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Recent advances in computing power, bioinformatics algo-
rithms, and sequencing technologies have made assembling a 
genome and annotating genic features relatively easy and com-
monplace. However, the process of determining the functions of 
the annotated genes is still a laborious task. Even in Arabidopsis 
thaliana (L.) Heynh., the workhorse of plant research, 10%, 17%, 
and 18% of genes have no Gene Ontology (GO) cellular com-
ponent, molecular function, and biological process annotations, 
respectively, and only 28%, 16%, and 24% of genes in these cate-
gories have experimentally determined functions (TAIR, 2019). 
The sheer volume of data produced via sequencing itself pres-
ents a challenge for deriving biological meaning from sequences. 
In this review, we discuss how machine learning is being used in 
different model systems to integrate a variety of pieces of high- 
and low-throughput data and address the problem of gene func-
tion discovery.

In reviewing this topic, it becomes necessary to define gene func-
tion. Historically, a “gene” was considered to be a locus in which se-
quence alterations led to inactivation of a trait of interest (Gerstein 
et al., 2007), resulting in function being associated with an assayable 
phenotype. In contrast, the more recent ENCODE project defined 
a genomic sequence as having function if it “participated in at least 
one biochemical RNA and/or chromatin associated event in at 
least one cell type” (The ENCODE Project Consortium, 2012). This 
relaxed definition of function, which led to the authors declaring 
80.4% of the human genome as functional, was heavily criticized 
(Graur et al., 2013). Nonetheless, with ever-increasing genomics 
data and projects such as ENCODE, we now have a better idea of 
signatures associated with known functional sequences, which ma-
chine learning methods exploit for identifying genes and defining 
their functions. Functional definitions can be encoded at differ-
ent organizational levels, such as (i) the structural type of a given 
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sequence feature (e.g., gene, non-coding RNA, pseudogene, trans-
poson, intergenic sequence), (ii) interaction of a gene product with 
other cellular entities (e.g., microRNA–target interactions, protein– 
protein interactions [PPIs], subcellular localization, enzyme– 
substrate interactions), and (iii) phenotypic influence of the feature. 
The widespread availability of genomic and post-genomic data in 
the past decade has created novel opportunities to understand and 
predict these functions.

In recent years, machine learning has been successfully used 
in many biological contexts. Machine learning–based algorithms 
are efficient enough to handle massive data sets that exhibit high 
amounts of noise, dimensionality, and/or incompleteness, and 
make minimal assumptions about the data’s underlying probability 
distributions and generation methods. The primary focus of ma-
chine learning methods is prediction, which is different from the 
inferential focus of traditional statistical approaches (Bzdok et al., 
2018), although in practical terms the distinction between machine 
learning and statistics is rather blurry (Fig. 1A). Machine learning 
algorithms can be broadly divided into two types—supervised and 
unsupervised (Fig. 1A, Fig. 2). Supervised algorithms such as ran-
dom forests (RF), support vector machine (SVM), and k-nearest 
neighbors (kNN) are frequently used for the purposes of binary/
multi-class classification of test instances or for numerical predic-
tion of the trait values (regression) and require explicit definitions 
of labels, while unsupervised methods such as principal compo-
nents analysis, k-means clustering, and self-organizing maps are 
label-free and are primarily used for clustering and feature ex-
traction. Machine learning algorithms can further be classified into 
feature-based and artificial neural network (ANN)–based meth-
ods, depending on the inherent algorithm development process. 
Whereas feature-based methods such as RF and SVM require ex-
plicit specification of various features, ANN methods such as con-
volutional neural networks (CNNs) and recurrent neural networks 
(RNNs) can extract features from the training data by themselves. 
Furthermore, while a few dozen to a few hundred input training 
data points can be sufficient for feature-based methods, ANN algo-
rithms typically require thousands to millions of input data points 
for accurate model development. The use of ANNs comprising 
multiple layers of neurons (Fig. 1A, Fig. 2) is referred to as deep 
learning.

In this review, we primarily focus on popular supervised meth-
ods used for gene function prediction (summarized in Table 1). 
Most of the discussed methods use a specific approach for algo-
rithm development (Fig. 1B), i.e., generation of a model using train-
ing data followed by cross-validation. In addition, some of these 
approaches also test their models using completely distinct “test” 
or “challenge” data that the algorithm has not encountered during 
the training/validation process. Because there are many algorithms 
for feature-based as well as deep learning (Fig. 2) (Li et al., 2019), it 
is not always possible to a priori determine the best algorithm for 
a given data set. Some studies (e.g., Lloyd et al., 2015) thus deploy 
a grid search or a random search approach to screen through mul-
tiple algorithms and their parameter combinations to identify the 
best-performing algorithm using measures such as the area under 
the receiver operating characteristic (AUROC) curve, precision-re-
call, and F-score (Fig. 1B).

This review covers recent attempts to define gene function  using 
machine learning. We first review methods that identify structural 
regions in the genome, specifically focusing on protein-coding 
genes and cis-regulatory elements. We then cover methods that 

ascribe higher-order properties to genes, e.g., gene expression pat-
terns, subcellular localization, and PPIs. Next, we review integrative 
methods for predicting specific molecular or biological functions of 
genes, e.g., GO, involvement in metabolic networks, and genotype– 
phenotype associations. Finally, in each section and in the 
Discussion, we describe the current roadblocks in machine learning 
utilization in plant sciences, and suggest possible measures for ad-
dressing those roadblocks.

