. In the following, we will assume that 

the censoring mechanism behind the censoring intervals is independent of the failure time of 

interest. That is, we have independent or non-informative interval censoring (Sun, 2006)

For covariate effects, in the following, we will assume that the Ti’s follow the PH model or 

that given Zi, the cumulative hazard function of Ti is given by

Λ(t Zi) = Λ0(t)eβ′Zi . (1)
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In the above, Λ0(t) denotes an unknown cumulative baseline hazard function and β a vector 

of regression parameters. Then the likelihood function has the form

Ln(β, Λ0) =
i = 1

n
exp − Λ0(Li)eβ′Zi − exp − Λ0(Ri)eβ′Zi . (2)

Here we assume that Λ0(0) = 0 and A0(∞) = ∞. In practice, one special case of interval-

censored data that occurs quite often is current status or case I interval-censored data in 

which each subject is observed only once. For the situation, all observations are e left- or 

right-censored. One type of studies that naturally produce such data is cross-sectional 

studies, which are commonly conducted in medical studies and social science among others 

(Jewell and van der Laan, 2004; Sun, 2006). In this case, the likelihood function above 

reduces to

Ln(β, Λ0) =
i = 1

n
1 − exp − Λ0(Ri)eβ′Zi δi exp − Λ0(Li)eβ′Zi 1 − δi,

where δi = 1 for left-censored observations and 0 otherwise.

To estimate ϑ = (β, Λ0) in general, a natural approach is clearly to maximize the log-

likelihood function ln(β, Λ0) = log{Ln(β, Λ0)}. However, it is obvious that this is not an easy 

task since ln(β, Λ0) involves both finite-dimensional and infinite-dimensional parameters. To 

deal with this and also to give a parametric objective function to be used below, we propose 

to employ the sieve approach to approximate Λ0 by using Bernstein polynomials (Wang and 

Ghosh, 2012; Zhou et al., 2016). More specifically, define

Θ = ϑ = (β, Λ0) ∈ ℬ ⊗ ℳ ,

denoting the parameter space of ϑ, where ℬ = β |β ∈ Rp, β ≤ M  with M being a positive 

constant and ℳ is the collection of all bounded and continuous non-decreasing, non-

negative functions over the interval [u,v] with 0 ≤ u < v < < ∞ >. In practice, [u,v] is usually 

taken as the range of the observed data. Furthermore, define the sieve space

Θn = ϑn = (β, Λ0n) ∈ ℬ ⊗ ℳn ,

where

ℳn = Λ0n(t) =
k = 0

m
ϕk

∗Bk(t, m, u, v):
0 ≤ k ≤ m

ϕk
∗ ≤ Mn, 0 ≤ ϕ0

∗ ≤ ϕ1
∗ ≤ … ≤ ϕm∗

with the ϕk
∗’s being some parameters and
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Bk(t, m, u, v) = m
k

t − v
u − v

k
1 − t − v

u − v
m − k

, k = 0, …, m,

which are Bernstein basis polynomials of degree m = o(ns) for some s ∈ (0,1). More 

discussion about m will be given below.

By focusing on the sieve space Θn, the likelihood function given in (2) can be rewritten as

Ln(β, ϕk
∗′s) =

i = 1

n
exp − Λ0n(Li)eβ′Zi − exp − Λ0n(Ri)eβ′Zi , (3)

and if one is only interested in estimating β, it is natural to focus on the sieve profile log-

likelihood function lp(β) = max
ϕ*

log Ln(β, ϕk
∗′s) . Note that due to the non-negativity and 

monotonicity features of Λ0, in the maximization above, we need the constraint 

0 ≤ ϕ0
∗ ≤ ϕ1

∗ ≤ … ≤ ϕm
∗ , but it can be easily removed by the reparameterization ϕ0

∗ = eϕ0 and 

ϕk
∗ = i = 0

k eϕi, 1 ≤ i ≤ m. In the following, we will discuss the development of a penalized or 

regularized procedure for simultaneous estimation and covariate selection based on 

lp(β) = max
ϕ

log Ln(β, ϕk′ s) .

2.2 Regularized Sieve Maximum likelihood Estimation

For the simultaneous estimation and covariate selection for model (1), we will consider the 

approach that minimizes the penalized function.

lpp(β | β
⌵

) = − 2lp(β) +
j = 1

p
P ( βj ; λ) = − 2lp(β) + λ

j = 1

p βj
2

β
⌵

j
2 , (4)

where λ denotes a tuning parameter and β
⌵

= (β1
⌵

, …, βp
⌵

)′ is a consistent estimator of β with 

no zero components. The choice of β
⌵

 will be discussed below. A main motivation behind 

the procedure above is that given the consistency of β
⌵

, the term βj
2/βj

2
⌵

, is expected to 

converge to I(|βj| ≠ 0) in probability as n goes to infinity and therefore the method can be 

regarded as an automatic implementation of the best subset selection in some asymptotic 

sense. In other words, the adaptive penalty term in (4) can be taken as an approximation to 

the L0 penalty. A similar idea was discussed in Liu and Li (2016) under the context of 

generalized linear models with complete data and in Kawaguchi et al.(2017) for the PH 

model with right-censored data, respectively.

It is apparent that instead of the penalty function used in (4), one can employ other penalty 

functions such as the L0-penalty P(|βj|; λ) = λI(|βj| = 0), which directly penalizes the 

cardinality of a model and is the most essential sparsity measure due to its discrete nature. 

However, as mentioned above, its implementation is NP-hard and computationally infeasible 
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for high dimensional data. Other possible choices may include the LASSO penalty P(|βj|; λ) 

= λ |βj|, the ALASSO penalty P(|βj|; λ) = λ wj |βj| with wj being a weight, the SCAD 

penalty P ( βj ; λ) = λ 0
βj min 1, (aλ − x)+/(aλ − λ) dx with a > 2, the SICA penalty 

P βj ; λ = λ(τ + 1) βj / βj + τ  with τ > 0, the SELO penalty

P βj ; λ = λ
log(2) log

βj
βj + γ

+ 1

with γ > 0, or the minimax concave (MCP) penalty

P βj ; λ = λ
0

βj (aλ − x)+
aλ dx

with a > 1 given in Zhang (2010). However, all of these procedures would be quite complex 

computationally partly because multiple parameters need to be tuned. More importantly, in 

addition to the oracle property and the grouping effect given below, one will see from the 

numerical study below that the proposed method generally outperforms the procedures 

based on other penalty function.

3. BAR Regression Estimation Procedure

Now we will describe how to minimize lpp(β |β) given in (4) or the implementation of the 

proposed BAR regression procedure. For this, it is apparent that one could directly minimize 

(4) by some numerical iterative algorithms. For example, given a good initial value β(0), one 

can then update β(k−1) iteratively by the following reweighed L2 —penalized Cox regression 

estimator

β (k) = argmin
β

− 2lp(β) + λn
j = 1

p βj
2

(β j
(k − 1))

2 , k ≥ 1, (5)

where λn is a non-negative penalization tuning parameter. However, it is easy to see that this 

would be computationally costly. So instead we will present a data-driven algorithm, which 

is much easier and computationally more efficient. In the algorithm, we will approximate the 

log-likelihood function using the Newton-Raphson update through an iterative least squares 

procedure, which solves the least squares problem subject to the reweighted L2 penalty at 

each iteration.

