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Abstract

Glioblastoma (‘GBM’) is the most aggressive type of primary malignant adult brain tumor, with 

very heterogeneous radio-graphic, histologic, and molecular profiles. A growing body of advanced 

computational analyses are conducted towards further understanding the biology and variation in 

glioblastoma. To address the intrinsic heterogeneity among different computational studies, 

reference standards have been established to facilitate both radiographic and molecular analyses, 

e.g., anatomical atlas for image registration and housekeeping genes, respectively. However, there 

is an apparent lack of reference standards in the domain of digital pathology, where each 

independent study uses an arbitrarily chosen slide from their evaluation dataset for normalization 

purposes. In this study, we introduce a novel stain normalization approach based on a composite 

reference slide comprised of information from a large population of anatomically annotated 

hematoxylin and eosin (‘H&E’) whole-slide images from the Ivy Glioblastoma Atlas Project 

(‘IvyGAP’). Two board-certified neuropathologists manually reviewed and selected annotations in 

509 slides, according to the World Health Organization definitions. We computed summary 

statistics from each of these approved annotations and weighted them based on their percent 

contribution to overall slide (‘PCOS’), to form a global histogram and stain vectors. Quantitative 

evaluation of pre- and post-normalization stain density statistics for each annotated region with 

PCOS > 0.05% yielded a significant (largest p = 0.001, two-sided Wilcoxon rank sum test) 

reduction of its intensity variation for both ‘H’ & ‘E’. Subject to further large-scale evaluation, our 

findings support the proposed approach as a potentially robust population-based reference for stain 

normalization.
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1 Introduction

Glioblastoma (‘GBM’) is the most aggressive, and common, type of primary malignant adult 

brain tumor. GBMs are usually de novo, meaning they frequently appear without any 

precursor lesions. If left untreated, the tumor is quickly fatal, and even with treatment, 

median survival is about 16 months [1, 2]. If a GBM is suspected, multi-parametric magnetic 

resonance imaging (‘mpMRI’) will be done to follow up, and presumptive diagnosis can 

typically be given. Ideally, surgical gross total resection is performed. When extensive 

surgery is not possible, often needle or excisional biopsies are performed to confirm the 

diagnosis. GBMs, due to their serious and sudden nature, lack of effective treatment options, 

as well as their reported heterogeneity [3], have been the subject of research in the realm of 

personalized medicine and diagnostics. However, investigating their precise characterization 

requires large amounts of data. Fortunately, publicly available datasets with abundant 

information are becoming much more available.

With the advent of data collection and storage, not only are large datasets becoming 

available for public use, but they are also becoming more detailed in multiple scales, i.e., 

macro- and micro-scopic. Large comprehensive datasets publicly available in various 

repositories, such as The Cancer Imaging Archive (TCIA - www.cancerimagingarchive.net) 

[4] have shown promise on expediting discovery. One of the exemplary data collections of 

glioblastoma, is the TCGA-GBM [5], which since its initiation has included longitudinal 

radiographic scans of GBM patients, with corresponding detailed molecular characterization 

hosted in the National Cancer Institute’s Genomic Data Commons (gdc.cancer.gov). This 

dataset enabled impactful landmark studies on the discovery on integrated genomic analyses 

of gliomas [6, 7]. TCIA has also made possible the release of ‘Analysis Results’ from 

individual research groups, with the intention of avoiding study replication and allowing 

reproducibility analyses, but also expediting further discoveries. Examples of these 

‘Analysis Results’ describe the public release of expert annotations [8–11], as well as 

exploratory radiogenomic and outcome prediction analyses [12–15]. The further inclusion of 

available histology whole-slide images (‘WSIs’) corresponding to the existing radiographic 

scans of the TCGA-GBM collection contributes to the advent of integrated diagnostic 

analyses, which in turn raises the need for normalization. Specifically, such analyses attempt 

to identify integrated tumor phenotypes [16, 17] and are primarily based on extracting visual 

descriptors, such as the tumor location [18, 19], and intensity values [20], as well as subtle 

sub-visual imaging features [21–28].

