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Over the past decade, advances in sensing devices and computer 
systems have allowed for the proliferation of high-throughput plant 
phenotyping systems (Das Choudhury et al., 2019). These systems 
are designed to acquire and analyze a large number of plant traits 
(Han et al., 2014; Krieger, 2014), including the measure of small 
structures, such as the venation network of leaves (Endler, 1998; 

Green et al., 2014). However, the characterization of plant roots is 
more challenging because they are “hidden” in the soil (Atkinson 
et al., 2019), which limits the type of sensors and techniques that 
can be applied.

A number of types of methods have previously been used to 
analyze root traits. Non-imaging-based in situ methods estimate 
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PREMISE: High-resolution cameras are very helpful for plant phenotyping as their images 
enable tasks such as target vs. background discrimination and the measurement and analysis 
of fine above-ground plant attributes. However, the acquisition of high-resolution images 
of plant roots is more challenging than above-ground data collection. An effective super-
resolution (SR) algorithm is therefore needed for overcoming the resolution limitations of 
sensors, reducing storage space requirements, and boosting the performance of subsequent 
analyses.

METHODS: We propose an SR framework for enhancing images of plant roots using 
convolutional neural networks. We compare three alternatives for training the SR model: (i) 
training with non-plant-root images, (ii) training with plant-root images, and (iii) pretraining 
the model with non-plant-root images and fine-tuning with plant-root images. The 
architectures of the SR models were based on two state-of-the-art deep learning approaches: 
a fast SR convolutional neural network and an SR generative adversarial network.

RESULTS: In our experiments, we observed that the SR models improved the quality of 
low-resolution images of plant roots in an unseen data set in terms of the signal-to-noise 
ratio. We used a collection of publicly available data sets to demonstrate that the SR models 
outperform the basic bicubic interpolation, even when trained with non-root data sets.

DISCUSSION: The incorporation of a deep learning–based SR model in the imaging process 
enhances the quality of low-resolution images of plant roots. We demonstrate that SR 
preprocessing boosts the performance of a machine learning system trained to separate 
plant roots from their background. Our segmentation experiments also show that high 
performance on this task can be achieved independently of the signal-to-noise ratio. We 
therefore conclude that the quality of the image enhancement depends on the desired 
application.

  KEY WORDS    convolutional neural networks; generative adversarial networks; plant pheno-
typing; root phenotyping; super resolution.
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the traits of the root system architecture (RSA) based on their cor-
relations with chemical or physical properties. For example, Dalton 
(1995) and Cseresnyés et al. (2018) used the plant root electrical 
capacitance to estimate the root mass, modeling the RSA as a re-
sistance-capacitance circuit. Likewise, Cao et al. (2011) employed 
an electrical impedance spectroscopy approach to model the RSA 
based on the frequency response. The disadvantage of these meth-
ods is that they provide a simplified description of the RSA and thus 
do not provide morphological details.

Other researchers have used destructive methods, in which the 
RSA is destroyed during or after the imaging process. The most 
basic of this type is “shovelomics,” which consists of washing out 
the roots of the soil (Trachsel et al., 2011). Shovelomics can be 
applied to plants grown in any type of soil, in contrast with other 
root phenotyping techniques that are limited by the physical 
properties of the environment. It is not ideal for high-throughput 
work, however, because the manual excavation of the roots is la-
bor-intensive and tedious. Furthermore, most thin roots are lost 
in this process.

Another category of root phenotyping method is imaging 
under controlled conditions. Roots can be observed using rhi-
zotrons, structures with windows that contain the soil in which 
the plants are grown (Taylor et al., 1990). Alternatively, 3D im-
aging of the RSA can be carried out on plants grown in special 
substrates, such as transparent substrates or easy-to-remove types 
of soil (Clark et al., 2011). These procedures allow the acquisition 
of high-quality images, but their main disadvantage is that the 
imaging is not performed in situ, meaning the knowledge that 
can be inferred using them is limited.