Let ϕ = (ϕ1, …, ϕm)′ and ln(β, ϕ) = log Ln(β, ϕk′ s) . Define

l̇ n(β |ϕ) =
∂ln(β, ϕ)

∂β , l̈ n(β |ϕ) =
∂2ln(β, ϕ)

∂β ∂β′ ,
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the partial gradient vector and the partial Hessian matrix about β, respectively. Suppose that 

(β, ϕ) satisfies l̇n(β, ϕ) = 0. Then for β within a small neighborhood of β, the second-order 

Taylor expansion gives

lp(β) ≈ 1
2 l̇ n(β ϕ) ′ l̈ n(β ϕ) −1 l̇ n(β ϕ) + c,

where c is a constant. Let the matrix X be defined by the Cholesky decomposition of 

− l̈n(β |ϕ) as − l̈n(β |ϕ) = X′X and define the pseudo response vector 

y = (X′)−1[l̇n(β |ϕ) − l̈n(β |ϕ)β]. Then we have

y − Xβ 2 = − l̇ n(β ϕ) ′ l̈ n(β ϕ) −1 l̇ n(β ϕ) ,

where ║·║ denotes the Euclidean norm for a given vector. This implies that minimizing (4) 

is asymptotically equivalent to minimizing the following penalized least squares function

y − Xβ 2 + λn
j = 1

p βj2

βj2
⌵ .

A similar least squares approximation was discussed in Wang and Leng (2007) to get a 

unified LASSO estimation.

Now we are ready to present the iterative algorithm. Define

g(β
⌵

) = argmin
β

y − Xβ 2 + λn
j = 1

p βj
2

βj
2

⌵ . (6)

By some algebraic manipulations, one can show that

g(β
⌵

) = X′X + 2λnD(β
⌵

)
−1

X′y (7)

and one can obtain the BAR regression estimator given by minimizing (4) by solving (6) or 

(7), where D( β
⌵

) = diag β1
−2
⌵

, …, βp
−2
⌵

, a p × p matrix. In the following, we will focus on the 

situation where p can diverge to infinity but p < n, and for this, we will denote p by pn to 

emphasize the dependence of p on n. Let Ωn = Ωn(β) = X′X and vn = vn(β) = X′y. For a 

fixed λn, which will be discussed below, one can solve (6) as follows.

• Step 1. set k = 0 and choose an intial estimator θ(0) = (β(0)′, ϕ(0)′)′ satisfying 

β(0) − β0 = Op((pn/n)1/2). As an example, one can take ϕ(0) to be a vector of 

zeros as the proposed algorithm is insensitive to the initial values of ϕ and take 

β(0)
 to be the ridge regression estimator
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β (0) = argmin
β

− 2lp(β) + ξn
j = 1

pn
βj

2 , (8)

where ξn is a non-negative tuning parameter to be discussed below.

• Step 2. At the kth step, compute the partial derivatives l̇n(β(k) |ϕ(k)) and 

l̈n(β(k) |ϕ(k)), where

l̇ n(β |ϕ) =
i = 1

n
Zi

S(Ri |Zi)Λ(Ri |Zi) − S(Li |Zi)Λ(Li |Zi)
S(Li |Zi) − S(Ri |Zi)

and

l̈ n(β |ϕ) =
i = 1

n
ZiZi′

S(Ri |Zi)Λ(Ri |Zi) 1 − Λ(Ri |Zi) − S(Li |Zi)Λ(Li |Zi) 1 − Λ(Li |Zi)
S(Li |Zi) − S(Ri |Zi)

− S(Ri |Zi)Λ(Ri |Zi) − S(Li |Zi)Λ(Li |Zi) 2

S(Li |Zi) − S(Ri |Zi) 2 (9)

with S(t|Zi) = exp{−Λ(t│Zi)}, denoting the survival function for subject i given 

Zi

• Step 3. Update the estimate of β by

β(k + 1) = Ωn + 2λnD(β(k))
−1

vn,

where Ωn = − l̈n(β(k) |ϕ(k)) and vn = l̇n(β(k) |ϕ(k)) − l̈n(β(k) |ϕ(k))β(k)
.

• Step 4. Given the current estimate β(k + 1)
, solve ∂ln(β(k + 1), ϕ)/ ∂ϕ = 0 to obtain 

the updated estimate ϕ(k + 1).

• Step 5. Go back to Step 2 until the convergence is achieved.

Let β∗ = limk ∞β(k)
 denote the estimator of β obtained above, which will be referred to as 

the BAR estimator. Note that in the iterative process above, one does not really need to carry 

out the Cholesky decomposition of − l̈n(β |ϕ) as only the calculation of Ωn and vn is needed. 

To implement the algorithm above, one needs to select two tuning parameters ξn and λn 

simultaneously and for this, as many other authors, we propose to perform two-dimensional 

grid search based on the C-fold cross-validation. More specifically, one first divides the 

observed data into C non-overlapping parts with approximately the same size. For given ξn 

and λn, define the cross-validation statistic as
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CV (ξn, λn) =
c = 1

C
ln(β( − c), ϕ( − c)) − ln( − c)(β( − c), ϕ( − c)) .

In the above, ln( − c) denotes the log likelihood function for the whole data set without the cth 

part, and β( − c)
 and ϕ( − c) are the proposed BAR estimators of β and ϕ based on whole data 

set without the cth part. Then one can choose the values of £n and λn that maximize CV(ξn, 

An). Instead of the C-fold cross-validation, one may employ other criteria such as the 

generalized cross-validation and Bayesian information criterion. More comments on this and 

on the selection of ξn and λn are given below.

4. The Asymptotic Properties of the BAR Estimator

Now we discuss the asymptotic properties of the proposed BAR estimator β*. For this, let 

β0 = (β0, 1, …, β0, pn)′ denote the true value of ft and without loss of generality, assume 

β0 = (β01′ , β02′ )′, where β01 consists of all qn (qn ≪ pn) nonzero components and ft02 the 

remaining zero components. Correspondingly, we will divide the BAR estimator 

β* = (β1
*′, β2

*′)′ in the same way.

To establish the asymptotic properties, we need the following regularity conditions. (C1). (i) 

The set ℬ is a compact subset of ℛpn and β0 is an interior point of ℬ. (ii) The matrix 

E(ZZ’) is non-singular with Z being bounded. That is, there exists z0 > 0 such that P(║Z║ 
≤ z0) = 1.

(C2). The union of the supports of L and R is contained in an interval [u,v] with 0 < u < v < 

∞, and there exists a positive number ς such that P(R – L ≥ ς) = 1.

(C3). The function Λ0(·) is continuously differentiable up to order r in [u,v] and satisfies a−1 

< Λ0 (u) < Λ0(v) < a for some positive constant a.

(C4). There exists a compact neighborhood ℬ0 of the true value β0 such that

sup
β ∈ ℬ0

n−1Ωn(β) − I(β0) a . s . 0,

where I(β0) is a positive definite pn × pn matrix.

(C5). There exists a constant c > 1 such that c−1 < λmin(n−1Ωn) < λmax(n−1Ωn) < c for

sufficiently large n, where λmin(·) and λmax(·) stand for the smallest and largest eigenvalues 

of the matrix.

(C6). As n ∞, pnqn/ n 0, λn/ n 0, ξn/ n 0, λn qn/n 0 and λn
2/(pn n) ∞.