PREDICTION OF FUNCTIONAL GENOMIC REGIONS

The identification of the genomic sequences that constitute func-
tional regions is the first step in genome annotation. Machine 
learning approaches have been developed to detect a number of 
features such as protein-coding genes, microRNAs (miRNAs), long 
non-coding RNAs (Sun et al., 2015), polyadenylation sites (Gao  
et al., 2018), DNAse I hypersensitive sites (Lyu et al., 2018), cis-regulatory  
elements (CREs), and chromatin states (Ernst and Kellis, 2017). The 
detection of these genic elements may use machine learning in a 
classification setting: genic elements may be classified as “protein- 
coding genes” or not, “miRNA” or not, or “CRE” or not. In these  
settings, machine learning’s ability to integrate large volumes of 
heterogeneous data may improve its accuracy over those of non– 
machine learning methods (Li et al., 2018). SVMs, RFs, and CNNs 
are, thus, used for genomic feature prediction (Fig. 2). SVMs 
have been shown to be efficient in binary classification problems 
(e.g., gene or not) and multi-class problems (e.g., gene, miRNA, 
pseudogene, transposon) (Mathur and Foody, 2008) but, compared 
to RFs, have multiple parameters that need tuning. RFs may also 
have a better performance for most tasks (Caruana and Niculescu-
Mizil, 2006). Nonetheless, despite the popularity of these algorithms 
since the 1990s, the machine learning approach that works best for 
many structural feature prediction problems is hidden Markov 
models (HMM).

Protein-coding gene prediction

Current pipelines for predicting protein-coding genes in plant ge-
nomes (e.g., MAKER-P, Campbell et al., 2014; MEGANTE, Numa 
and Itoh, 2014; BRAKER, Hoff et al., 2016) rely on the integration 
of a number of different features such as coding potential of nu-
cleotide sequences, ab initio definition of intron–exon structures, 
transcript sequences, and orthologous genes from related species. 
Such integration can help address challenges arising from the ge-
nomic complexity such as multiple isoforms, alternative transcrip-
tional start sites, duplicated genes, and the presence of pseudogenes 
and repeats (Schatz et al., 2012). The ab initio gene finders used in 
the above pipelines (e.g., Augustus, SNAP) primarily utilize HMMs, 
a probability-based supervised learning algorithm described in the 
1960s (Baum and Eagon, 1967) that predates the emergence of ma-
chine learning as a field. HMM algorithms can be trained iteratively 
to predict the functional class (e.g., splice site, exon, enhancer) of 
individual nucleotides based upon the class of their neighboring 
nucleotides. For example, if a nucleotide is predicted to be part 
of a splice site, its neighboring nucleotides must be an exon and 
an intron (Yip et al., 2013). Such nucleotide-level predictions can 
be modeled using the inherent structure of HMMs, compared to 
slightly convoluted approaches that need to be implemented for 
SVMs or RFs.
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For example, the mGene software (Schweikert et al., 2009) im-
plemented an SVM approach for the detection of genic elements 
using specially-made kernel functions. These kernel functions allow 
for DNA sequences to be represented in a linear/non-linear vector 
space, helping produce decision boundaries for classifying input 
sequences into their discrete categories (see Fig. 2B for additional 
SVM details) (Sonnenburg et al., 2007; Ben-Hur et al., 2008). The 

authors found that SVMs could detect transcription start sites and 
splice-sites with higher accuracy than HMMs, and therefore trained 
eight SVMs to each detect one genic feature (acceptor/donor splice 
sites, translation start/stop sites, transcription start/stop sites, polya-
denylation sites, and trans-splicing events), whose scores were then 
combined for predicting the overall gene feature. Although more 
convoluted than HMMs, the SVM approach allows for efficient 

FIGURE 1. Schematic for choosing and implementing a machine learning (ML) workflow. (A) A simplified decision tree for choosing the type of ML 
algorithm for a given task. Considerations for choosing deep learning methods over others include whether a large amount of training data and 
computational power are available, whether features can be extracted readily, and whether the “black box” nature of neural networks is acceptable. 
(B) A typical workflow for supervised, feature-based learning. An ML algorithm predicts the value of the response variable for each input data point 
(instance) based upon its particular feature (dependent variable) values. While we here show the workflow for classification, many ML algorithms are 
also capable of regression. We present an example with fictional data, based upon the work presented in Lloyd et al. (2015), in which an ML model 
predicts the response variable of lethality upon gene knockout using the features domain count and protein length. (1) In binary classification, input 
data consists of positive instances and negative instances (L and Non_L, respectively). Optimally, the number of positive instances should roughly 
equal the number of negative instances. When there are substantial training data available, the input data set may be split into a Training Set (usually 
75–90% of the input data) and a Test Set. When a Test Set cannot be made, cross validation (CV) may be sufficient to estimate the algorithm’s error in 
classification of test instances. (2) Here, five-fold CV is shown. In each fold, 20% of the input training data is randomly chosen to be the Validation Set 
(shown in pink). The model is trained using the training data, and its performance on new instances is determined through the Validation Set. This 
process is repeated five times. (3) Each instance’s predicted class is compared to its actual class. Here, L is the positive class. TP = true positive, FP = 
false positive, TN = true negative, FN = false negative. (4) Overall classification performance can be quantified by different metrics: TNR = true negative 
rate (also specificity), TPR = true positive rate (also sensitivity, recall), precision, accuracy, area under the receiver operating characteristic (AUROC) 
curve, PRC = precision-recall curve. For all of the above metrics, values closer to 1 indicate increasingly optimal performance.
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incorporation of heterogeneous data such as RNA-seq read counts. 
mGene.ngs, which incorporates gene expression information with 
genome sequence–based predictions, was used to annotate the 
genomes of 18 A. thaliana accessions (Gan et al., 2011). Another 
study trained an SVM classifier for a novel application in Triticum 

aestivum L. (bread wheat) (Brenchley et al., 2012). This plant has a 
notoriously large (17 Gbp) hexaploid genome, composed of three 
subgenomes that, for machine learning, can be defined as three dif-
ferent classes. The authors trained the SVM to recognize and dif-
ferentiate between gene homologs belonging to one of these three 

FIGURE 2. Explanation of four machine learning methods used for various aspects of functional prediction and their variants. Each method has been 
employed in a study reviewed in this article. For the decision tree (random forest [RF] inlet), k-nearest neighbor (kNN), and support vector machine 
(SVM), classification is shown here as based on two features (domain count and protein length); however, many more features are typically used for 
model development. Using these features, RF and SVM predict the class (L = lethal, N = nonlethal) of any instance falling into the defined regions 
(green region = class L, brown region = class N). kNN is a supervised learning algorithm that predicts the class of new instances based upon the classes 
of the most similar instances. Artificial neural networks are able to extract features during the classification process, and use these to predict the class 
of each input.
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subgenomes, and achieved a moderate (~59%) classification accu-
racy. The authors note that misclassified genes were those with high 
sequence similarity between homologs.