Intensity normalization is considered an essential step for performing such computational 

analysis of medical images. Specifically, for digital pathology analyses, stain normalization 

is an essential pre-processing step directly affecting subsequent computational analyses. 

Following the acquisition of tissue up until the digitization and storage of WSIs, nearly 
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every step introduces variation into the final appearance of a slide. Prior to staining, tissue is 

fixed for variable amounts of time. Slide staining is a chemical process, and thus is highly 

prone to not only the solution preparation, but also the environmental conditions. While 

preparing a specimen, the final appearance can be determined by factors such as: stain 

duration, manufacturer, pH balance, temperature, section thickness, fixative, and numerous 

other biological, chemical, or environmental conditions. Additionally, the advent of digital 

pathology has incurred even more variation on the final appearance of WSIs, including 

significant differences in the process of digitization that varies between scanners (vary by 

manufacturers and models within a given company).

Various approaches have been developed to overcome these variations in slide appearance. 

Techniques such as Red-Green-Blue (‘RGB’) histogram transfers [29] and Macenko et al. 
[30] use the general approach of converting an image to an appropriate colorspace, and using 

a single example slide as a target for modifying the colors and intensities of a source image. 

Recently, techniques such as Reinhard [31], Vahadane [32], and Khan [33] have been 

developed to separate the image into optical density (‘OD’) stain vectors (S), as well as 

corresponding densities (W) of each stain per pixel. This process (known as ‘stain 
deconvolution’) has been one of the more successful and popular techniques in recent years. 

Additionally, a number of generative deep learning techniques, such as StainGAN [34] and 

StaNoSA [35], have also been developed for stain normalization. While such techniques [34, 

35] have been shown to outperform many transfer-based approaches [30–33], they also have 

multiple downsides. First, these techniques are generative, which means that rather than 

modifying existing information, they attempt to generate their own information based on 

distributive models. These generative techniques apply a “blackbox” to input data, making it 

difficult to discern if the model is biased, and hence may influence all downstream 

processing without notice. For example, if a StainGAN model had not seen an uncommon 

structure during training, it would be unable to accurately model the staining of that 

structure, and fail in producing an accurate result. For a much more thorough review of stain 

normalization algorithms, see [36]. Our approach, in comparison to StainGAN or other 

generative methods, attempts to expand upon prior transformative stain transfer techniques. 

Our motivation is that an approach as the one we propose will obviate the “black box” 

presented by generative methods, and prevent a potential entry for insidious bias in the 

normalization of slides, while still maintaining a robust and accurate representation of a slide 

batch.

While the technical aspects of stain transfer algorithms have progressed significantly, their 

application remains fairly naive. In demonstration, most studies arbitrarily pick either a 

single WSIs, or even a single patch within a WSI, as a normalization step prior to further 

analysis. In this paper, we sought to build upon current stain normalization techniques by 

using a publicly available dataset in an effort to form a composite reference slide for stain 

transfer, and avoid the use of arbitrarily chosen slides from independent studies. By doing 

this, we have developed a standardized target for stain normalization, thus allowing the 

creation of more robust, accurate, and reproducible digital pathology techniques through the 

employment of a universal pre-processing step.
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2 Materials and Methods

2.1 Data

The Ivy Glioblastoma Atlas Project (‘IvyGAP’) [37, 38] describes a comprehensive radio-
patho-genomic dataset of GBM patients systematically analyzed, towards developing 

innovative diagnostic methods for brain cancer patients [37].

IvyGAP is a collaborative project between the Ben and Catherine Ivy Foundation, the Allen 
Institute for Brain Science, and the Ben and Catherine Ivy Center for Advanced Brain 
Tumor Treatment. The radiographic scans of IvyGAP are made available on TCIA 

(wiki.cancerimagingarchive.net/display/Public/Ivy+GAP). In situ hybridization (‘ISH’), 
RNA sequencing data, and digitized histology slides, along with corresponding anatomic 

annotations are available through the Allen Institute (glioblastoma.alleninstitute.org). 