(C7). There exist positive constants a0 and a1 such that a0 ≤ |β0,j|≤ a1, 1 ≤ j ≤ qn.
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(C8). The initial estimator β(0)
 satisfies β(0) − β0 = Op( pn/n).

Conditions (C1)–(C3) are necessary for the existence and consistence of the sieve maximum 

likelihood estimator of Λ0(t) and usually satisfied in practice (Zhang et al., 2010). 

Conditions (C4) and (C5) assume that n−1Ωn(β) is positive definite almost surely and its 

eigenvalues are bounded away from zero and infinity. Condition (C6) gives some sufficient, 

but not necessary, conditions needed to prove the numerical convergence and asymptotic 

properties of the BAR estimator. Condition (C7) assumes that the nonzero coefficients are 

uniformly bounded away from zero and infinity, and condition (C8) is crucial for 

establishing the oracle property of BAR. First we will establish the oracle property of β∗
.

Theorem 1. (Oracle Property). Assume that the regularity conditions (C1) –(C8) hold. Then 

with probability tending to 1, the BAR estimator β∗ = (β1
*′, β2

*′)′ has the following properties:

1. β2* = 0.

2. β1* exists and is the unique fixed point of the equation β1 = (Ωn
(1) + λnD1(β))−1vn(1), 

where D1(β1) = diag{β1
−2,…,βqn

−2}, Ωn
(1) is the qn × qn leading submatrix of Ωn, and 

vn(1) is the vector consisting of the first qn components of vn.

3. n(β1* − β01) converges in distribution to a multivariate normal distribution Nqn 

(0, Σ), where Σ is defined in the Appendix.

As mentioned above, in some situations, covariates have a natural group structure, meaning 

that the highly correlated covariates may have similar regression coefficients and thus should 

be selected or deleted simultaneously. One example of this is given by the gene network 

relationship where some genes are strongly correlated and often referred to as grouped genes 

(Segal et al., 2003). For the situation, it is clearly desirable that a variable selection approach 

can have all coefficients within a group clustered or selected together or has the grouping 

effect. To describe the grouping effect of the proposed BAR regression procedure, note that 

based on (9), the correlation between Zj and Zk, the (j, k) components of the original 

covariates, can be described by that between xj and xk, where xj denotes the jth pn-

dimensional column vector of X = (x1,…, xpn), j, k = 1,…, pn. Thus we have the following 

grouping effect property.

Theorem 2. Assume that the columns of matrix X = x1, …, xpn  have been standardized. 

Then with probability tending to one as n →∞, the BAR estimator β* = (β1*, …, βpn
* )′

satisfies the following inequality

1
βi*

− 1
βj*

≤ 1
λn

y 2(1 − ρij)

for nonzero β1* and β1*, where pij denotes the sample correlation coefficient between xi and 

xj.
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The proof of the asymptotic properties above is sketched in the Appendix.

5. Simulation Studies

Simulation studies were conducted to assess the finite sample performance of the proposed 

BAR regression procedure and compare it to other methods. In the study, for given pn, the 

covariates Z were assumed to follow the multivariate normal distribution with mean zero, 

variance one, and the correlation between Zj and Zk being ρ|j–k| with p = 0.5, j, k = 1,…, ρn. 

The true failure times Ti’s were generated from model (1) with Λ0(t) = t or Λ0(t) = log(t + 

1). For the observed data, we considered both current status data and general interval-

censored data, and for the generation of the former, we generated the observation times from 

the uniform distribution over (t0, 3) and then compared them to the generated true failure 

times. Here we took t0 = 0 or 1.5, giving the percentage of right-censored observations being 

approximately 40% and 20%, respectively. Note that for the situation, the censoring interval 

was given either from zero to the observation time if the true failure time was smaller than 

the observation time or from the observation time to infinity otherwise. For the generation of 

general interval-censored data, to mimic clinical studies, we assumed that there exist M 
equally spaced examination time points over (0, τ) and each subject was observed at each of 

these time points with probability 0.5. Then for subject i, the censoring interval (Li,Ri] was 

determined by choosing Li and Ri as the largest examination time point that is smaller than 

Ti and the smallest examination time point that is greater than Ti, respectively. The results 

given below are based on n = 100 or 300 with 500 replications.

Table 1 presents the results on the covariate selection based on current status data with pn = 

10 or 30, and Λ0(t) = t. Here we set βj= 0.5 for the first and last two components of the 

covariates and βj = 0 for other components. The results given in Tables 2 and 3 were 

obtained based on the same set-ups but for general interval-censored data with Λ0(t) = t or 

Λ0(t) = log(t + 1), respectively. In all cases, t was set to be 3, giving approximately 20% to 

25% right-censored observations. Define the mean weighted squared error (MSE) to be 

(β* − β0)TE(ZZ′)(β* − β0). In all tables, we reported the median of MSE (MMSE), the 

standard deviation of MSE (SD), the averaged number of non-zero estimates of the 

parameters whose true values are not zero (TP), and the averaged number of non-zero 

estimates of parameters whose true values are zero (FP). It is easy to see that TP and FP 

provide the estimates of the true and false positive probabilities, respectively. For the results 

here, we took m, the degree of Bernstein polynomials, to be 3 and used the ridge regression 

estimate and 5-fold CV as initial estimates of the proposed algorithm and for the selection of 

the tuning parameters, respectively.

In addition to the performance of the proposed BAR regression procedure, for comparison, 

we also obtained the covariate selection results based on minimizing the penalized function 

(4) with replacing P(|βj|; λ) by LASSO, ALASSO, MCP, SCAD, SELO or SICA, 

respectively. Moreover, the method proposed by Wu and Cook (2015), which is referred to 

as LASSO WC in the tables, was also implemented with the use of the LASSO penalty 

function for the case of general interval-censored data. In these tables, the oracle method 

refers to the approach that only includes the covariates whose coefficients are not zero. In 
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other words, for the situation, the truth was assumed to be known and no variable selection 

was performed. One can see from Tables 1–3 that the BAR approach gave the smallest 

MMSE and FP in most cases among the methods considered. Also the BAR approach 

generally yielded the largest TP among all except the procedure based on the LASSO 

penalty as expected. For all methods, the performance did not seem to depend on the 

cumulative baseline hazard function and the number of the pre-specified observation times. 

We also considered other set-ups and obtained similar results.

Tables 4 and 5 give some results on assessing the grouping effects of the methods considered 

above with Table 4 corresponding to current status data and Table 5 general interval-

censored data. Here both types of censored data were generated in the same way as above 

with ρ n = 10, n = 300, and the true values of β1 and β2 being 0.5, and β10 being 0.8, and the 

other βj’s being 0. Also the covariates were grouped into four groups as (Z1, Z2), (Z3, Z4, 

Z5), (Z6, Z7, Z8) and (Z9, Z10), and the covariates in the first two groups were generated 

from the normal distribution with mean zero and Cov(Zi, Zj) = ρ |i−j| with ρ = 0.8, 0.9 or 

0.95, where i, j ϵ(1,2) or (3, 4, 5). The covariates within the last two groups were generated 

from the correlated Bernoulli distribution with E(Zi) = 0.5 and Cov(Zi, Zj) = ρ|i−j|, where i, j 
ϵ (6, 7, 8) or (9,10), and the covariates in different groups were assumed to be independent. 