The mGene example above illustrates the power of machine 
learning approaches in incorporating a variety of heterogeneous 
data sets in prediction tasks. Such data can reduce the potential 
false positives in gene prediction, e.g., due to fragmented genes re-
sulting from incomplete genome assemblies (Salzberg, 2019). With 
the advent of long read sequencing, genomes and transcriptomes 
of non-model organisms are relatively easy to obtain (Schmutzer 
et al., 2017). It remains to be seen if SVMs trained in distant model 
species perform better than HMMs trained in distant species; none-
theless, homology information—already modeled in software such 
as OrthoFiller (Dunne and Kelly, 2017)—can play a greater role in 
machine learning–based gene prediction algorithms in the future.

Cis-regulatory element prediction

Popular high-throughput methods of CRE determination such as 
k-mer enrichment, expectation maximization, and Gibbs sampling 
(D’haeseleer, 2006) identify over-represented motifs in genomic 
sequences of interest, themselves generated from ChIP-seq experi-
ments or co-expression analyses. However, these approaches have a 
high false positive rate for complex eukaryotic promoter sequences 
(Tompa et al., 2005; MacIsaac and Fraenkel, 2006). Among deep 
learning architectures, CNNs (Fig. 2D) are most popular for identi-
fying CREs. Their use for CRE identification from DNA sequences 

is analogous to their common application in pattern recognition 
from two-dimensional images. CNNs are also robust to variation in 
the location of the pattern of interest in the two-dimensional image, 
which is not unlike variation in the position and percent identity 
of the CRE in the promoter region. In one such study, a CNN was 
trained to identify the binding motifs of transcription factors stud-
ied in ChIP/CLIP-seq, protein-binding microarrays, or systematic 
evolution of ligands by exponential enrichment (SELEX) experi-
ments, using the sequences generated in these experiments as input 
data (Alipanahi et al., 2015). The authors used CNNs to find binding 
motifs in sequences without prior knowledge of their specific lo-
cation, and found that their method outperformed all other meth-
ods submitted to the DREAM5 Transcription Factor-DNA Motif 
Recognition Challenge (Weirauch et al., 2013).

In plants, CNNs were highly successful at detecting A. thaliana 
promoters—achieving sensitivity rates of 95% for promoters with 
a TATA-box, and 94% for those without (Umarov and Solovyev, 
2017). Within the identified promoters, authors then randomly sub-
stituted nucleotides in six-nucleotide windows and estimated the 
drop in sensitivity of promoter detection by the CNN. Large drops 
in accuracy were considered indicative of potentially functional 
CREs with conserved positions in promoters, such as TATA boxes.

Although many studies have investigated CRE prediction in ref-
erence plant species, the ability to predict CREs from sequence in-
puts using CNNs potentially allows their deployment in non-model 
species. Development of lineage-specific CNNs may be required 
in this context and can be facilitated by targeted development of 

TABLE 1. An overview of the tools and machine learning algorithms discussed in this review. The last column depicts some but not necessarily all features used by 
these tools for prediction.

Task Tools discussed Typical algorithms used Typical features used by feature-based methods

Protein-coding gene 
identification

MAKER (Augustus), BRAKER (GeneMark/
Augustus), mGene

HMMa , SVM HMM: Genomic sequences, mapped RNA-seq 
transcripts, orthologous sequences; SVM: 
sequence signals (e.g., transcription start sites), 
sequence composition, sequence length

Cis-regulatory element 
identification

Alipanahi et al., 2015; Umarov and 
Solovyev, 2017

CNN Sequence segments, experimentally determined 
binding scores from protein-binding arrays,  
ChIP-seq, etc.

Gene expression Kakei et al., 2013; Wang et al., 2018; 
Washburn et al., 2019

SVM, CNN, RF Presence/absence of motifs and motif pairs for 
SVM/RF, direct genomic sequences for CNNs

Subcellular localization TargetP, SignalP, Plant-mPLoc RNNs, ensemble clustering 
using kNN

Subcellular localization sequences, GO terms, 
domain composition

Protein–protein 
interactions

Rodgers-Melnick et al., 2013; Liu et al., 
2017; Ding and Kihara, 2019

SVM, RF Protein subcellular localization, expression patterns, 
domains, and features derived from protein 
structure, such as conserved interaction sites, 
hydrophobicity, etc.

Gene Ontology NetGO, DeepGOPlus, GO-At CNN, decision trees, kNN, naïve 
Bayes

Gene expression, predicted secondary structure, 
homology, membership in enzyme families, 
interacting proteins, etc.