Furthermore, the detailed clinical, genomic, and expression array data, designed to elucidate 

the pathways involved in GBM development and progression, are available through the 

Swedish Institute (ivygap.swedish.org).

The histologic data contains approximately 11,000 digitized and annotated frozen tissue 

sections from 42 tumors (41 GBM patients) [37] in the form of hematoxylin and eosin 

(‘H&E’) stained slides along with accompanying ISH tests and molecular characterization. 

Tissue acquisition, processing, and staining occurred at different sites and times by different 

people following specific protocols [37]. Notably to this study, this resource contains a large 

number of H&E-stained GBM slides, each with a corresponding set of annotations 

corresponding to structural components of the tumor (Fig. 1).

2.2 Data Selection/Tissue Review

As also mentioned in the landmark manuscript describing the complete IvyGAP data [37], 

we note that the annotation labels (Fig. 1) a) do not comply with the current World Health 

Organization (‘WHO’) classification, and b) have as low as 60% accuracy due to their semi-

supervised segmentation approach (as noted by IvyGAP’s Table S11 [37]). Therefore, for 

the purpose of this study, and to ensure consistency and compliance with the clinical 

evaluation WHO criteria during standard practice, 509 IvyGAP annotated histological 

images were reviewed by two board-certified neuropathologists (A.N.V. and M.P.N.). For 

each image, the structural features/regions that were correctly identified and labeled by 

IvyGAP’s semi-automated annotation application according to their published criteria [37] 

were marked for inclusion in this study, and all others were excluded from the analysis.

2.3 Stain Deconvolution

Each slide was paired with a corresponding label map of anatomical features, and then on a 

per-annotation basis, each region was extracted and the stains were deconvolved. A example 

deconvolution is illustrated in Fig. 2. Our method of stain deconvolution was based off the 

work of Ruifrok and Johnston [39], whose work has become the basis for many popular 

normalization methods. More directly, our method stems from Vahadane et al. [32], but 

modified so the density transformation is not a linear mapping, but a two-channel stain 

density histogram matching.
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First, a source image is flattened to a list of pixels, and represented by the matrix I. It can be 

stated that:

I ∈ Rm × n (1)

where m is the number of color channels in an RGB image (r = 3), and n is the number of 

pixels in the flattened source image. This source image can be deconvolved into the color 

basis for each stain, S, and the density map, W, with each matrix element representing how 

much one of the stains contributes to the overall color of one of the pixels. In matrix form, 

let:

W ∈ Rr × n (2)

where r is the number of stains in the slide (in this case, we consider r = 2 for ‘H&E’), and n 
is the number of pixels in the image, Also let:

S ∈ Rm × r (3)

where m is once more the number of color channels in an RGB image, and r is the number 

of stains present in the slide. Additionally, I0 is a matrix which represents the background of 

light shining through the slide, which in the case is an RGB value of (255, 255, 255). Putting 

it all together, we get:

I = I0
−W H . (4)

To accomplish this, we used an open source sparse modeling library for python, namely 

SPAMS [40]. However, it should be noted that more robust libraries for sparse modeling 

exist, such as SciPy. First, we used dictionary learning to find a sparse representation of an 

input reach, resulting in a 2 × 3 OD representation of the stain vectors, S. Then, using these 

stain vectors, we used SPAMS’ lasso regression function to deconvolve the tissue into the 

density map W, which is a matrix showing the per-pixel contribution of each of the stains to 

each pixel’s final color.

The actual process of anatomical region extraction begins by pairing an ‘H&E’ with its 

corresponding label (Fig. 2). Then, each tissue region corresponding to each anatomical 

label was extracted. The pixels were converted to the CIELAB color space, and pixels over 

0.8 L were thresholded out as background intensity. The remaining pixels were stain-

deconvolved, and the stain vectors were saved. The ratio of red to blue was found for each 

stain vector, and each stain’s identity was then inferred from it being more pink (eosin) or 

blue (hematoxylin) when compared with the other stain vector. The stain densities were 

converted into a sparse histogram, and also saved. Additional region statistics (mean, 

standard deviation, median, and interquartile range) were also saved for each anatomical 

region for validation.
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2.4 Composite Histograms