Here in addition to MMSE, TP and FP, we also calculated the statistic

G = 0.2 × G1 + 0.3 × G2 + 0.3 × G3 + 0.2 × G4,

measuring the grouping effect. In the above, G1 and G4 denote the percentages of the first 

and last two components of the estimated regression coefficients being both nonzero, 

respectively, and G2 and G3 denote the percentages of the three components of the estimated 

regression coefficients corresponding to the covariates in the second and third group all 

being zero, respectively. The results suggest that the proposed BAR approach generally gave 

better performance than the other methods on the covariate selection as before and also 

clearly had higher G values or much better grouping effects than the other methods.

6. An Application

In this section, we apply the proposed BAR regression procedure to a set of interval-

censored data on childhood mortality in Nigeria collected in the 2003 Nigeria Demographic 

and Health Survey (Kneib, 2006). In the data, the death time was observed exactly if the 

death occurs within the first two months of birth and after that, the information on the 

mortality was collected through interviewing the mothers of the childhood. Thus only 

interval-censored data were observed on the death time in general. In the study, the 

covariates on which the information was collected include the age of the child’s mother 

when giving birth, the mother’s body mass index, whether the baby was delivered in a 

hospital, the gender of the child, whether the mother received higher education, and whether 

the family lived in urban. One of the main goals of the study is to determine the covariates or 

factors that had significant influence on the children’s mortality in Nigeria. For the analysis 

below, we will focus on 5730 children for whom the information about all of the covariates 

above is available.
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To apply the proposed BAR regression procedure, let AGE and BMI denote the age and 

body mass index of the mother at birth, and define HOSP = 1 if the baby was delivered in a 

hospital and 0 otherwise, GENDER = 1 if the baby was male and 0, EDU = 1 if the mother 

received higher education and 0 otherwise, and URBAN = 1 if the family lived in urban and 

0 otherwise. For the analysis, we performed the standardization on the two continuous 

covariates AGE and BMI and the analysis results given by the proposed BAR regression 

procedure are presented in Table 6. For the results here, we used m = 3 or 12 for the degree 

of Bernstein Polynomials and obtained the standard errors of the estimates, given in the 

parentheses, by using the bootstrap procedure with 100 bootstrap samples randomly drawn 

with replacement from the observed data. For the selection of the tuning parameters and the 

initial estimates, as in the simulation study, we used the 5-fold cross-validation and the ridge 

regression estimate, respectively.

In Table 6, as in the simulation study and for comparison, we also include the analysis 

results obtained by applying the other penalized procedures discussed there. First one can 

can see from the table that on the covariate selection, all penalized estimation methods gave 

consistent results and the results are also consistent with respect to the degree m of Bernstein 

Polynomials. They suggest that the mother’s age and body mass index and the child’s 

gender had no relationship with or significant influence on the child’s mortality rate except 

using the LASSO-based method. Although the latter selected the child’s gender as a non-

zero covariate, the estimation suggests that it did not have any significant effect on the 

child’s mortality or death rate. Based on the estimation results, all methods indicate that the 

children delivered in a hospital or whose family lived in urban had significantly lower 

mortality risk. Also it seems that the mother’s education had some mild effect on the 

mortality and the children who had the mother with a higher education may have lower 

mortality risk too. For the analysis here, we also tried other m values and obtained similar 

results. To further see this, Figure 1 presents the obtained estimates of the cumulative 

baseline hazard function Λ0(t) with m = 3 and 12 and they seem to be close to each other.

By following the suggestion from a reviewer, we also performed the covariate selection by 

using the two commonly used approaches that do not impose the penalty: the forward 

variable selection and the best subset selection, and include the obtained results in Table 6. 

Here for the former, we considered the two inclusion levels of 0.01 and 0.05 and for the 

latter, the AIC criterion was used. One can see that as expected, the AIC-based best subset 

selection gave similar results but the results yielded by the forward variable selection depend 

on the inclusion level. Although the results based on the inclusion level of 0.05 are similar to 

those given above, the forward variable selection with the inclusion level of 0.01 indicates 

that the covariate EDU did not seem to have any effect on the mortality of the children. Note 

that the proposed BAR procedure does not require the subjective selection of an inclusion 

level.

7. Discussion and Concluding Remarks

This paper discussed simultaneous covariate selection and estimation of covariate effects for 

the PH model with interval-censored data. As mentioned above, interval-censored data often 

occur in many fields and include right-censored data as special cases. Although many 
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statistical procedures have been developed in the literature for their analysis (Sun et al., 

2015; Zhang et al., 2010), only limited research exists for covariate selection (Scolas et al., 

2016; Wu and Cook, 2015) due to the special data structures and the difficulties involved. To 

address the problem, we presented a BAR regression estimation procedure that can allow 

one to perform both parameter estimation and variable selection simultaneously. In addition, 

unlike some of the existing methods, the oracle property of the proposed approach was 

established along with the clustering effect for the situation when covariates are highly 

correlated. Furthermore the numerical studies indicated that it usually has better 

performance than the existing procedures with and without imposing the penalty.

In the proposed approach, we have employed Bernstein polynomials to approximate the 

underlying unknown function. As mentioned above, the idea discussed above still applies if 

one prefers to use other approximations such as the piecewise constant function as in Wu 

and Cook (2015). However, unlike the latter, the Bernstein polynomial approximation is a 

continuous approximation and has some nice properties including differentiability. In 

consequence, the resulting log-likelihood function, its gradients and Hessian matrix all have 

relatively simpler forms, and the resulting method can be easily implemented. In particular, 

as seen above, it allows the development of a much faster and simpler algorithm for the 

implementation of the method than the EM algorithm developed in Wu and Cook (2015). 

Also it allows the establishment of the asymptotic properties of the resulting method 

including the oracle property. In addition, the proposed method can provide a better and 

more natural way than that in Wu and Cook (2015) for the estimation of a survival function, 

which is often of interest in medical studies among others.

It should be noted that although the algorithm given above is quite simpler, the proposed 

procedure could be slower than the other variable selection procedures discussed in the 

simulation study due to the need for the selection of two tuning parameters. To improve this, 

we conducted some simulation studies and they suggested that actually one can fix the 

tuning parameter ξn to be a constant between 1 and 1500 and focus only on the selection of 

the tuning parameter λn by the cross-validation. The resulting simplified BAR procedure 

gives similar performance to the original BAR procedure on the variable selection but is 

faster than all of the other procedures discussed in the simulation study.

For the selection of the two tuning parameters in the proposed method, we have used the C-

fold cross-validation. It is apparent that the method is still valid if one instead employs other 

criterion such as the generalized C-fold cross-validation defined as

GCV (ξn, λn) =
c = 1

C ln(β( − c), ϕ( − c))

n(1 − k( − c)/n)2
−

ln( − c)(β( − c), ϕ( − c))

n( − c)(1 − k( − c)/n( − c))2

using the notation defined for GCV(ξn, λn) (Bradic et al., 2011). Here n(−c) denotes the size 

of the total sample without cth part and k(−c) the number of the non-zero β estimates based 

on the total sample without cth part. Therefore, the optimal ξn and λn are the values that 

minimize GCV(ξn, λn). Bayesian information criterion is another widely used criterion 

based on
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BIC(ξn, λn) = − 2ln(β , ϕ) + qn × log(n)

with qn denoting the number of the non-zero β estimates. Note that this criterion can be 

more computationally efficient than the two criteria mentioned above as it is unnecessary to 

partition the data into several parts. We performed some simulation studies for comparing 

the three criteria, and they suggested that the C-fold cross-validation is generally 

conservative in the sense that the other two tend to throw away some important covariates.