Metabolic pathways Dale et al., 2010; Toubiana et al., 2019 Naïve Bayes, decision trees, 
logistic regression, RF

Gene chromosomal location and neighbors, 
reaction evidence, pathway taxonomic range, 
integrated metabolomics-transcriptomics 
correlation network properties

Phenotypes Lloyd et al., 2015; Sprenger et al., 2018; 
Moore et al., 2019

SVM, RF Varied features derived from genomic, 
transcriptomic, and metabolomic data across 
species (e.g., tissue-specific expression, correlation 
network connectivity)

Genomic prediction Ornella et al., 2014; González-Camacho  
et al., 2016

SVM, probabilistic neural 
network

Presence/absence of genetic markers and pairs of 
genetic markers, direct genetic markers for PNN

Note: CNN = convolutional neural network; HMM = hidden Markov model; kNN = k-nearest neighbors; RF = random forests; RNN = recurrent neural network; SVM = support vector 
machine.

aFor a newly sequenced species, gene predictions are made by first training HMMs to identify intron–exon structures using reference structures from a closely related species or from 
genome-mapped RNA-seq data, and then deploying these models on the species of interest. 
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molecular resources in “anchor species” (Moghe and Kruse, 2018), 
as noted in the Discussion section. In addition, feature-based 
approaches such as RF—incorporating elements such as physi-
cochemical properties of binding sites, preferential presence in 
open-chromatin regions/introns/untranslated regions (UTRs), and 
conservation between orthologous promoters—may serve as an or-
thogonal approach to CNNs for CRE identification (Khamis et al., 
2018), if enough information about a transcription factor–binding 
site is available. Nonetheless, prediction of CREs is the first step to-
ward modeling higher-order genomic events such as transcription 
factor binding and gene expression, which themselves are steps to-
ward prediction of organismal phenotypes. In the next two sections, 
we discuss such higher-order interactions in greater detail.

PREDICTION OF HIGHER-ORDER FUNCTIONAL 
CHARACTERISTICS

Once structural genomic elements are distinguished from putatively 
non-functional sequences, prediction of the interactions between 
the gene-encoded products (e.g., knowledge of a gene’s expression 
and a protein’s subcellular localization and interacting partners) can 
provide a greater degree of functional information. Here we discuss 
machine learning approaches devised to predict such higher-order 
interactions.

Prediction of gene expression

Gene expression lends itself well to feature-based learning because 
expression is dependent on multiple well-understood features that 
can be experimentally determined, namely CREs, methylation and 
histone modification marks, and transcription factor expression. 
These features have been utilized to predict expression in yeast and 
animal species to varying degrees of success (Beer and Tavazoie, 
2004; Karlić et al., 2010). Projects such as ENCODE (The ENCODE 
Project Consortium, 2012) and the Roadmap Epigenomics Project 
(Roadmap Epigenomics Consortium et al., 2015) have generated 
high-resolution, cell-type-specific gene expression data in humans, 
and have facilitated development of efficient machine learning algo-
rithms for feature-based (Natarajan et al., 2012) and deep learning– 
based (Singh et al., 2016) prediction of gene expression. For  
example, one study (Wang et al., 2018) utilized ChIP-seq data sets of 
two transcription factors available from the ENCODE project and 
determined the number of ENCODE motifs of other transcription 
factors co-occurring with them. Using these motif counts as fea-
tures and cell-type specificity of ChIP-seq peaks as class labels, the 
authors successfully trained an RF model to predict the cell-type 
specificity of transcription factor binding based on co-occurring  
motif combinations (Wang et al., 2018). In plants, one focus of 
machine learning studies has been on using sequence-derived in-
formation from gene promoters. For example, promoter regions of 
genes up- or down-regulated in response to ABA and glucose were 
analyzed using a relevance vector machine (Fig. 2B)—a Bayesian 
relative of SVM that exhibits certain properties conducive to iden-
tifying relevant motif combinations—in order to detect the most 
discriminatory motifs (Li et al., 2006). Combinations of these mo-
tifs were successfully used to predict gene up-/down-regulation. In 
a similar study in rice (Kakei et al., 2013), authors initially identi-
fied genes that were differentially regulated under iron deficiency, 
then detected enriched CREs in this set using motif similarity and 

frequency in co-expressed genes. The authors next developed an 
SVM model to use the presence/absence of these motifs and mo-
tif combinations in a gene’s promoter for predicting whether the 
gene would be up-regulated under iron deficiency. More recently, 
a unique strategy was developed that completely ignores motif dis-
covery by simply feeding a CNN with promoter and terminator se-
quences to predict gene expression in maize (Washburn et al., 2019). 
With this method, the authors achieved an 86.6% accuracy when 
determining whether a particular gene was not expressed or highly 
expressed in a given condition, and found that the 3′ UTR of a gene 
was more informative in predicting mRNA abundance than the 
5′ UTR. In the future, this approach could be used in a regression 
setting to predict specific expression level under a given condition 
and/or in a particular tissue type.

Prediction of gene expression from sequence is one of the holy 
grails of bioinformatics. As we better understand the various fea-
tures important for expression regulation, such as transcription fac-
tor expression levels and binding affinities, methylation and other 
epigenetic marks, state of chromatin, and cell-type specificity of 
transcription, the performance of machine learning algorithms in 
this arena will improve. Large-scale studies of tissue-specific gene 
expression have been carried out for several plant species to date, 
and these will also be instrumental in expanding the applicability of 
these algorithms beyond well-studied model species.

Prediction of subcellular localization

Subcellular localization is an important determinant in the function 
of a protein, as it dictates factors such as the protein’s interaction 
partners, substrates, and optimum pH. Prediction of localization is 
essentially a classification problem and is therefore well-suited for 
machine learning. Current popular prediction approaches such as 
SignalP and TargetP utilize signals within the proteins’ amino acid 
sequences—such as N-terminal transit peptides for chloroplast 
and mitochondrial import, nuclear localization signals, secretory 
pathway signals, or peroxisomal target sequences—for prediction. 
Recent versions of these tools use ANNs instead of HMM (SignalP). 
For example, SignalP v5.0 was modified to utilize an RNN archi-
tecture (Fig. 2D) (Armenteros et al., 2019b). RNNs may fare better 
than CNNs in capturing long-range interactions in ordered sequen-
tial data, thus enabling SignalP to capture long-range motif inter-
actions important for localization that may otherwise be missed. 
The algorithm was trained on high-quality data sets of proteins 
with known subcellular localization obtained from the UniProt 
(UniProt Consortium, 2019) and PROSITE (https://prosi te.expasy.
org/) databases. To improve predictive power for organism groups 
with little data, the new version also implemented transfer learning, 
enabling models learned in one taxonomic group with substantial 
data to inform model development in the group with less data. The 
shift to RNNs from HMMs improved SignalP’s ability to recognize 
sequence motifs with varying length, and improved accuracy on 
archaeal data sets. Another tool, TargetP 2.0, which predicts chlo-
roplast targeting signals, uses a very similar approach and achieved 
a high accuracy (85%) on plant proteins, and a 90% accuracy on 
non-plant proteins (Armenteros et al., 2019a).