The global histogram composition of our approach is based on the assessment of each 

independent region (Fig. 3(a)). To create each composite histograms, first, a slide and 

associated label map were loaded. Then, the label map was downsampled to one tenth of its 

original size, and a list of colors present in the label map were found. Next, each present 

annotation was converted into a binary mask, and all connected components for that 

annotation were found. Components with an area smaller than 15,000 (0.5% of WSI size) 

pixels were discarded. Next, the remaining components were used as a mask to extract the 

underlying tissue, and flatten the region into a list of pixels. Then, stain vectors were 

estimated for the region, and a density map was found. Two sparse histograms were then 

created from the associated density values for each stain (Fig. 3(b)). This process was 

repeated for each annotation within an image, and then across all images. Histograms and 

stain vectors were kept specific to each annotation type. Each annotation type had an 

associated cumulative area, master histogram, and list of stain vectors.

2.5 Image Transformation

Statistics across regions were summed across all slides. To account for differences in the 

area representing the whole slide, each annotated anatomical structure’s overall histograms 

were weighed according to their percent contribution to overall slide (‘PCOS’), then merged 

to create a master histogram (Fig. 4). Additionally, mean stain vectors from each annotation 

region were computed, then weighted according to their annotation’s PCOS, and finally 

combined to give a master set of stain vectors.

With the target histogram and stain vectors computed, we are able to transform a source 

slide in a number of ways, but we choose to use a technique derived from [32]. To do this, 

we first converted the slide to CIELAB color space, thresholded out background pixels, and 

transformed the remaining pixels using non-negative matrix factorization (‘NMF’) as 

proposed in [41] and extended in [32]. Then, a cumulative density function (‘CDF’) was 

found for each stain in both the source image and the target image, and a two-channel 

histogram matching function transformed each of the source’s stain density maps to 

approximate the distribution of the target. Finally, the stain densities and corresponding stain 

vectors were reconvolved, and the transformed source image closely resembles the 

composite of all target images in both stain color and density distributions.

3 Results

We validate our approach by quantitatively evaluating the reduction in variability of each 

annotated region in WSIs of our dataset. To do this, we computed the standard deviation of 

each anatomical annotation independently across all selected IvyGAP slides by extracting 

the annotated anatomical structure per slide, filtering background pixels, deconvolving, and 

finding the distibutions of standard deviation of each stain’s density within that tissue type. 

We then used the master stain vectors and histograms to batch normalize each of these 

slides. Following stain normalization, we recomputed the standard deviation of each 

transformed slide by using the same process as with the pre-convolved slides.
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Results of each distribution of standard deviations for each stain are shown in Fig. 5. In 

other words, the boxes of Fig. 5 denote the spread of the spreads. Comparing pre- and post-

transformation slides, through the distributions of standard deviations, shows a significant 

(largest p = 0.001, two-sided Wilcoxon rank sum test) decrease in standard deviation across 

tissue types, for all regions contributing more than 0.05% PCOS.

We identified the master stain vectors for hematoxylin (‘H’) and eosin (‘E’) as RGBH = 

[141, 116, 203] and RGBE = [148, 117, 180], respectively.

4 Discussion and Conclusion

We found that it is feasible to create composite statistics of a batch of images, to create a 

robust and biologically significant representation of the target GBM slide for future pre-

processing. The multi-site nature of the dataset used for validating the proposed approach 

further emphasizes its potential for generalizability.

The technique proposed here, when compared with deep learning approaches [34, 35], 

obviates a “black box” entirely by nature of being a transformative technique, and not a 

generative one. Through the law of large numbers, we attempt to approximate the general 

distribution of stain densities for GBM slides from a large batch, and use it to transform 

slides to match said specifications. Thus, no new information in synthesized, and previously 

unseen structures can be transformed without issue.