Root phenotyping has also been performed using intrusive 
methods, in which the acquisition device is introduced into the 
ground. In this category, we include the minirhizotrons that use a 
camera fixed into the soil through a tube to record sequences of 
pictures of parts of the RSA (Johnson et al., 2001), as well as soil 
coring (Wu et al., 2018). Although these methods do not necessarily 
result in the destruction of the RSA, they disturb the roots and soil, 
which might affect the natural root–soil interactions (Kolb et al., 
2017). The disturbance can be worse when the devices are intro-
duced and extracted frequently, or when they are installed in diffi-
cult substrates such as stony soils (Majdi, 1996).

In contrast, some researchers use non-intrusive methods to 
study RSAs in situ, without disturbing the roots or the soil. Barton 
and Montagu (2004) tested the use of ground-penetrating radar for 
this purpose, revealing that it was possible to detect tree roots 1 cm 
in diameter buried in the soil at a depth of 50 cm; unfortunately, this 
technology is currently limited to the detection of the roots of trees 
or woody plants (Hirano et al., 2009; Araus and Cairns, 2014). X-ray 
computed tomography (Tabb et al., 2018) and magnetic resonance 
imaging (MRI) (Pflugfelder et al., 2017) technologies, which involve 
scanning using devices traditionally used for medical applications, 
can be grouped into the non-intrusive category if the complete 
plant can be scanned in the device (e.g., plants grown in pots). On 
the other hand, X-ray computed tomography and MRI are consid-
ered intrusive techniques when used to scan washed root systems 
or soil cores for RSAs removed from the field. In addition to these 
available approaches, more are currently being developed, including 
backscatter radiography (Cui et al., 2017).

The root system is responsible for water and nutrient absorp-
tion, and it is the first barrier to the changing environment. It af-
fects many seemingly distant processes, such as plant growth, CO2 

assimilation, and fruit development (Akinnifesi et al., 1998; Chen 
et al., 2019). The development of high-throughput root phenotyping 
methods requiring low labor inputs is crucial for elucidating these 
systems, which is vital for a wide range of plant research. As men-
tioned above, the acquisition of high-resolution (HR) imagery of 
roots in the field using non-intrusive methods remains a challenge. 
An effective super-resolution (SR) algorithm that complements the 
imaging process by inferring HR details not clearly delineated by 
the sensing device is therefore desired for the deployment of these 
systems in real-world applications.

The SR problem consists of estimating HR images from low-res-
olution (LR) images. SR has been used to overcome hardware limita-
tions in applications that heavily rely on high-quality images, such 
as medical diagnosis (Zhang et al., 2012; Zhang and An, 2017). Many 
SR methods in the literature use mathematical transformations of 
the original data to learn the LR-to-HR mapping (Yang et al., 2010; 
Zeyde et al., 2012). For instance, methods based on sparse repre-
sentations reconstruct each image using a weighted combination of 
words from a set of basic patterns called a dictionary. A set of LR and 
HR words are learned from training data, after which an SR image is 
obtained by replacing the LR dictionary words with HR dictionary 
words. Recently, data-driven SR models based on deep learning al-
gorithms with convolutional neural networks (CNNs) have become 
more popular than the sparse representation-based models. The 
SR deep learning algorithms are preferred in many cases because 
they generally exhibit a better performance, and can be applied as 
a “black box” when enough training data are available (Wang et al., 
2015; Ledig et al., 2017). In particular, SR generative adversarial net-
works (SRGANs) have shown high performance levels in the esti-
mation of HR detail loss during a degradation process (Ledig et al., 
2017). To the best of our knowledge, SR deep learning models for 
root imagery have not been extensively studied. Additionally, there 
is no consensus regarding an effective SR performance measure in 
this context because it has been observed in previous studies that 
reconstruction accuracy (the pixel-by-pixel comparison of an HR–
SR pair) and perceptual quality (comparison of the visual features 
of an HR–SR pair) are not directly correlated (Blau et al., 2019).