Plant-mPLoc (Chou and Shen, 2010), a plant-specific algorithm, 
integrated a number of functional descriptors such as GO, domain 
composition, and evolutionary information using a k-nearest neigh-
bors ensemble clustering approach (Fig. 2C), and can be used to 
identify proteins targeted to 12 different subcellular locations. The 

https://prosite.expasy.org/
https://prosite.expasy.org/
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ensemble clustering approach enabled combining predictions made 
by different component classifiers designed for predicting specific 
descriptors into one single prediction. Although Plant-mPLoc had 
better prediction accuracies than TargetP 2.0, the success rate of 
correct prediction was variable for the different subcellular loca-
tions, ranging from 10.3% to 89.5% for a benchmark set of pro-
teins. Using specific sequence signals that are directly used by the 
organisms—in this case to transport a protein to its correct sub-
cellular location—for prediction has an advantage over biological 
features that are only indirectly indicative of a certain function (e.g., 
gene expression or expression correlation). Nonetheless, the Plant-
mPLoc example highlights the importance of having enough ex-
perimentally validated training data to build accurate models. The 
generation of such data sets is still a laborious process, but availabil-
ity of new mass spectrometry–based proteomics methods (Orre et 
al., 2019) can assist with generation of high-resolution data sets and 
help improve prediction of subcellular localization.

Prediction of protein–protein interactions

Similar to subcellular localization, prediction of PPIs can also be 
conceived as a binary classification problem (two proteins interact-
ing or not), and thus well-suited for classification-based machine 
learning algorithms. Protein interactomes can be constructed by 
first obtaining data regarding different features such as protein 
properties (e.g., solvent-accessible surface area, domain informa-
tion, surface hydrophobicity), evolutionary information (e.g., in-
teracting homologs, co-inheritance), expression profiles, or proxies 
for functional similarity (e.g., GO categories), and then integrating 
them into a unified prediction using supervised algorithms such 
as SVMs or RFs. Predicting interactomes based upon interolog in-
formation (i.e., determining if interacting proteins in an organism 
with a pre-existing interactome have orthologs in the species of 
interest) is popular in plants, as interactomes for A. thaliana, rice, 
maize, Brassica rapa L., and tomato have been created in this man-
ner. However, this approach fails to accurately detect interactions 
between non-conserved and/or frequently duplicating and diversi-
fying proteins. Interestingly, machine learning methods have shown 
promise in cross-species deployment of models trained in A. thali-
ana (Rodgers-Melnick et al., 2013; Zhu et al., 2016; Liu et al., 2017; 
Ding and Kihara, 2019).

Four PPI networks have been predicted for A. thaliana, due to 
better availability of higher-confidence positive training examples. 
Two studies used A. thaliana to train models for PPI identification, 
and subsequently deployed them on the genomes of other plants. The 
first study incorporated features such as proteins’ pairwise domain 
information and subcellular localization for training an RF model 
to predict if a given pair of proteins interact (Rodgers-Melnick  
et al., 2013). For A. thaliana, this model achieved an almost-perfect 
AUROC of 0.96 (maximum possible being 1). This trained model 
was then used to predict PPIs within Populus trichocarpa Torr. & A. 
Gray. A second method trained an SVM and an RF model to predict 
PPIs from A. thaliana training data, and used this model to iden-
tify PPIs among proteins predicted to be co-localized in soybean 
and maize (Ding and Kihara, 2019). The authors filtered results to 
consider only PPIs predicted by both machine learning models, and 
found that their method achieved a higher AUROC than STRING 
(Szklarczyk et al., 2019), a popular, rule-based PPI prediction 
method. An RF-based model generated in rice also achieved higher 
performance than STRING in predicting experimentally validated 

PPIs, despite having a small positive set of only 327 experimentally  
generated PPIs (Liu et al., 2017). However, this method applied 
imputation methods to generate additional positive instances. The 
authors further applied their method to predict a protein’s impor-
tance to an agronomically important trait (i.e., flowering time) by 
summing its interactions with known genes influencing the trait. 
Finally, in generating the maize interactome (Zhu et al., 2016), the 
authors made a distinction between physically interacting proteins 
(predicted via the interolog approach) and functionally interacting 
proteins, defined as any two proteins that are in the same metabolic 
pathway. An SVM was trained to distinguish between functionally 
interacting and non-interacting proteins, using positive examples of 
proteins performing adjacent metabolic reactions from MaizeCyc, 
and negative examples of non-adjacent proteins. After validating 
predictions by considering their GO term overlap and co-occurrence  
in the same metabolic pathway, this model achieved an accuracy of 
80% and an AUROC of 0.86, much better than random expectation 
(AUROC = 0.5).

As is evident in the discussion above, SVM and RF are the most 
popular methods for predicting PPIs. These are feature-based 
methods, and hence a better understanding of the structural and 
physico-chemical properties that affect these interactions will help 
further improve the models. An integrative model that, for example, 
can accurately predict a gene’s domain of expression, its product’s 
subcellular localization, and its interacting partners can fundamen-
tally alter how we study the molecular basis of complex plant traits. 
These examples demonstrate that feature-based machine learning 
approaches can not only produce predictive models but can also 
provide deeper biological insights into the underlying biological 
phenomenon.