There exist several directions for future research. One is that in the preceding sections, we 

have focused on model (1) and it is apparent that sometimes a different model may be 

preferred or more appropriate. In other words, it would be useful to generalize the proposed 

method to the situation where the failure time of interest follows some other models such as 

the additive hazards model or semiparametric transformation model. In the proposed 

method, it has been assumed that the censoring mechanism that generates the censoring 

intervals is non-informative or independent of the failure time of interest. It is clear that this 

may not hold in some situations (Ma et al., 2015; Sun, 2006) and in this case, the proposed 

method would not be valid or could give biased results. In other words, one needs to modify 

the proposed BAR procedure or develop some methods that allow for or can take into 

account the informative censoring.

In the preceding sections, it has been supposed that the dimension of covariates pn can 

diverge to infinity but is smaller than the sample size n. It is apparent that there may exist 

some situations where pn is larger than n, and one such example is genetic or biomarker 

studies where there may exist hundreds of thousands genes or biomarkers. For the situation, 

as mentioned above, some literature has been developed when one observes right-censored 

data but it is quite difficult to directly generalize these existing procedures to interval-

censored data. In other words, more research is clearly needed for the situation. Note that 

although the idea described above may still apply, the implementation procedure given 

above would not work due to the irregularity of some involved matrices. That is, one needs 

to develop some different or new implementation procedures or algorithms as well as 

working out some other issues.
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Appendix:: Asymptotic Properties of β^*

In this appendix, we will sketch the proofs of the asymptotic properties of the proposed BAR 

estimator β* described in Theorems 1 and 2. For this, define

α* (β)
γ* (β) ≡ g(β) = (Ωn + λnD(β))−1vn, (A.1)

and partition the matrix (n−1Ωn)−1 into
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n−1Ωn
−1 = A B

B′ G ,

where A is a qn x qn matrix. Note that since Ωn is nonsingular, it follows by multiplying 

Ωn
−1(Ωn + λnD(β)) and subtracting β0 on both sides of (A.1) that we have

α* − β01
γ*

+ λn
n

AD1(β1)α* + BD2(β2)γ*
B′D1(β1)α* + GD2(β2)γ* = b − β0, (A.2)

where a b = Ωn
−1vn, D1(β1) = diag(β1

−2,…,βqn
−2) and D2(β2) = diag(βqn + 1

−2 ,…,βpn
−2).

To prove Theorem 1, we need the following two lemmas.

Lemma 1. Let { δn } be a sequence of positive real numbers satisfying δn →∞ and 

δn
2pn/λn 0. Define Hn ≡ β = (β1′ , β2′ )′:β1 ∈ [1/K0, K0]qn, β2 ≤ δn pn/n , where K0 > 1 is a 

constant such that β01 ∈ [1/K0, K0]qn. Then under the regular conditions (C1)-(C8) and with 

probability tending to 1, we have

i. sup
β ∈ Hn

γ*(β)
β2

< 1
c0

 for some constant c0 > 1;

ii. g(·) is a mapping from Hn to itself.

Proof. First from the formula (7), it is easy to see that b  is equal to g(β) with λn = 0, which 

is equivalent to the maximizer of the sieve log-likelihood function. By using arguments 

similar to those in Zhang et al. (2010), one can obtain that b − β0 = O( pn/n), and hence it 

follows from (A.2) that

sup
β ∈ Hn

γ* +
λn
n B′D1(β1)α* +

λn
n GD2(β2)γ* = Op( pn/n) .

By condition (C5) and the fact that

BB′ − A2 ≤ BB′ + A2 ≤ (n−1Ωn)−2 < c2,

we can derive B ≤ 2c. Furthermore, based on conditions (C5) and (C6) and note that 

β1 ∈ [1/K0, K0]qn and α* ≤ g(β) ≤ b = Op( pn), we have

sup
β ∈ Hn

λn
n B′D1(β1)α* = op . ( pn/n) . (A.3)

Since λmin (G)>c−1, it follows from (A.2) that, with probability tending to 1,
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c−1 λn
n D2(β2)γ* − γ* ≤ sup

β ∈ Hn
γ* + λn

n GD2(β2)γ* = Op( pn
n ) ≤ δn

pn
n . (A.4)

Let mγ*/β2 = (γ1*/βqn + 1, γ2*/βqn + 2, …, γpn − qn* /βpn)′. It then follows from the Cauchy-Schwarz 

inequality and the assumption β2 ≤ δn pn/n that

mγ*/β2 ≤ D2(β2)γ* δn pn/n,

and

γ* = (D2(β2))−1/2mγ * /β2 ≤ mγ*/β2 ⋅ β2 ≤ mγ*/β2 δn pn/n (A.5)

for all large n. Thus from (A.4) and (A.5), we have the following inequality

λn
nC

n
δn pn

mγ*/β2 − mγ ∗ /β2
δn pn

n ≤
δn pn

n .

Immediately from pnδn
2/λn 0, we have

mγ*/β2 ≤ 1
λn

pnδn2c
− 1

< 1
c0

, (c0 > 1)
(A.6)

with probability tending to one. Hence it follows from (A.5) and (A.6) that

γ* < β2 ≤ δn pn/n 0 as n ∞, (A.7)

Which implies that conclusion (i) holds.

To prove (ii), we only need to verify that α* ∈ [1/K0, K0]qn with probability tending ti 1 since 

(A.7) has showed that γ* ≤ δn pn/n with probability tending to 1 Analogously, given 

condition (C5), β1 ∈ [1/K0, K0]qn and α* < OP( pn), we have

sup
β ∈ Hn

λn
n AD1(β1)α* = Op( pn/n) .

Then from (A.2), we have

sup
β ∈ Hn

α* − β01 + λn
n BD2(β2)γ* = Op( pn/n) ≤ δn pn/n, (A.8)

and according to (A.4) and (A.7), we have 
λn
n D2(β2)γ* ≤ 2cδn pn/n. Hence based on 

condition (C5), we know that as n → ∞ and with probability tending to one,
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sup
β ∈ Hn

λn
n BD2(β2)γ* ≤ λn

n B sup
β ∈ Hn

D2(β2)γ* ≤ 2 2c2δn pn
n . (A.9)

Therefore from (A.8) and (A.9), we can get

sup
β ∈ Hn

α* − β01 ≤
(2 2c2 + 1)δn pn

n 0

with probability tending to one, which implies that for any ∈ > 0, P ( α* − β01 ≤ ∈ ) 1. 

Thus it follows from β01 ∈ [1/K0, K0]qn that α* ∈ [1/K0, K0]qn holds for large n, which 

implies that conclusion (ii) holds. This completes the proof.

Lemma 2. Under the regular conditions (C1)–(C8) and with probability tending to 1, the 

equation α = (Ωn
(1) + λnD1(α))−1vn(1) has a unique fixed-point α* in the domain [1/K0, K0]qn.