Here, to enhance plant root imagery, we adapt two state-of-
the-art deep learning approaches, the fast SR convolutional neural 
network (FSRCNN) proposed by Dong et al. (2016), and the SR 
generative adversarial network (SRGAN). We train the SR models 
with LR–HR data from two non-root data sets (DIV2K and 91-im-
age) and three plant root data sets (from Arabidopsis thaliana (L.) 
Heynh., wheat [Triticum aestivum L.], and barley [Hordeum vul­
gare L.]). These data sets were selected because they contain consid-
erably different textures and shapes, which encourages the model 
to find a general solution. In addition, to facilitate the training of 
the generator (the part of the SRGAN that converts LR into HR 
images), we introduce a modification by implementing multiple 
discriminators (the part of the SRGAN that evaluates the quality 
of the SR images). In the loss function (i.e., the part of the model 
that computes the quality of the estimated parameters), we consider 
the mean square error between HR and LR (which reduces the re-
construction error, as it is low if the pixel values are similar) and 
the adversarial loss (which encourages the network to learn to add 
HR details to the LR image). To evaluate the SR performance, we 
use two methods: (i) computing the standard signal-to-noise ratio 
(SNR) between the SR image and the original HR image, and (ii) 
computing the intersection over union (IoU) when applying the 
SegRoot network (Wang et al., 2019).
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METHODS

Data sets

In this study, we used five publicly available data sets to train the 
SR models. We used two non-plant-root data sets, DIV2K (https://
data.vision.ee.ethz.ch/cvl/DIV2K/ [accessed 11 June 2020]) and 
91-Image (https://www.kaggle.com/ll01d​m/t91-image​-dataset [ac-
cessed 11 June 2020]). DIV2K is a data set of natural images that has 
been used by others to train and test SR algorithms (Timofte et al., 
2017). We trained our models on the grayscale version of this train-
ing data set (800 images). The 91-Image information is a classical 
data set commonly used in SR studies. We also used three plant-root 
data sets, including an A. thaliana data set for root phenotyping 
analysis (https://zenodo.org/recor​d/50831​#.XjIAP​VNKhQI [ac-
cessed 11 June 2020]) (Bouché et al., 2016); a data set consisting 
of 2614 images of wheat seedling roots (http://gigadb.org/data 
s​et/100346 [accessed 11 June 2020]) (Atkinson et al., 2017); and 
a set of 3D magnetic resonance images of barley roots (https://
www.quant​itati​ve-plant.org/datas​et/3d-magne​tic-reson​ance-im-
age​s-of-barle​y-roots [accessed 21 June 2020]), which also contains 
WinRHIZO images of the barley roots.

In our experiments, we grouped the three plant-root data sets into a 
single data set named “Roots.” Figure 3 shows examples of the plant-root 

data sets used for training the SR model. To test 
the performance of the SR models, we used a data 
set of 65 soybean (Glycine max (L.) Merr.) roots 
(https://github.com/wtwtw​t0330/​SegRoot [ac-
cessed 11 June 2020]) (Wang et al., 2019).

SR model training

Many CNN architectures that enable the 
mapping of LR images into SR images can be 
found in the machine learning literature. In 
this study, we used two state-of-the-art CNN-
based models, FSRCNN and SRGAN, to con-
vert LR root images to SR images. FSRCNN 
is a model that exhibits a similar performance 
to other state-of-the-art SR techniques, but 
its execution is considerably faster, making it 
convenient for comparing different training 
data sets. Appendix 1 contains a description of 
the parts of this network. SRGAN is a machine 
learning system formed by two blocks, a dis-

criminator (D) and a generator (G). The function of D distinguishes 
between the SR images and real HR images. On the other hand, G 
aims to generate SR images capable of fooling D. In Appendix 2, we 
describe the SRGAN model in detail.