Using the very specific set of slides in this study, we identified specific master stain vectors 

for ‘H’ and ‘E’, provided in the “Results” section above. The colors of these master stain 

vectors seem fairly close to each other in an RGB space, owing this partly to the “flattened 

color appearance” of slides fixed in frozen tissue sections, as the ones provided in the 

IvyGAP dataset. We expect to obtain master stain vectors of more distinct colors with 

formalin-fixed paraffin- embedded (FFPE) tissue slides.

While this approach has been shown to be feasible, there is still much room for 

improvement. For instance, the current approach is limited by the slide transformation 

algorithm that it implements. Stain transfer algorithms are heavily prone to artifacting [33]. 

While this algorithm avoids issues such as artificially staining background density, it still 

struggles in certain areas. Notably, NMF approaches rely on the assumption that the number 

of stains in a slide is already known, and that every pixel can be directly reconstructed from 

a certain combination of the stains. While with ‘H&E’, we can assuredly say there are only 

two stains, it neglects other elements such as red blood cells that introduce a third element of 

color into the pixel. Thus, an area for expansion is in the ability of stain transfer algorithms 

to cope with other variations in color.

The current application of this approach has been on a dataset containing frozen tissue, 

which is not representative of most slides in anatomical pathology cases or research. 

However, it offers the methodology to apply on a larger, more representative set of curated 

slides to yield a more accurate target for clinically relevant stain normalization. Furthermore, 

even though we note the benefit of the proposed approach by the overall reduction in the 

intra-cohort variability of stain density across multiple annotated anatomical structures (Fig. 
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5), further investigation is needed to evaluate its relevance in subsequent image analysis 

methods [42].

Future work includes expansion of the proposed approach through the implementation and 

comparison of other stain transfer techniques, and a general refinement to create a more 

accurate composite representation. While our proposed method is still prone to artifacts and 

other complications seen throughout stain transfer techniques, we believe that this study 

shows the feasibility of using large, detailed, publicly available multi-institutional datasets to 

create robust and biologically accurate reference targets for stain normalization.

Acknowledgement.

Research reported in this publication was partly supported by the National Institutes of Health (NIH) under award 
numbers NIH/NINDS: R01NS042645, NIH/NCI:U24CA189523, NIH/NCATS:UL1TR001878, and by the Institute 
for Translational Medicine and Therapeutics (ITMAT) of the University of Pennsylvania. The content of this 
publication is solely the responsibility of the authors and does not represent the official views of the NIH, or the 
ITMAT of the UPenn.

References

1. Ostrom Q, et al.: Females have the survival advantage in glioblastoma. Neuro-Oncology 20, 576–
577 (2018) [PubMed: 29474647] 

2. Herrlinger U, et al.: Lomustine-temozolomide combination therapy versus standard temozolomide 
therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/
NOA-09): a randomised, open-label, phase 3 trial. Lancet 393, 678–688 (2019) [PubMed: 
30782343] 

3. Sottoriva A, et al.: Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary 
dynamics. Proc. Natl. Acad. Sci 110, 4009–4014 (2013) [PubMed: 23412337] 

4. Clark K, et al.: The Cancer Imaging Archive (TCIA): maintaining and operating a public 
information repository. J. Digit. Imaging 26(6), 1045–1057 (2013). 10.1007/s10278-013-9622-7 
[PubMed: 23884657] 

5. Scarpace L, et al.: Radiology data from the cancer genome atlas glioblastoma [TCGA-GBM] 
collection. Cancer Imaging Arch. 11(4) (2016)

6. Verhaak RGW, et al.: Integrated genomic analysis identifies clinically relevant subtypes of 
glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 
17(1), 98–110 (2010) [PubMed: 20129251] 

7. Cancer Genome Atlas Research Network: Comprehensive, integrative genomic analysis of diffuse 
lower-grade gliomas. N. Engl. J. Med 372(26), 2481–2498 (2015) [PubMed: 26061751] 

8. Beers A, et al.: DICOM-SEG conversions for TCGA-LGG and TCGA-GBM segmentation datasets. 
Cancer Imaging Arch. (2018)

9. Bakas S, et al.: Advancing the cancer genome atlas glioma MRI collections with expert 
segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017)