PREDICTION OF BIOLOGICAL FUNCTION

The availability of large-scale phenotypic data is paving the way for 
machine learning approaches to predict phenotypes from genotype. 
The best example of this is precision medicine, which seeks to im-
prove clinical decision-making based on individual patient geno-
types (Cruz and Wishart, 2007; Kourou et al., 2015). The quest for 
precision medicine, especially in cancer research, has seen substan-
tial improvements in machine learning accuracy with advances in 
genomics and availability of well-recorded genotype and phenotype 
data sets such as The Cancer Genome Atlas database (The Cancer 
Genome Atlas Research Network et al., 2013). There is a notable 
paucity of such phenotype databases with well-recorded metadata 
in the plant sciences, impeding distributed innovation in large-
scale machine learning–based data analyses. Nonetheless, machine 
learning methods have been implemented to obtain novel biologi-
cal insights and develop predictive models. Here we describe four 
applications of machine learning–based biological function pre-
diction in plants: predicting GO categories, associating genes with 
metabolic pathways, prediction of phenotype from genotype, and 
genomic prediction.

Prediction of Gene Ontology category

GO categories—divided into cellular component, molecular func-
tion, and biological process—are the most popular, albeit incomplete 
and broad, form of functional annotation. Typically, in non-model 
organisms, GO categories are assigned using sequence similarity 
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(Götz et al., 2008). However, machine learning–based methods have 
demonstrated an improvement over this approach. For example, 
Schietgat et al. (2010) developed and tested an algorithm for auto-
mated gene annotation in Mus musculus, Saccharomyces cerevisiae, 
and A. thaliana. In A. thaliana, the authors used features generated 
from gene expression, predicted class in the Structural Classification 
of Proteins database (http://scop.mrc-lmb.cam.ac.uk/), putative 
secondary structure, domains, presence in enzyme families, and 
homology, for building hierarchical, multi-label decision trees (Fig. 
2A). The authors used this approach to mimic the structure of GO, 
where each gene may have multiple GO categories (multiple labels) 
organized in a hierarchical fashion. The software performance was 
found to be comparable to other commonly used learning meth-
ods (e.g., SVM). Another program, GO-At, which was designed 
to perform in silico gene function prediction in A. thaliana, uses 
features derived from five data types: gene expression, PPI, protein 
sequence, phylogenetic profile, and genomic data (Bradford et al., 
2010). Taking advantage of high-quality training data composed 
of genes with pre-determined functions, the software uses a naïve 
Bayes classifier to learn probabilistic rules that are then applied to 
unknown genes. For example, if two proteins in the training data 
that share a common motif also share a common function, GO-At 
learns to associate the function with the motif.

Recent methods such as DeepGOPlus (Kulmanov and 
Hoehndorf, 2020), DeepText2GO (You et al., 2018), multi-task 
deep neural networks (Fa et al., 2018), and NetGO (You et al., 2019) 
have expanded the feature sets and methods used for GO predic-
tion. NetGO and DeepGOPlus—the best-performing algorithms 
in the Critical Assessment of protein Function Annotation chal-
lenge (CAFA, Zhou et al., 2019)—integrate sequence motif–based,  
similarity-based, and/or protein interaction network–based fea-
tures using k-nearest neighbor (NetGO) or CNN (DeepGOPlus), 
respectively (Figs. 2C, D). This ensemble learning approach is made 
possible by the availability of a large volume of sequence data, as 
well as powerful computers running graphics processing units 
(GPUs) that are critical for most neural network–based learning. It 
is important to note, however, that the best algorithm for prediction 
of GO molecular function and GO biological process (NetGO) had 
the highest F-score of 0.63 and 0.34, respectively, with an F-score of 
1 indicating perfect prediction. Thus, significant scope still exists for 
better prediction of GO categories.

Prediction of metabolic pathways

Plant metabolic pathways may be divided into two types, primary 
and specialized, with genes involved in the latter undergoing fre-
quent lineage-specific duplications and functional divergence. Thus, 
prediction of these genes’ function using sequence similarity—as is 
typically done for gene function annotation after genome sequenc-
ing—frequently leads to incorrect, incomplete, or no annotation of 
the gene. A combination of inputs from gene and protein structure 
analysis, expression patterns, metabolic profiles, and homology us-
ing machine learning can better associate a metabolic gene to its 
pathway and even to specific enzyme activity. In one study (Dale  
et al., 2010), the authors utilized 123 features, including reaction  
evidence, pathway holes (i.e., steps with unknown enzymes), path-
way connectivity, gene chromosomal location and neighbors, 
pathway variants (i.e., alternative routes to an end product), and tax-
onomic range, to predict metabolic pathways in an organism from 
its genome-wide gene complement. Four popular machine learning 

approaches (naïve Bayes, decision trees, logistic regression, and en-
semble methods) were used on these data. The authors reported an 
improvement over the performance of their previous, non–machine 
learning algorithm called PathoLogic (Karp et al., 2010). They note 
the importance of machine learning being a data-driven, scalable, 
and tunable approach vs. the hard-coded rules embedded in the 
core PathoLogic algorithm that are not conducive to scaling with 
increasing quantity of training data. One of the major factors lim-
iting the performance of machine learning–based pathway predic-
tion methods is still the availability of data sets matching enzymes 
to the reaction they catalyze, a problem partially being addressed by 
the PlantCyc database (Schläpfer et al., 2017).

While the PathoLogic tool approaches pathway prediction us-
ing publicly available genomic data, a recent study (Toubiana et al., 
2019) used a combination of transcriptomics and untargeted me-
tabolomics data from tomato in an integrative RF framework to 
identify and validate novel metabolic enzymes. In particular, they 
predicted and experimentally validated the presence of a novel 
pathway for melibiose degradation in plants. This application of 
a machine learning–based prediction approach demonstrates the 
potential for deploying machine learning to gain new biological 
insights.