In our experiments, we trained nine SR models: (1) FSRCNN-
DIV2K: FSRCNN trained with the DIV2K data set; (2) FSRCNN-
91-image: FSRCNN trained with the 91-image data set; (3) 
FSRCNN-roots: FSRCNN trained with the Roots data sets; (4) 
FSRCNN-91-image&roots: FSRCNN-91-image model fine-tuned 
with the Roots data set; (5) SRGAN-DIV2K: SRGAN trained with 
the DIV2K data set; (6) SRGAN-91-image: SRGAN trained with the 
91-image data set; (7) SRGAN-roots: SRGAN trained with the Roots 
data set; (8) SRGAN-91-image&roots: SRGAN-91-image model 
fine-tuned with the Roots data set; and (9) SRGAN-MULDIS: 
SRGAN model trained with three discriminators (one for each data 
set: DIV2K, 91-image, and Roots).

For all the SR training experiments, we used a subset of 100 im-
ages from the Roots data set as a validation data set, which was used 
to estimate the performance of the model in terms of the SNR af-
ter completing each iteration. After finishing the training process, 
we identified the parameters that output the highest SNR on the 
validation test for inclusion in the model. Each model was trained 
on 100 iterations (the loss function converges with this number of 
iterations).

Evaluation

For evaluation purposes, we applied an 
automatic segmentation on the SR im-
ages and quantitatively evaluated the per-
formance of the segmentation. Several 
U-net encoder-decoder architectures have 
been proposed for the automatic detec-
tion and segmentation of plant roots (Xu 
et al., 2020). In this work, we employed the 
SegRoot model (Wang et al., 2019). Figure 
1 shows the stages of the application of 
the SR framework to enhance plant root 
images.

FIGURE 1.  Stages of the super-resolution (SR) experiments, showing the SR models (FSRCNN 
and SRGAN) and their constituent parts (left) and the segmentation model, SegRoot (right).

FIGURE 2.  Images demonstrating that the signal-to-noise ratio and the visual quality of an im-
age are not always directly correlated.

https://data.vision.ee.ethz.ch/cvl/DIV2K/
https://data.vision.ee.ethz.ch/cvl/DIV2K/
https://www.kaggle.com/ll01dm/t91-image-dataset
https://zenodo.org/record/50831#.XjIAPVNKhQI
http://gigadb.org/dataset/100346
http://gigadb.org/dataset/100346
https://www.quantitative-plant.org/dataset/3d-magnetic-resonance-images-of-barley-roots
https://www.quantitative-plant.org/dataset/3d-magnetic-resonance-images-of-barley-roots
https://www.quantitative-plant.org/dataset/3d-magnetic-resonance-images-of-barley-roots
https://github.com/wtwtwt0330/SegRoot
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We quantitatively evaluated the SR algorithm performance using 
two measures: SNR and IoU. SNR is a classic measure for estimating 
the quality of a recovered signal. It is computed using a pixel-by-
pixel comparison of the original HR image and the estimated SR 
image, as follows:

SNR might not necessarily highlight any enhancement of HR detail, 
however; for example, in Fig. 2, the SNR (the higher the better) of the 
image estimated by bicubic interpolation (i.e., increasing the size of 

the image by interpolating neighbor pixels) was 1.83—higher than 
the SNR of the SR image (1.62), even though the interpolated image 
looks blurred. For this reason, we also estimated the effect of apply-
ing the SR enhancement as a preprocessing step in an automatic 
root-to-background segmentation process. To this end, we trained 
the state-of-the-art SegRoot network (Wang et al., 2019) with HR 
data. We assumed that the segmentation would be more accurate if 
the input data contained HR details, such as the ones used for train-
ing. We compared the binary (‘1’ pixels indicate root, and ‘0’ pixels 
indicate background) segmented images Bseg with manually labeled 
images Bgt by calculating the IoU (Rahman and Wang, 2016), also 
known as the Jaccard Index, as follows:

where ‘|⋅|’ denotes the sum of all the entries of 
the input matrix and ‘*’ is a pointwise multi-
plication. IoU values are between 0 and 1 (the 
higher the better); an IoU value of ‘1’ is when 
all the target pixels are correctly classified and 
there are no false positives.