Proof. Define

f(α) = (f1(α), f2(α), …, fqn(α))′ ≡ Ωn
(1) + λnD1(α) −1vn(1), (A.10)

where α = (α1, …, αqn)′. By multiplying Ωn
1 −1 Ωn

1 + λnD1 α  and then minus β01 on both 

sides of (A.10), we have

f(α) − β01 + λn(Ωn(1))−1D1(α)f(α) = (Ωn(1))−1vn(1) − β01 = (X1′ X1)−1X1′ ∈,

where X1 is the first qn columns of X, and ε = y − Xβ. Therefore,

sup
α ∈ [1/K0, K0]qn

f(α) − β01 + λn(Ωn(1))−1D1(α)f(α) = Op( qn/n) .

Similar to (A.3), it can be shown that

sup
α ∈ [1/K0, K0]qn

λn
n (n−1Ωn(1))−1D1(α)f(α) = Op( qn/n) .

Thus,

sup
α ∈ [1/K0, K0]qn

f(α) − β01 ≤ δn qn/n 0,
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which implies that f(α) ∈ [1/K0, K0]qn with probability tending to one. That is, f(α) is a 

mapping from [1/K0, K0]qn to itself.

Also by multiplying Ωn
(1) + λnD1(α) and taking derivative with respect to α on both sides of 

(A.10), we have

1
nΩn(1) +

λn
n D1(α) ḟ(α) +

λn
n diag(

−2f1(α)
α1

3 ,…,
−2fqn(α)

αqn
3 )=0,

Where ḟ(α) = ∂f(α)/ ∂α′. Then

sup
α ∈ [1/K0, K0]qn

(1
nΩn(1) +

λn
n D1(α))ḟ(α) = sup

α ∈ [1/K0, K0]qn

2λn
n diag(

f1(α)
α1

3 ,…,
fq(α)
αqn

3 ) = op(1) .

According to condition (C6) and the fact that α ∈ [1/K0, K0]qn, we can derive

1
nΩn(1) +

λn
n D1(α) ḟ(α) ≥ 1

nΩn(1)ḟ(α) −
λn
n D1(α)ḟ(α) ≥ 1

c −
λn
n K0

2 ḟ(α) .

Thus we have that supα ∈ [1/K0, K0]qn ḟ(α) 0, which implies that f(·) is a contraction 

mapping from [1/K0, K0]qn to itself with probability tending to one. Hence according to the 

contraction mapping theorem, there exists one unique fixed-point α* ∈ [1/K0, K0]qn such that

α* = (Ωn
(1) + λnD1(α*))−1vn(1) . (A.11)

Proof of Theorem 1. First consider conclusion (1). According to the definitions of β∗
 and 

β2
(k)

, it follows from (A.7) that

β2* ≡ lim
k ∞

β2
(k) = 0 (A.12)

holds with the probability tending to 1.

Next we will show that P (β1* = α*) 1. For this consider (A.2) and define γ* = 0 if β2=0. 

Note that for any fixed n, from (A.2), we have

lim
β2 0

γ*(β) = 0.

Furthermore, by multiplying (Ωn + λnD(β)) on both sides of (A.1), we can get
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lim
β2 0

α*(β) = (Ωn
(1) + λnD1(β1))−1vn(1) = f(β1) . (A.13)

By combining (A.12) and (A.13), it follows that

ηk ≡ sup
β1 ∈ [1/K0, K0]qn

f(β1) − α*(β1, β2
(k)) 0, as k ∞ .

(A.14)

Since f(·) is a contract mapping, (A.11) yields

f(β1
(k)) − α* = f(β1

(k)) − f(α∗) ≤ 1
c β1

(k) − α∗ , (c > 1) . (A.15)

Let ℎk = β1
(k) − α∗ . It Then follows from (A.14) and (A.15) that

ℎk + 1 = α*(β(k)) − α* ≤ α*(β(k)) − f(β1
(k)) + f(β1

(k)) − α*

≤ ηk + 1
c ℎk .

From (A.14), from any ϵ ≥ 0, there exists N > 0 such that when k > N, |ηk| < ϵ. Employing 

some recursive calculation, we have hk → 0 as k → ∞. Hence, with probability tending to 

one, we have

β1
(k) − α* 0 as k ∞.

Since β1* ≡ limk ∞β1
(k)

, it follows from the uniqueness of the fixed-point that

P (β1* = α*) 1, k ∞ .

Finally, based on (A.11), we have n(α* − β01) = Π1 + Π2, where

Π1 ≡ n (Ωn(1) + λnD1(α*))−1Ωn(1) − Iqn β01,

and

Π2 ≡ n(Ωn(1) + λnD1(α*))−1(vn(1) − Ωn(1)β01) .

It follows from the first order resolvent expansion formula that

(Ωn
(1) + λnD1(α*))−1 = (Ωn

(1))−1 − λn(Ωn
(1))−1D1(α*)(Ωn

(1) + λnD1(α*))−1 . (A.16)

This yields that
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Π1 = −
λn

n (1
nΩn(1))

−1
D1(α*)(1

nΩn(1) +
λn
n D1(α*))

−11
nΩn(1)β01 .

By the assumption (C5) and (C6), we have

Π1 = Op(λn qn/n) 0. (A.17)

Furthermore, it follows from (A.16) and the assumption λn/ n 0 hat

Π2 = n (1
nΩn

(1))
−1

− op(1/ n) (1
nvn(1) − 1

nΩn
(1)β01)

= (1
nΩn

1 )
−1 1

n (vn(1) − Ωn
(1)β01) + op(1),

(A.18)

where n−1/2(vn(1) − Ωn
(1)β01) = n−1/2l̇n

(1)(β* |ϕ*) + op(1) with l̇n
(1)(β* |ϕ*) denoting the first qn 

components of l̇n
(1)(β* |ϕ*) Let I(β) = E − l̈n(β |ϕ*)  be the Fisher information matrix, where 

l̈n(β |ϕ) is the partial Hessian matrix about β. Since n−1/2l̈n(β* |ϕ*) N(0, n−1I(β0)), we 

have n(α* − β01) Nqn(0, Σ) with Σ = n(Ωn
(1)(β0))−1I(1)(β0)(Ωn

(1)(β0))−1
, where I(1)(β0) is the 

leading qn × qn sub-matrix of I(β0). This completes the proof.

Proof of Theorem 2. Let

Q(β |β(k)) ≡ y − Xβ 2 + λn
l = 1

pn βl
2

(βl
(k))

2 ,

and ε(k + 1) = y − Xβ(k + 1)
, where β(k + 1) = argminβQ(β |β(k)). On the one hand, from 

Q(β(k + 1) |β(k)) ≤ Q(0 |β(k)), we have

ε(k + 1) 2
+ λn

l = 1

p βl
(k + 1) 2

(βl
(k))

2 ≤ y 2 .

Therefore,

ε(k + 1) ≤ y .

On the other hand, when β l≠0, note that

∂Q(β |β(k))
∂βl

|β = β(k + 1) = − 2xl′ε
(k + 1) + 2λn ⋅

βl
(k + 1)

(βl
(k))

2 = 0,
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where l ε {1,…, pn}. It then follows that

β l
(k + 1) =

β l
(k) 2

λn
⋅ xl′ε(k + 1) . (A.19)

Since limk ∞βl
(k + 1) = limk ∞βl

(k) = βl* and by taking the limitation on both sides of 

(A.19),l we have that

1
βi*

= 1
λn

xi′ε* and 1
βj*

= 1
λn

xj′ε*

hold with probability tending to 1 for any i, j ϵ {1,…, pn} and β i*βj* ≠ 0, where 

ε* = y − Xβ*. Therefore

1
βi*

− 1
βj*

≤ 1
λn

ε* ⋅ xi − xj ≤ 1
λn

y 2(1 − ρij) .