Prediction of phenotypes and biological processes

Compared to traditional statistical approaches that have difficulty 
scaling to multiple variables and benefit from dimensionality re-
duction, machine learning methods are well-suited for phenotype 
prediction tasks, which are often characterized by a combination 
of various features and an often-significant non-independence be-
tween subsets of features. The ability of machine learning to com-
bine disparate pieces of input features is particularly useful when the 
data come from completely different methods. For example, a recent 
study integrated gas chromatography–mass spectrometry (GC-MS) 
profiling, reverse transcription–quantitative PCR (RT-qPCR), and 
RNA-seq for predicting drought resistance in potato via an RF ap-
proach (Sprenger et al., 2018). This method identified 20 metabolite 
and transcript markers that were indicative of drought resistance, 
independent of seasonal or regional agronomic conditions.

A combination of features was also used by Lloyd et al. (2015) 
for prediction of genes that may produce a lethal phenotype upon 
inactivation, by testing predictive accuracy across an ensemble of 
machine learning models. Features such as gene copy number, time 
since duplication, expression level and pattern, evolutionary rate, 
and connectivity in molecular networks were found to discriminate 
between essential and non-essential genes in A. thaliana. Using 
these features, the authors developed an RF algorithm that was able 
to successfully identify essential genes not just in A. thaliana, but 
also in rice and yeast with a high success rate, illustrating the appli-
cability of some models developed in one species to other species 
sometimes separated by hundreds of millions of years of evolution. 
A similar study utilized 50 different features including duplication 
pattern, sequence conservation, expression level, protein domain 
content, and gene network properties to identify—using RF and 
SVM—genes in A. thaliana that were part of general (primary) or 
specialized metabolism (Moore et al., 2019). The authors found that 
specialized metabolic genes are characterized by their origination 
from tandem duplications, tendency to be more specifically ex-
pressed in certain tissues, tendency to be co-expressed with their 
paralogs, lower overall expression, and lower network connectivity 

http://scop.mrc-lmb.cam.ac.uk/
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in comparison to primary metabolism genes. This example also 
demonstrates the biological interpretability of feature-based ma-
chine learning models. When the above features were used together 
in an integrative machine learning framework, the model could pre-
dict if a gene belongs to primary or specialized metabolism with a 
true positive rate of 87% and a true negative rate of 71%.

These examples illustrate that machine learning–based ap-
proaches can easily be adapted to use a large variety of different data 
types (e.g., gene expression, sequence-based features, metabolomic 
profiles, evolutionary information), and that the models developed 
in one species can be used—depending on the predictive task—in 
distant non-model species. The ability to use and integrate different 
data types is also a crucial factor for applying such strategies to non-
model systems, as standardized, large-scale data sets are often not 
available in such species.

Genomic prediction

Genomic prediction is the process of predicting the value of a com-
plex (quantitative) trait of an organism on the basis of its combina-
tion of genetic markers, such as single nucleotide polymorphisms 
(SNPs), and is typically performed in crops, livestock, and humans. 
In plants, the phenotypic traits studied are typically of agronomic 
value (e.g., yield, interval between male/female flowering time, dis-
ease resistance). Genomic prediction models are trained on a pop-
ulation that is both genotyped and phenotyped, in order to identify 
the effects of SNP combinations on the phenotype under study. 
These models are then used to predict the phenotypes of a test pop-
ulation in which every organism has been genotyped, and its pre-
dicted values are then measured against the actual values. Genomic 
prediction can save breeders both time and money, as only a frac-
tion of the individuals in a population need to be phenotyped and 
it shortens the breeding cycle through accelerated identification of 
preferable genotypes. However, genetic complexities such as low 
trait heritability, large numbers of loci underlying traits, influence 
of genotype × environment interactions, and the high dimensional-
ity of data sets can lower the accuracy of predictive models (Crossa 
et al., 2017).

In particular, high dimensionality (caused by having more mark-
ers than individuals under study) makes traditional linear regres-
sion inappropriate for genomic prediction. Although algorithms for 
dimensionality reduction through variable (here, marker) selection, 
such as Bayesian LASSO or ridge regression, may account for this, 
they still fail to capture any non-linearity present in the phenotypic 
response. Some machine learning algorithms are better able to cap-
ture these varied responses, and hence have been employed for both 
classification and regression tasks. For classification, algorithms are 
trained to distinguish between markers yielding the top N% (e.g., 
10%) of the population and those yielding lower values. A com-
prehensive study (Ornella et al., 2014) comparing the performance 
of different machine learning classification and regression models 
in maize and wheat revealed that predicting a binary phenotypic 
outcome can be more accurate than predicting an individual’s spe-
cific trait value, with SVM models performing the best. A similar 
study (González-Camacho et al., 2016) assessed the performance 
of ANNs in the classification of a very similar set of maize and 
wheat data sets. The authors found that a probabilistic neural net-
work (Fig. 2D) had the best performance for classifying individuals 
into three phenotypic classes (e.g., low, middle, or high trait value). 
ANNs have recently been applied to genomic prediction problems 

with high frequency (Crossa et al., 2017), as advances in computing 
power have allowed for additional neuron layers (Fig. 2D), which 
provide increased power to capture inter-marker correlations and 
interactions (Gianola et al., 2011). With increasing ease of obtaining 
SNP data, genomic prediction models could potentially be used in 
applications beyond plant breeding, such as to identify loci influ-
encing differences in morphology/biochemistry in natural popula-
tions of plant species.