RESULTS

To evaluate the performance of the SR mod-
els, we downscaled the images of the soybean 
data set by a factor of four to reduce their 
resolution. We used each of the SR mod-
els listed above to upscale the test images to 
their original resolution. We estimated the 
SNR by comparing the estimated SR images 
with the original HR images. Next, we used 
the SegRoot network to automatically classify 
each pixel in the input image as root or non-
root. As lower and upper bounds, we took the 
upscaled images by bicubic interpolation, and 
the original HR images, respectively.

Table 1 contains the SNR and IoU values 
obtained for the grayscale soybean data set. 
Segmentation carried out on HR images always 
exhibited the best performance, likely because 
the HR details on the images boost the perfor-
mance of the SegRoot model when analyzing 
this data. All the SR models outperformed the 
bicubic interpolation in terms of both SNR 
and IoU. Regarding only the SR models, three 
of them (FSRCNN-91-image, FSRCNN-roots, 
and SRGAN-MULDIS) exhibited the highest 
SNR (there is no statistical support for one 
being better than the others as their standard 
errors overlap). As two of the three best mod-
els use FSRCNN, it might be preferred over 
SRGAN for this application. There is a mis-
match between the SNR and IoU results, how-
ever; the model that performs best in terms 

SNR=10log
1

‖HR−SR‖2
.

IoU=2

|||Bseg ∗Bgt
|||

|||Bseg
|||+

|||Bgt
|||

FIGURE 3.  Examples of plant-root images used to train super-resolution models. (A, B) 
Arabidopsis thaliana and (C, D) wheat (Triticum aestivum) roots shown as RGB (A, C) and grayscale 
(B, D) images. (E, F) Barley (Hordeum vulgare) roots shown as RGB (E) and magnetic resonance (F) 
images. 
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of the IoU is FSRCNN-91-image&roots. Therefore, the features en-
hanced by the SR models that increase the SNR are not necessarily 
useful for any given task, such as the applied automatic segmentation. 
Figure 4 contains examples of SR and segmented images.

The average processing time of a 64 × 64-pixel image was 0.2248 
s using the SRGAN-based models, 0.2170 s for the FSRCNN mod-
els, and 0.0003 s using bicubic interpolation. Note that bicubic inter-
polation is an upscaling method that does not require training. All 
the computational experiments were performed on a Linux CentOS 
7 machine, x86_64, Intel Xeon CPU @3.60 GHz (Intel, Santa Clara, 
California, USA) with a GPU GeForce RTX (Nvidia, Santa Clara, 
California, USA). For the implementation, we used the deep learn-
ing framework PyTorch 1.2.0 (Paszke et al., 2019).

DISCUSSION

We designed a framework for the application of deep learning–based 
SR models to enhance plant root images. In our experiments, we eval-
uated the SR models in terms of both the reconstruction capability 
(by SNR), and the boosting of the images for performing automatic 

segmentation (by IoU). We demonstrated that the SR models outper-
form the basic bicubic interpolation even when trained with non-
root data sets. Furthermore, our segmentation experiments showed 
that a high performance on this task can be achieved independently 
of an enhanced SNR. We therefore conclude that the quality of the 
image enhancement depends on the application.

The image processing pipeline could also include other stages, 
such as denoising and contrast enhancement. To incorporate any 
new stage, we recommend using the two-section evaluation method 
that we applied in this study: evaluate the performance on the pro-
cessed image directly, and evaluate the results when performing a 
machine learning task on the processed image. In addition, we sug-
gest that SR models could be used to analyze root system architec-
tures (a stitching method might be needed to put together pieces of 
SR images) and improve the performance of other machine learn-
ing tasks, such as feature extraction and classification.