This complete the proof.
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Figure 1. 
Estimates of the cumulative baseline hazard function Λ0(t)
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Table 1.

Results on covariate selection based on current status data data with Λ0(t) = t

Method MMSE(SD) TP FP MMSE(SD) TP FP

n = 100 and pn = 10

20% right-censored 40% right-censored

BAR 0.349 (0.744) 3.460 0.704 0.359 (0.536) 3.376 0.754

LASSO 0.296 (0.171) 3.804 1.656 0.282 (0.169) 3.822 1.736

ALASSO 0.345 (0.272) 3.408 1.100 0.350 (0.310) 3.310 1.074

MCP 0.472 (1.865) 3.094 0.704 0.473 (1.165) 3.054 0.746

SCAD 0.483 (0.700) 3.096 0.828 0.481 (0.553) 2.998 0.640

SELO 0.483 (1.692) 3.318 0.932 0.475 (1.371) 3.294 1.040

SICA 0.463 (1.562) 3.206 0.810 0.457 (1.352) 3.188 0.856

Oracle 0.203 (0.676) 4 0 0.189 (0.550) 4 0

n = 300 and pn = 10

20% right-censored 40% right-censored

BAR 0.062 (0.078) 3.954 0.286 0.062 (0.082) 3.934 0.246

LASSO 0.150 (0.067) 4 1.360 0.127 (0.067) 3.998 1.476

ALASSO 0.120 (0.117) 3.928 0.550 0.108 (0.117) 3.934 0.542

MCP 0.079 (0.117) 3.934 0.406 0.071 (0.116) 3.930 0.406

SCAD 0.078 (0.118) 3.944 0.662 0.075 (0.118) 3.922 0.596

SELO 0.075 (0.111) 3.928 0.404 0.073 (0.112) 3.934 0.440

SICA 0.077 (0.114) 3.952 0.444 0.075 (0.109) 3.958 0.522

Oracle 0.053 (0.085) 4 0 0.046 (0.086) 4 0

n=300 and pn = 30

20% right-censored 40% right-censored

BAR 0.074 (0.092) 3.876 0.330 0.072 (0.091) 3.882 0.378

LASSO 0.231 (0.081) 3.998 2.856 0.215 (0.081) 3.988 2.782

ALASSO 0.304 (0.210) 3.712 1.004 0.323 (0.210) 3.708 0.812

MCP 0.112 (0.196) 3.864 0.63 0.092 (0.174) 3.874 0.684

SCAD 0.216 (0.107) 3.83 0.984 0.227 (0.099) 3.832 1.016

SELO 0.093 (0.130) 3.864 0.530 0.085 (0.140) 3.864 0.634

SICA 0.104 (0.161) 3.834 0.640 0.086 (0.151) 3.858 0.716

Oracle 0.053 (0.077) 4 0 0.020 (0.047) 4 0
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Table 2.

Results on covariate selection based on interval-censored data with Λ0(t) = t

Method MMSE(SD) TP FP MMSE(SD) TP FP

pn = 10 n = 100, M = 10 n = 100, M = 20

BAR 0.133 (0.131) 3.818 0.362 0.107 (0.114) 3.892 0.426

LASSO 0.182 (0.108) 3.966 1.370 0.146 (0.094) 3.976 1.446

LASSO WC 0.148 (0.094) 3.976 1.766 0.120 (0.083) 3.986 1.784

ALASSO 0.207 (0.166) 3.706 0.64 0.170 (0.142) 3.806 0.664

MCP 0.202 (0.194) 3.616 0.588 0.142 (0.148) 3.756 0.638

SCAD 0.319 (0.130) 3.780 0.596 0.258 (0.123) 3.852 0.672

SELO 0.180 (0.176) 3.728 0.588 0.138 (0.138) 3.808 0.548

SICA 0.184 (0.176) 3.660 0.460 0.133 (0.136) 3.772 0.424

Oracle 0.086 (0.108) 4 0 0.073 (0.089) 4 0

pn = 10 n = 300, M =10 n = 300, M = 20

BAR 0.030 (0.026) 4 0.176 0.025 (0.024) 4 0.220

LASSO 0.076 (0.041) 4 1.334 0.058 (0.034) 4 1.464

LASSO WC 0.071 (0.041) 4 1.434 0.055 (0.033) 4 1.476

ALASSO 0.056 (0.060) 3.992 0.404 0.039 (0.049) 3.998 0.468

MCP 0.029 (0.041) 3.994 0.398 0.024 (0.030) 4 0.380

SCAD 0.060 (0.048) 3.998 0.476 0.044 (0.037) 4 0.594

SELO 0.035 (0.040) 3.998 0.600 0.029 (0.032) 4 0.532

SICA 0.033 (0.039) 3.996 0.418 0.028 (0.031) 3.998 0.450

Oracle 0.024 (0.026) 4 0 0.020 (0.021) 4 0

pn = 30 n = 300, M = 10 n = 300, M = 20

BAR 0.034 (0.030) 4 0.286 0.027 (0.025) 4 0.332

LASSO 0.159 (0.062) 4 1.628 0.128 (0.054) 4 1.892

LASSO WC 0.152 (0.060) 4 1.666 0.115 (0.048) 4 1.918

ALASSO 0.138 (0.137) 3.950 0.770 0.142 (0.171) 3.968 0.488

MCP 0.028 (0.054) 3.966 0.578 0.023 (0.035) 3.996 0.658

SCAD 0.183 (0.083) 3.984 0.540 0.142 (0.069) 3.990 0.548

SELO 0.043 (0.047) 4 0.598 0.030 (0.041) 3.988 0.518

SICA 0.039 (0.045) 3.992 0.398 0.026 (0.037) 3.988 0.346

Oracle 0.024 (0.027) 4 0 0.019 (0.022) 4 0
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Table 3.

Results on covariate selection based on interval-censored data with Λ0(t) = log(t + 1)