10. Bakas S, et al.: Segmentation labels and radiomic features for the pre-operative scans of the 
TCGA-GBM collection. Cancer Imaging Arch. 286 (2017)

11. Bakas S, et al.: Segmentation labels and radiomic features for the pre-operative scans of the 
TCGA-LGG collection. Cancer Imaging Arch. (2017)

12. Gevaert O: Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative 
image features. Radiology 273(1), 168–174 (2014) [PubMed: 24827998] 

13. Gutman DA, et al.: MR imaging predictors of molecular profile and survival: multi-institutional 
study of the TCGA glioblastoma data set. Radiology 267(2), 560–569 (2013) [PubMed: 
23392431] 

Grenko et al. Page 8

Brainlesion. Author manuscript; available in PMC 2020 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



14. Binder Z, et al.: Epidermal growth factor receptor extracellular domain mutations in glioblastoma 
present opportunities for clinical imaging and therapeutic development. Cancer Cell 34, 163–177 
(2018) [PubMed: 29990498] 

15. Jain R: Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic 
biomarkers: focus on the nonenhancing component of the tumor. Radiology 272(2), 484–93 (2014) 
[PubMed: 24646147] 

16. Aerts HJWL: The potential of radiomic-based phenotyping in precision medicine: a review. JAMA 
Oncol. 2(12), 1636–1642 (2016) [PubMed: 27541161] 

17. Davatzikos C, et al.: Cancer imaging phenomics toolkit: quantitative imaging analytics for 
precision diagnostics and predictive modeling of clinical outcome. J. Med. Imaging 5(1), 011018 
(2018)

18. Bilello M, et al.: Population-based MRI atlases of spatial distribution are specific to patient and 
tumor characteristics in glioblastoma. NeuroImage: Clin. 12, 34–40 (2016) [PubMed: 27358767] 

19. Akbari H, et al.: In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via 
complex multiparametric MRI signature. Neuro-Oncology 20(8), 1068–1079 (2018) [PubMed: 
29617843] 

20. Bakas S, et al.: In vivo detection of EGFRvIII in glioblastoma via perfusion magnetic resonance 
imaging signature consistent with deep peritumoral infiltration: the φ-index. Clin. Cancer Res 23, 
4724–4734 (2017) [PubMed: 28428190] 

21. Zwanenburg A, et al.: Image biomarker standardization initiative, arXiv:1612.07003 (2016)

22. Lambin P, et al.: Radiomics: extracting more information from medical images using advanced 
feature analysis. Eur. J. Cancer 48(4), 441–446 (2012) [PubMed: 22257792] 

23. Haralick RM, et al.: Textural features for image classification. IEEE Trans. Syst. Man Cybern 3, 
610–621 (1973)

24. Galloway MM: Texture analysis using grey level run lengths. Comput. Graph. Image Process 4, 
172–179 (1975)

25. Chu A, et al.: Use of gray value distribution of run lengths for texture analysis. Pattern Recogn. 
Lett 11, 415–419 (1990)

26. Dasarathy BV, Holder EB: Image characterizations based on joint gray level—run length 
distributions. Pattern Recogn. Lett 12, 497–502 (1991)

27. Tang X: Texture information in run-length matrices. IEEE Trans. Image Process 7, 1602–1609 
(1998) [PubMed: 18276225] 

28. Amadasun M, King R: Textural features corresponding to textural properties. IEEE Trans. Syst. 
Man Cybern 19, 1264–1274 (1989)

29. Jain A: Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs (1989)

30. Macenko M, et al.: A method for normalizing histology slides for quantitative analysis. In: 2009 
IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1107–1110 
(2009)

31. Reinhard E, et al.: Color transfer between images. IEEE Comput. Graphics Appl 21(5), 34–41 
(2001)

32. Vahadane A, et al.: Structure-preserving color normalization and sparse stain separation for 
histological images. IEEE Trans. Med. Imaging 35, 1962–1971 (2016) [PubMed: 27164577] 

33. Khan A, et al.: A non-linear mapping approach to stain normalisation in digital histopathology 
images using image-specific colour deconvolution. IEEE Trans. Biomed. Eng 61(6), 1729–1738 
(2014) [PubMed: 24845283] 