Future work could include the application of the proposed SR 
framework to images acquired in the field. Here, we generated LR 
samples by downscaling the original HR images; therefore, an exten-
sion of this work might consider using an alternative to transform 
HR into LR images, such as “blind SR kernel estimation” methods.
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DATA AVAILABILITY

Five publicly available data sets were used in this study; these are avail-
able as follows: DIV2K (https://data.vision.ee.ethz.ch/cvl/DIV2K/), 

TABLE 1.  Evaluation of super-resolution models using a data set of soybean 
(Glycine max) root images. The signal-to-noise ratios (SNRs) and intersection over 
union (IoU) means are presented (standard error in parentheses).a

Model SNR (SE) IoU (SE)

Bicubic 28.30 (1.37) 0.0984 (0.0098)
FSRCNN-DIV2K 32.60 (0.19) 0.1313 (0.0106)
FSRCNN-91-image 33.10 (0.20) 0.1419 (0.0108)
FSRCNN-roots 33.05 (0.20) 0.1623 (0.0111)
FSRCNN-91-image&roots 32.48 (0.19) 0.1709 (0.0110)
SRGAN-DIV2K 32.48 (0.19) 0.1402 (0.0106)
SRGAN-91-image 32.47 (0.19) 0.1327 (0.0107)
SRGAN-roots 32.71 (0.19) 0.1485 (0.0108)
SRGAN-91-image&roots 32.66 (0.20) 0.1536 (0.0108)
SRGAN-MULDIS 33.05 (0.20) 0.1415 (0.0108)
HR — 0.2003 (0.0122)

aGrayscale rows are lower and upper bounds (bicubic and high-resolution, respectively). 
Boldfaced values correspond to the models that exhibited the highest performance. 

FIGURE 4.  Super-resolution and segmentation example images (128 × 64-pixel size) from the soybean (Glycine max) data set. From top to bottom: 
(A) ground-truth image, high-resolution (HR) image, and segmentation on the HR image, (B) bicubic image and its segmentation, (C) output of the 
FSRCNN-91-image model and its segmentation, (D) output of the SRGAN-MULDIS model and its segmentation, and (E) output of the FSRCNN-91-
image&roots model and its segmentation.

https://data.vision.ee.ethz.ch/cvl/DIV2K/
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91-Image (https://www.kaggle.com/ll01d​m/t91-image​-dataset), Arabi­
dopsis thaliana data set (https://zenodo.org/recor​d/50831​#.XjIAP​VN 
KhQI), wheat seedling data set (http://gigadb.org/datas​et/100346), and 
barley data set (https://www.quant​itati​ve-plant.org/datas​et/3d-magne​
tic-reson​ance-image​s-of-barle​y-roots). The source code and pre-trained 
SR models are available at GitHub and Zenodo (https://github.com/ 
GatorSense/SRrootimaging; https://doi.org/10.5281/zenodo.3940562;  
Ruiz-Munoz, 2020).
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APPENDIX 1. Description of the fast super-resolution convolutional neural 
network (FSRCNN).

The FSRCNN model is divided into five parts: (1) Feature extraction: 
FSRCNN consists of a convolutional layer with d filters of size 5 × 5 
and one input channel. In this case, d is considered the LR dimension. 
This part is denoted by Conv(5,d,1). (2) Shrinking: The purpose 
of a shrinking layer is reducing the LR dimension. The shrinking 
procedure is carried out by a convolutional layer of s 1 × 1-filters 
denoted by Conv(1,s,d), where s is smaller than the number of input 
channels d. (3) Mapping: The mapping layer is a non-linear mapping 
that aims to estimate a shrunken version of the HR dimension. This 
layer is implemented as a sequence of m 3 × 3 convolutional layers. 
The number of filters is s for each layer. This mapping is denoted by 
mxConv(3,s,s). (4) Expanding: The expanding layer is implemented 
using a number, d, of SR feature maps estimated by a 1 × 1 convolutional 
layer (denoted by Conv(1,d,s)). (5) Deconvolution: The deconvolution 
component corresponds to a 9 × 9 deconvolution layer with one filter 
that upscales n times the height-and-width input dimensions. The 
deconvolution components denoted by DeConv(9,1,d).

As suggested by the authors of FSRCNN (Dong et al., 2016), 
we applied a parametric rectified linear unit (PReLU) after each 
convolutional layer. Also, we set the parameters d, s, and m as 56, 12, 
and 4, respectively, which were experimentally demonstrated to be 
suitable for recovering HR details.