Method MMSE(SD) TP FP MMSE(SD) TP FP

pn = 10 n = 100, M = 10 n = 100, M = 20

BAR 0.172 (0.199) 3.756 0.476 0.133 (0.170) 3.852 0.516

LASSO 0.197 (0.101) 3.938 1.458 0.144 (0.085) 3.966 1.544

LASSO WC 0.164 (0.098) 3.962 1.872 0.145 (0.085) 3.972 1.758

ALASSO 0.206 (0.145) 3.728 1.060 0.153 (0.125) 3.812 1.114

MCP 0.249 (0.283) 3.526 0.626 0.209 (0.230) 3.684 0.690

SCAD 0.351 (0.157) 3.650 0.750 0.272 (0.138) 3.786 0.824

SELO 0.237 (0.270) 3.682 0.756 0.195 (0.226) 3.778 0.756

SICA 0.236 (0.263) 3.622 0.642 0.190 (0.213) 3.76 0.604

Oracle 0.092 (0.157) 4 0 0.083 (0.097) 4 0

pn = 10 n = 300, M =10 n = 300, M = 20

BAR 0.033 (0.036) 4 0.202 0.030 (0.034) 4 0.234

LASSO 0.070 (0.041) 4 1.246 0.048 (0.030) 4 1.422

LASSO WC 0.090 (0.048) 4 1.124 0.071 (0.040) 4 1.192

ALASSO 0.058 (0.062) 3.998 0.392 0.039 (0.043) 3.998 0.380

MCP 0.036 (0.048) 3.996 0.288 0.031 (0.045) 4 0.360

SCAD 0.073 (0.054) 4 0.416 0.060 (0.046) 4 0.434

SELO 0.047 (0.048) 4 0.588 0.040 (0.048) 4 0.582

SICA 0.041 (0.047) 4 0.442 0.036 (0.045) 4 0.446

Oracle 0.029 (0.037) 4 0 0.025 (0.035) 4 0

pn = 30 n = 300, M = 10 n = 300, M = 20

BAR 0.036 (0.037) 3.994 0.196 0.031 (0.031) 3.998 0.226

LASSO 0.128 (0.055) 4 2.324 0.096 (0.046) 4 2.274

LASSO WC 0.133 (0.056) 4 2.706 0.105 (0.051) 4 2.774

ALASSO 0.169 (0.159) 3.920 0.700 0.192 (0.176) 3.904 0.604

MCP 0.038 (0.056) 3.992 0.614 0.032 (0.041) 3.998 0.570

SCAD 0.169 (0.072) 3.986 0.560 0.129 (0.063) 3.998 0.612

SELO 0.033 (0.044) 4 0.490 0.039 (0.045) 4 0.384

SICA 0.048 (0.055) 3.994 0.452 0.040 (0.045) 4 0.434

Oracle 0.027 (0.036) 4 0 0.024 (0.030) 4 0
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Table 4.

Results on grouping effects based on current status data

Method MMSE (SD) TP FP G

ρ = 0.8

BAR 0.172 (0.238) 3.684 0.408 0.823

LASSO 0.297 (0.216) 3.966 1.698 0.606

ALASSO 0.311 (0.259) 3.574 0.712 0.732

MCP 0.277 (0.306) 3.300 0.598 0.693

SCAD 0.269 (0.305) 3.506 0.788 0.686

SELO 0.280 (0.311) 3.480 0.802 0.681

SICA 0.273 (0.307) 3.458 0.756 0.685

Oracle 0.106 (0.224) 4 0 1

ρ = 0.9

BAR 0.168 (0.313) 3.446 0.452 0.756

LASSO 0.211 (0.201) 3.900 1.760 0.564

ALASSO 0.261 (0.228) 3.224 0.858 0.628

MCP 0.265 (0.383) 2.912 0.866 0.557

SCAD 0.244 (0.363) 2.956 0.910 0.537

SELO 0.261 (0.371) 3.008 1.020 0.523

SICA 0.276 (0.365) 2.894 0.878 0.536

Oracle 0.099 (0.282) 4 0 1

ρ = 0.95

BAR 0.134 (0.237) 3.014 0.352 0.697

LASSO 0.200 (0.187) 3.750 1.830 0.539

ALASSO 0.191 (0.216) 2.930 1.274 0.473

MCP 0.203 (0.316) 2.614 0.814 0.509

SCAD 0.211 (0.320) 2.602 1.054 0.438

SELO 0.223 (0.289) 2.596 1.020 0.438

SICA 0.225 (0.338) 2.692 1.218 0.423

Oracle 0.097 (0.242) 4 0 1
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Table 5.

Results on grouping effects based on interval-censored data

Method MMSE (SD) TP FP G

ρ = 0.8

BAR 0.061 (0.075) 3.938 0.164 0.940

LASSO 0.162 (0.121) 3.998 1.282 0.695

ALASSO 0.108 (0.126) 3.940 0.598 0.833

MCP 0.081 (0.107) 3.830 0.530 0.811

SCAD 0.068 (0.115) 3.872 0.770 0.773

SELO 0.079 (0.096) 3.894 0.508 0.833

SICA 0.079 (0.102) 3.854 0.460 0.837

Oracle 0.048 (0.063) 4 0 1

ρ = 0.9

BAR 0.063 (0.083) 3.804 0.276 0.882

LASSO 0.093 (0.088) 3.990 2.342 0.526

ALASSO 0.100 (0.118) 3.744 0.634 0.780

MCP 0.104 (0.106) 3.388 0.686 0.680

SCAD 0.090 (0.100) 3.536 0.744 0.703

SELO 0.106 (0.104) 3.298 0.480 0.721

SICA 0.106 (0.099) 3.424 0.636 0.708

Oracle 0.043 (0.069) 4 0 1

ρ = 0.95

BAR 0.067 (0.084) 3.516 0.412 0.784

LASSO 0.083 (0.081) 3.938 2.074 0.533

ALASSO 0.092 (0.098) 3.442 0.878 0.659

MCP 0.108 (0.093) 2.986 1.018 0.535

SCAD 0.107 (0.090) 3.070 1.086 0.534

SELO 0.109 (0.094) 2.988 0.944 0.557

SICA 0.111 (0.092) 2.902 0.802 0.572

Oracle 0.042 (0.069) 4 0 1
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Table 6.

Analysis results of children’s mortality data

Method AGE BMI HOSP GENDER EDU URBAN

m = 3

BAR - - −0.3516(0.1273) - −0.2071(0.1235) −0.3052(0.1104)

LASSO - - −0.3016(0.1054) 0.02 32(0.0595) −0.1837(0.0916) −0.2526(0.0941)

ALASSO - - −0.3451(0.1060) - −0.1938(0.0940) −0.2924(0.0959)

MCP - - −0.3556(0.1213) - −0.2240(0.1316) −0.2932(0.0996)

SCAD - - −0.3563(0.1209) - −0.2259(0.1324) −0.3189(0.0997)

SELO - - −0.3549(0.1210) - −0.2185(0.1257) −0.3144(0.1017)

SICA - - −0.3559(0.1232) −0.2209(0.1308) −0.3163(0.1018)

Forward (0.05) - - −0.3561(0.1065) - −0.2251(0.0986) −0.3185(0.0970)

Forward (0.01) - - −0.4619(0.0935) - - −0.3464(0.0977)

Best Subset - - −0.3 561(0.1065) - −0.2251(0.0986) −0.3185(0.0970)

m = 12

BAR - - −0.3507(0.1266) - −0.2061(0.1209) −0.3004(0.1067)

LASSO - - −0.2957(0.1033) 0.00 74(0.0562) −0.1829(0.0948) −0.2443(0.0946)

ALASSO - - −0.3271(0.1003) - −0.1442(0.0852) −0.2455(0.0939)

MCP - - −0.3582(0.1196) - −0.2339(0.1257) −0.3205(0.0993)

SCAD - - −0.3556(0.1137) - −0.2259(0.1120) −0.3152(0.1005)

SELO - - −0.3552(0.1209) - −0.2218(0.1201) −0.3129(0.1009)

SICA - - −0.3521(0.1246) - −0.2118(0.1251) −0.3028(0.1012)

Forward (0.05) - - −0.3552(0.1055) - −0.2243(0.0975) −0.3140(0.0959)

Forward (0.01) - - −0.4602(0.0926) - - −0.3414(0.0965)

Best Subset - - −0.3552(0.1055) - −0.2243(0.0975) −0.3140(0.0959)
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