34. Shaban MT, et al.: StainGAN: stain style transfer for digital histological images. In: 2019 IEEE 
16th International Symposium on Biomedical Imaging (ISBI), pp. 953–956 (2019)

35. Janowczyk A, et al.: Stain normalization using sparse AutoEncoders (StaNoSA). Comput. Med. 
Imaging Graph 50–61, 2017 (2017)

36. Bianconi F, Kather JN, Reyes-Aldasoro CC: Evaluation of colour pre-processing on patch-based 
classification of H&E-stained images In: Reyes-Aldasoro CC, Janowczyk A, Veta M, Bankhead P, 
Sirinukunwattana K. (eds.) ECDP 2019. LNCS, vol. 11435, pp. 56–64. Springer, Cham (2019). 
10.1007/978-3-030-23937-47

Grenko et al. Page 9

Brainlesion. Author manuscript; available in PMC 2020 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1612.07003


37. Puchalski R, et al.: An anatomic transcriptional atlas of human glioblastoma. Science 360, 660–
663 (2018) [PubMed: 29748285] 

38. Shah N, et al.: Data from Ivy GAP. Cancer Imaging Arch. (2016)

39. Ruifrok A, Johnston D: Quantification of histochemical staining by color deconvolution. Anal. 
Quant. Cytol. Histol 23(4), 291–299 (2001) [PubMed: 11531144] 

40. Mairal J, et al.: Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res 11, 
19–60 (2010)

41. Rabinovich A, et al.: Unsupervised color decomposition of histologically stained tissue samples. 
In: Advances in Neural Information Processing Systems, vol. 16, pp. 667–674 (2004)

42. Li X, et al.: A complete color normalization approach to histopathology images using color cues 
computed from saturation-weighted statistics. IEEE Trans. Biomed. Eng 62(7), 1862–1873 (2015) 
[PubMed: 25706507] 

Grenko et al. Page 10

Brainlesion. Author manuscript; available in PMC 2020 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
An example slide and corresponding label map for IvyGAP is shown on the left, and on the 

right is the list of anatomical features annotated in the IvyGAP dataset, as well as their 

corresponding color in the label map.
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Fig. 2. 
An example of stain deconvolution on a patch from an IvyGAP WSI. The top and bottom 

row illustrate the effect of deconvolution before and after applying background masking, 

where is a substantial artifact of background intensity.
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Fig. 3. 
(a) Examples of decomposing WSIs into various annotated anatomical regions. The labels 

correspond to the following respective components: leading edge, infiltrating tumor, cellular 

tumor, necrosis, perinecrotic zone, pseudopalisading cells around necrosis, pseudopalisading 

but no visible necrosis, hyperplastic blood, and microvascular proliferation. (b) Overview of 

the process used to separate and analyze regions from WSIs. First, a slide and a 

corresponding annotation map were loaded. Then, on a per-annotation basis, a pixel mask 

was created, and regions smaller than a threshold were removed. Then, each underlying 

region of tissue was extracted, and broken down into stain vectors and density maps via 
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SNMF encoding [32]. Finally, a histogram was computed for the annotated tissue region. 

Repeat for each annotation present in the slide.
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Fig. 4. 
Weighing all summary histograms based on total area, and merging to create a final 

summary histogram.
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Fig. 5. 
The overall reduction in intra-cohort variability of stain density by annotated anatomical 

structure. p value based on two-sided Wilcoxon rank sum test. Abbreviations for annotated 

regions are as follows: ‘PZ’ = Perinecrotic Zone, ‘PCnvN’ = Pseudopalisading Cells with no 

visible Necrosis, ‘N’ = Necrosis, ‘HB’ = Hyperplastic Blood, ‘MP’ = Microvascular 

Proliferation, ‘CT’ = Cellular Tumor, ‘IT’ = Infiltrating Tumor, ‘PCaN’ = Psuedopalisading 

Cells around Necrosis, ‘LE’ = Leading Edge
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