APPENDIX 2. Description of the super-resolution generative adversarial 
network (SRGAN).

A generative adversarial network (GAN) is formed by two blocks, a  
generator G and a discriminator D. In this configuration, G and 
D play contrary roles, with G aimed at generating “realistic-like 
fake data” capable of fooling D, whereas D is continuously trained 
to identify fake data from real data (Goodfellow et al., 2015). 
Mathematically, the adversarial setting is formulated as follows

where E[·] denotes the expectation operator, x is a sample (e.g., an 
image), and p and q are data distributions (e.g., distributions of 

LR and HR images). Because this is a min-max problem, the ex-
pression in (1) is both a loss function and a reward function. The 
optimization problem is solved in an alternating manner. In one 
step, the loss function is minimized with regard to G, such that the 
output of G(x)|x~p(x) is optimized when D(G(x)) equals 1. On the 
other hand, the expression in (1) is seen as a reward function that is 
maximized with regard to D. In this case, D(x) is a classifier that is 
trained to output 1 when x~p(x), and 0 when x~q(x).

To choose the architecture of D, we need a two-class 
classification network, while for G we require a network that 
outputs a matrix of the same size of the input (because the LR 
image is interpolated to the size of the desired SR image). We 
evaluated several architectures and selected two for their balance 
between performance and computational requirements. For the 
G network, we used the convolutional super-resolution layers of 
the resolution-aware convolutional neural network (RACNN) 
proposed by Cai et al. (2019). For D, we designed a two-class 
classifier with three convolutional layers and one fully connected 
layer. For training, we used a batch size of 100, and as an update 
rule, we applied adaptive moment estimation (Adam), which was 
also used in the method proposed by Ledig et al. (2017), with a 
learning rate of 0.001. To create LR training images, we randomly 
selected 64 × 64-pixel chunks, downsampled them to 16 × 16 
pixels, and upsampled them again to the original size by bicubic 
interpolation.

In a SRGAN, x~p(x) is a sample of a set of LR images, and x~q(x) 
is a sample of a set of HR images. After several iterations, it was 
expected that D would not be able to tell apart HR and SR images, 
i.e., G learns to convert LR images into SR images very similar to 
the original HR images. Note that in (1), it was not required for the 
output of the generator to match the HR version of the LR input, 
i.e., the content of the generated image might not be the same as in 
the LR image. To enforce the matching between the HR–LR pairs, 
we added the squared error between the HR and SR images to the 
function as follows

where x,y~p(x,y) is a pair of HR (x) and LR (y) images randomly 
sampled from a set of HR–LR image pairs, and ‖⋅‖ denotes the 
Euclidean norm. Note that in (2), when minimizing with regard 
to G, two terms are considered, log(1−D(G(y))) and ‖‖x−G(y)‖‖

2,  
which correspond to the generative adversarial loss and content 
loss, respectively (Ledig et al., 2017).

We modify the approach described in (2) by incorporating 
multiple Di discriminators in the SRGAN architecture (one 
discriminator per data set); therefore, each discriminator acts as 
an expert to distinguish HR–SR images on one type of data. The 
optimization problem is written as follows

where Di is the discriminator specialized in the ith data set. We hy-
pothesize that, in this way, the generator will output more general 
SR images because it is more challenging to “cheat” several special-
ized discriminators (one per type of data) than a general one (a dis-
criminator that distinguishes HR vs. SR images of any kind).

(1)minGmaxDEx∼p(x)[log D(x)]+Ex∼q(x)[1− log D(G(x))]

(2)minGmaxDEx,y∼p(x,y)[log(D(x))+ log(1−D(G(y)))]+‖‖x−G(y)‖‖
2

(3)minGmaxD
∑

i

Ex,y∼pi(x,y)
[log(Di(x))+ log(1−Di(G(y)))]+

‖‖x−G(y)‖‖
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