DISCUSSION

In this review, we detail multiple machine learning algorithms that 
define different aspects of gene function. Despite these innovations, 
the power of machine learning has not been adequately tapped 
in the plant sciences. One of the biggest roadblocks is the relative 
lack of large data sets and, in particular, a lack of positive train-
ing instances, which results in significantly imbalanced data sets. 
Recently, the advent of a new deep learning method—generative 
adversarial networks, infamous for the so-called “deepfake” images 
and videos—has also spurred studies seeking to use the method to 
artificially generate biologically realistic data (e.g., Liu et al., 2019) 
and minimize data imbalance for machine learning. However, 
for the near future at least, a strong foundation of data generated 
through wet-lab experiments is absolutely needed. For machine 
learning, and especially for ANNs, this requirement scales up to 
need big data. In human models, projects such as ENCODE (The 
ENCODE Project Consortium, 2012), the Roadmap Epigenomics 
Mapping Project (Bernstein et al., 2010), and the Cancer Genome 
Atlas (TCGA; Tomczak et al., 2015) have aimed to catalog not only 
the depth but also the breadth of various features relevant to hu-
man biology. These experiments generate “gold standard” validated 
data sets containing positive instances, on the scale applicable for 
machine learning. For example, TCGA includes genomic, tran-
scriptomic, epigenomic, proteomic, histopathological, and clinical 
information for ~33 different tumors collected from ~12,000 sam-
ples, and has spawned a series of machine learning–based studies 
that have produced valuable insights in cancer biology (e.g., Malta 
et al., 2018). In order to reach the scales required for breakthrough 
insights in plant sciences, the breadth and depth of available data 
must increase. For example, most of the current big data sets in 
plants come primarily from A. thaliana, maize, and rice. Efforts 
to make systematic, easily accessible data compendia in these spe-
cies (e.g., AtGenExpress [Kilian et al., 2007] in A. thaliana or EBI 
Expression Atlas [Kapushesky et al., 2012]) can foster new machine 
learning studies. It may also be useful to focus on some “anchor 
species” (e.g., tomato, soybean) for generation of more in-depth ge-
nomic and post-genomic data sets (Moghe and Kruse, 2018). These 
species could serve as phylogenetic anchors for understanding and 
utilizing evolutionary variance as a feature set for machine learning, 
potentially increasing the breadth of applicability of machine learn-
ing models developed in one species to other species in their phylo-
genetic neighborhood. The prediction of metabolic pathways in the 
PathoLogic software and its machine learning variant demonstrates 
the value of using evolutionary relatedness for filling “gaps” or  
unknown reactions in metabolic pathways (Dale et al., 2010;  
Karp et al., 2010).

The TCGA example also shows the value of central localization 
of disparate data types in improving the data’s accessibility and us-
ability. Although such an endeavor would likely be an enormous 
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undertaking for plant-related data, linking disparate resources to-
gether through application programming interfaces (APIs) or inter- 
database links may be a feasible and useful option. Several tools 
and databases are currently used in plant genomics for annotating 
different aspects of genic features (reviewed in Bolger et al., 2018). 
Integrating heterogeneous genomic and post-genomic data spread 
out across different databases can help develop more complex mod-
els for predicting genotype–phenotype relationships. Such data 
need not necessarily be molecular—experimental metadata such 
as treatment types, organs/tissues, or genotypes could also serve 
as additional, potentially useful features for making genotype-to- 
phenotype machine learning models. As highlighted by some stud-
ies in this collection (Mirnezami et al., 2020; Théroux-Rancourt et 
al., 2020), machine learning algorithms can also be used to generate 
useful phenotypic trait data. If associated properly with metadata 
as well as genomic and other omics data, this recent revolution in 
high-throughput phenomics could help machine learning algo-
rithm development and provide novel insights about complex traits 
(Großkinsky et al., 2015). Indeed, the addition of metadata in a con-
sistent format across different databases is instrumental for the in-
tegration of different genomic features in machine learning model 
training.

In addition to data and databases, the availability of good cy-
berinfrastructure and good training opportunities in program-
ming, statistics, and machine learning is also critical for utilizing 
the power of machine learning in the plant sciences. The National 
Science Foundation–funded CyVerse (https://cyver se.org/) and 
the Extreme Science and Engineering Discovery Environment 
(XSEDE; https://portal.xsede.org/) are two excellent resources 
that allow scientists and educators in the United States who do not 
have access to their own high-performance computing servers to 
test out and implement various machine learning applications, in-
cluding deep learning algorithms. It is also important that students 
be well-trained in programming languages, especially Python and 
R, which currently serve as the starting point for many machine  
learning–oriented packages (e.g., scikit-learn [Pedregosa et al., 2011], 
Keras [https://github.com/fchol let/keras], caret [Kuhn, 2008]).  
Such training may take the shape of semester-wide courses, focused 
workshops, or machine learning–related classes offered by many 
online educational platforms. There are currently more than 2000 
genomics-related models stored in the open access Kipoi model 
repository (Avsec et al., 2019) that could be used for such train-
ing activities. However, for botanists and life scientists who do not 
have such platforms in place already, organizations and competi-
tions that facilitate collaborations with data scientists—such as the 
Herbarium2019 competition noted in this collection (Little et al., 
2020)—are a valuable resource.

In this review, we have highlighted some of the principal ma-
chine learning approaches used for functional prediction in plants. 
These examples are by no means exhaustive. One of machine learn-
ing’s most impressive characteristics is that it continues to be used 
in innovative ways and applied to different biological processes, a 
trend that will only increase in the future (for an excellent review, 
see Li et al., 2019). In addition, as evidenced in this review, well-
thought-out experimental designs can also help us gain useful bi-
ological understanding from machine learning models, mitigating 
the “black box” characterization of machine learning methods. We 
believe that machine learning algorithmic development can be ac-
celerated by improved generation and cataloging of phylogenetically 
broad experimental data—especially data on molecular interactions 

and phenotypes—as well as by reducing the infrastructural and skill 
barriers for machine learning implementation and training.
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